Header menu link for other important links
X
A refined shear lag model for adhesively bonded piezo-impedance transducers
S. Bhalla,
Published in
2013
Volume: 24
   
Issue: 1
Pages: 33 - 48
Abstract
The performance (sensing/actuating) of a piezotransducer highly depends upon the ability of the bond layer to transfer the stress and strain (through shear lag mechanism) between the transducer and the structure. Therefore, the coupled electromechanical response of the piezotransducer should consider the effect of dynamic behaviour, geometry and composition of the adhesive layer used to bond the transducer patch on the structure. This article presents a new refined analytical model for inclusion of the shear lag effect in modelling of adhesively bonded piezoelectric ceramic (lead zirconate titanate) patches for consideration in the electromechanical impedance technique. The previous models neglected the inertial term in shear lag formulations for simplicity. The present refined model, on the other hand, considers the inertial and the shear lag effects simultaneously, and is therefore more rigorous and complete. In this article, the formulations are first derived for one-dimensional case, and then extended to two-dimensional lead zirconate titanate-structure interaction. The overall results are found to be in better proximity to experimental observations. The refined formulations are employed for a detailed stress analysis of the bond layer. The article concludes with a parametric study on the influence of various sensor parameters on the electromechanical impedance signatures. © The Author(s) 2012.
About the journal
Published in
Open Access
Impact factor
N/A