$\eta-\pi^{0}$ MIXING AND $\psi^{\prime} \rightarrow \psi \pi^{0}$ DECAY

A. LAHIRI and B. BAGCHI

Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India

Received 29 September 1980
Revised manuscript received 9 February 1981

The $\psi^{\prime} \rightarrow \psi \pi^{0}$ decay rate is studied in a chiral symmetry breaking scheme by including effects from $\pi^{0}-\eta$ mixing only. The result obtained is in very good agreement with the experiment.

It has recently been pointed out by Langacker [1] that the large experimental branching ratio R for the isospin violating decay $\psi^{\prime} \rightarrow \psi \pi^{0}$ given by [2]
$R=B\left(\psi^{\prime} \rightarrow \psi \pi^{0}\right) / B\left(\psi^{\prime} \rightarrow \psi \eta\right)=(39 \pm 10) \times 10^{-3}$ or $(60 \pm 30) \times 10^{-3}$
can be explained in a simple symmetry breaking model by assuming that the violation takes place via annihilation of a cc̄ pair into uū, d \bar{d} and $s \bar{s}$ analogues. In this letter we show that such a large branching ratio may be also accounted for in a chiral symmetry framework by modifying the PCAC relations for π and η to include effects of $\langle\eta \mid \pi\rangle$ overlap and suitably evaluating the time ordered product of axial vector currents using the standard spectral representation.

To start with, we write down the $\langle\eta \mid \pi\rangle$ overlap as
$\langle\eta \mid \pi\rangle=-\mathrm{i} \int \mathrm{d}^{4} x \mathrm{e}^{-\mathrm{i} k x}\left(k^{2}+m_{\eta}^{2}\right)\left(k^{2}+m_{\pi}^{2}\right)\langle 0| T\left\{\phi_{\eta}(x) \phi_{\pi}(0)\right\}|0\rangle$,
where the fields ϕ_{η} and ϕ_{π} are defined by [3]
$\partial_{\mu} A_{\mu}^{(3)}=f_{\pi}\left(m_{\pi}^{2} \phi_{\pi}+\langle\eta \mid \pi\rangle \phi_{\eta}\right), \quad \partial_{\nu} A_{\nu}^{(8)}=f_{\eta}\left(m_{\eta}^{2} \phi_{\eta}+\langle\eta \mid \pi\rangle \phi_{\pi}\right)$,
neglecting $\pi-\eta^{\prime}$ and $\eta^{\prime}-\eta$ mixings. The $\eta-\pi$ mixing angle θ is related to $\langle\eta \mid \pi\rangle$ as
$\theta=\langle\eta \mid \pi\rangle\left(\left(m_{\eta}^{2}-m_{\pi}^{2}\right)\right.$.
By substituting eq. (3) in eq. (2) we get, for small k^{2},
$\mathrm{i} \int \mathrm{d}^{4} x \mathrm{e}^{-\mathrm{i} k x}\left(0\left|T\left\{\partial_{\mu} A_{\mu}^{(8)}(x) \partial_{\nu} A_{\nu}^{(3)}(0)\right\}\right| 0\right\rangle=\langle\eta \mid \pi\rangle\left(-1+\frac{k^{2}+m_{\pi}^{2}}{m_{\pi}^{2}}+\frac{k^{2}+m_{\eta}^{2}}{m_{\eta}^{2}}\right) \frac{f_{\pi} f_{\eta} m_{\pi}^{2} m_{\eta}^{2}}{\left(k^{2}+m_{\pi}^{2}\right)\left(k^{2}+m_{\eta}^{2}\right)}$,
in which terms involving second order in $\langle\eta \mid \pi\rangle$ are neglected.
Applying now the standard reduction techniques, one can express eq. (5) as ${ }^{\neq 1}$

[^0]$k_{\mu} k_{\nu} \Delta_{\mu \nu}=\langle\eta \mid \pi\rangle\left(1+\frac{k^{2}}{m_{\pi}^{2}}+\frac{k^{2}}{m_{\eta}^{2}}\right) \frac{f_{\pi} f_{\eta} m_{\pi}^{2} m_{\eta}^{2}}{\left(k^{2}+m_{\pi}^{2}\right)\left(k^{2}+m_{\eta}^{2}\right)}+\left(\frac{1}{3}\right)^{1 / 2} \frac{m_{\mathrm{d}}-m_{\mathrm{u}}}{m_{\mathrm{d}}+m_{\mathrm{u}}} f_{\pi}^{2} m_{\pi}^{2}$,
where
$\Delta_{\mu \nu}=\mathrm{i} \int \mathrm{d}^{4} x \mathrm{e}^{-\mathrm{i} k x}\langle 0| T\left\{A_{\mu}^{(8)}(x) A_{\nu}^{(3)}(0)\right\}|0\rangle$.
We next use the standard spectral representation [4] for $\Delta_{\mu \nu}$ to evaluate ${ }^{\neq 2}$ the 1 hs of eq. (6). We get, after some algebra,
$k_{\mu} k_{\nu} \Delta_{\mu \nu}=k^{2} \int \mathrm{~d} m^{2} \frac{\zeta^{(8,3)}\left(m^{2}\right)}{m^{2}}+k^{4} f_{\pi} f_{\eta}\left(\frac{a b}{k^{2}+m_{\pi}^{2}}+\frac{c d}{k^{2}+m_{\eta}^{2}}\right)-k^{2}\langle\eta \mid \pi\rangle f_{\pi} f_{\eta}\left(\frac{a^{2}+b^{2}}{k^{2}+m_{\pi}^{2}}+\frac{c^{2}+d^{2}}{k^{2}+m_{\eta}^{2}}\right)$
+ST (Schwinger terms),
where
$\mathrm{ST} \approx m_{\pi} m_{\eta}\left\{\int \mathrm{d} m^{2} \frac{\zeta^{(8,3)}\left(m^{2}\right)}{m^{2}}+f_{\pi} f_{\eta}\left[(a b+c d)+\left(\frac{a^{2}+b^{2}}{m_{\pi}^{2}}+\frac{c^{2}+d^{2}}{m_{\eta}^{2}}\right)\langle\eta \mid \pi\rangle\right]\right\}$,
and
$a=\langle 0| \phi_{\pi}|\pi\rangle, \quad b=\langle 0| \phi_{\pi}|\eta\rangle, \quad c=\langle 0| \phi_{\eta}|\pi\rangle, \quad d=\langle 0| \phi_{\eta}|\eta\rangle$.
To leading order, the matrix elements a, b, c and d are now evaluated [5] by taking eqs. (3) between $\langle 0|$ and $|\pi\rangle$. or $|\eta\rangle$ state as the case may be:
$a=K\left[x m_{\eta}^{2} f_{\eta} / f_{\pi}-(1 / \sqrt{3})\langle\eta \mid \pi\rangle\right], \quad b=K\left[-x\langle\eta \mid \pi\rangle f_{\eta} \mid f_{\pi}+(1 / \sqrt{3}) m_{\pi}^{2}\right]$,
$c=K\left[(1 / \sqrt{3}) m_{\eta}^{2}-\frac{1}{3} y\left(\eta|\pi\rangle f_{\eta} \mid f_{\pi}\right], \quad d=K\left[-(1 / \sqrt{3})\langle\eta \mid \pi\rangle+\frac{1}{3} y m_{\pi}^{2} f_{\pi} / f_{\eta}\right]\right.$,
where k is a constant and x and y are:
$x=-\left(m_{\mathrm{d}}+m_{\mathrm{u}}\right) /\left(m_{\mathrm{d}}-m_{\mathrm{u}}\right), \quad y=-\left(4 m_{\mathrm{s}}+m_{\mathrm{d}}+m_{\mathrm{u}}\right) /\left(m_{\mathrm{d}}-m_{\mathrm{u}}\right)$.
Substituting eqs. (9)-(12) in eq. (8) and neglecting octet-triplet axial vector mixing, we obtain
\[

$$
\begin{align*}
& \langle\eta \mid \pi\rangle\left(1+\frac{k^{2}}{m_{\pi}^{2}}+\frac{k^{2}}{m_{\eta}^{2}}\right) \frac{m_{\pi}^{2} m_{\eta}^{2}}{\left(k^{2}+m_{\pi}^{2}\right)\left(k^{2}+m_{\eta}^{2}\right)}=k^{4}\left(\frac{a b}{k^{2}+m_{\pi}^{2}}+\frac{c d}{k^{2}+m_{\eta}^{2}}\right)-\langle\eta \mid \pi\rangle k^{2}\left(\frac{a^{2}+b^{2}}{k^{2}+m_{\pi}^{2}}+\frac{c^{2}+d^{2}}{k^{2}+m_{\eta}^{2}}\right) \\
& -\left(\frac{1}{3}\right)^{1 / 2} \frac{m_{\pi}^{2}}{x}+m_{\pi} m_{\eta}\left[(a b+c d)+\left(\frac{a^{2}+b^{2}}{m_{\pi}^{2}}+\frac{c^{2}+d^{2}}{m_{\eta}^{2}}\right)\langle\eta \mid \pi\rangle\right] \tag{13}
\end{align*}
$$
\]

where $f_{\pi}=f_{\eta}$ has been assumed [5].
Since eq. (13) is valid for all small k^{2}, one has at $k^{2}=0$ the "smoothness" relation
$\left.\langle\eta \mid \pi\rangle=m_{\pi} m_{\eta}\left[(a b+c d)+\frac{a^{2}+b^{2}}{m_{\pi}^{2}}+\frac{c^{2}+d^{2}}{m_{\eta}^{2}}\right)\langle\eta \mid \pi\rangle\right]-\left(\frac{1}{3}\right)^{1 / 2} \frac{m_{\pi}^{2}}{x}$,
$\neq 2$ The use of the spectral representation for $\Delta_{\mu \nu}$ to evaluate $k_{\mu} k_{\nu} \Delta_{\mu \nu}$ makes the spirit of our paper different from that adopted in ref. [3].
which gives the following estimates for $\langle\eta \mid \pi\rangle$ overlap and θ;
$\langle\eta \mid \pi\rangle=-0.016(\mathrm{GeV})^{2} \quad \theta=-5.7 \times 10^{-2}$
for ${ }^{\neq 3} x=-3.9$ and $y=-180.5$. It may be noted that the value of θ as obtained here ${ }^{\neq 4,5}$ is considerably larger than what so far existed in the literature with [9] or without [10] the inclusion of the effect of η^{\prime}.
Eq. (15) leads to
$R=B\left(\Psi^{\prime} \rightarrow \Psi \pi\right) / B\left(\Psi^{\prime} \rightarrow \Psi \eta\right) \approx 15 \times \theta^{2}=48.7 \times 10^{-3}$
which is in very good agreement with its experimental [2] value of either $(39 \pm 10) \times 10^{-3}$ or $(60 \pm 30) \times 10^{-3}$.
Finally, a comment on the $\pi^{ \pm}-\pi^{0}$ mass difference from the $\eta-\pi$ mixing obtained in eq. (15) seems worthwhile here. This is because the $\eta-\pi$ mixing term in the mass matrix reduces the π^{0} mass relative to $\pi^{ \pm}$and one has, to leading order [11],
$\Delta m_{\pi}=m_{\pi^{ \pm}}-m_{\pi^{0}}=(1 / 2 \sqrt{3})(\theta / x) m_{\pi^{ \pm}}$.
It is evident from the above equation that a significant contribution to Δm_{π} is expected from the $\eta-\pi$ mixing that increases with the mixing parameter θ. Indeed for the value of θ in eq. (15), Δm_{π} turns out to be $0.5-0.6$ MeV which is about 12% of the observed mass difference $\left(\Delta m_{\pi}\right)_{\exp }=4.6 \mathrm{MeV}$. However, as pointed out by Gross et al. [11], since the isospin violating electromagnetic contributions account for most of the pion mass splitting and since corrections to PCAC are of the order [12] of 15% of ($\left.\Delta m_{\pi}\right)_{\text {exp }}$, any contribution from a quark mass difference can only increase the discrepancy with experiment ${ }^{\neq 6,7}$. It may be noted here that an estimate of the electromagnetic contribution to Δm_{π} may be given by $\left(\Delta m_{\pi}\right) \approx 6.1 \pm 0.8 \mathrm{MeV}$ by following the PCAC analysis of Das et al. [13] and using the present experimental determination of the ρ-coupling constant.

We are investigating [14] the reactions $\pi^{-} p \rightarrow n \eta, \pi^{+} n \rightarrow \eta p$ and the $\eta, \eta^{\prime} \rightarrow 3 \pi$ decay to estimate the $\eta-\pi^{0}$ mixing. Details of these as well as effects of $\eta^{\prime}-\pi^{0}$ mixing on our results will be communicated at a later date.

We thank Dr. V.P. Gautam for his kind interest in the problem and useful discussions. One of us (B.B.) also thanks Professor A.N. Mitra for some interesting discussions.

[^1]
References

[1] P. Langacker, Phys. Lett. 90B (1980) 447; for earlier works, see: G Segrè and J. Weyers, Phys. Lett. 62B (1976) 91; H. Genz, Lett. Nuovo Cimento 21 (1978) 270.
[2] C.W. Peck, presented at the 1979 Montreal meeting of the APS; T.M. Himel et al., Phys. Rev. Lett. 44 (1980) 920.
[3] B.L. Ioffe, Sov. J. Nucl. Phys. 29 (1979) 827.
[4] J.J. Sakurai, Currents and mesons (Univ. of Chicago Press) p. 145.
[5] M. Gell-Mann, R.J. Oakes and B. Renner, Phys. Rev. 175 (1968) 2195.
[6] C.A. Dominguez, Phys. Lett. 86B (1979) 171.
[7] B.L. Ioffe, Sov. J. Nucl. Phys. 29 (1979) 827;
A. Zepeda, Phys. Rev. Lett. 41 (1978) 139;
P. Langacker and H. Pagels, Phys. Rev. D19 (1979) 2070;
B. Bagchi, V.P. Gautam and A. Nandy, Phys. Rev. D14 (1979) 3380.
[8] A. Lahiri, B. Bagchi and V.P. Gautam, Lett. Nuovo Cimento, to be published.
[9] S. Oneda, H. Umezawa and S. Matsuda, Phys. Rev. Lett. 25 (1970) 71.
[10] S. Okubo and B. Sakita, Phys. Kev. Lett. 11 (1963) 50.
[11] D.J. Gross, S.B. Treiman and F. Wilczek, Phys. Rev. D19 (1979) 2188.
[12] P. Langacker and H. Pagels; Phys. Rev. D8 (1973) 4620.
[13] T. Das, G. Guralnik, V. Mathur, F. Low and J. Young, Phys. Rev. Lett. 18 (1967) 759; see also: S. Weinberg, The problem of mass, in: I.I. Rabi, Festschrift (1978).
[14] A. Lahiri and V.P. Gautam, IACS preprint (October 1980).

[^0]: \#1 We have taken a soft meson limit $k_{\mu} \rightarrow 0$ to evaluate the second term on the rhs of eq. (6). For the first term, however, we shall make a low energy approximation viz. $E_{\pi} \approx \mathrm{i} m_{\pi}$ and shall use, in what follows, a weaker limit $k^{2} \rightarrow 0$.

[^1]: $\neq 3$ The values of x and y taken here are within the errors of the estimates made by Dominguez [6].
 $\neq 4 \theta$ is mildly sensitive to the changes in the values of x and y. If one takes [7] $x=-3.5$ and $y=-183.5, \theta$ turns out to be $\theta=-4$ $\times 10^{-2}$ yielding $R=30 \times 10^{-3}$, in agreement with the experimental value of Peck, ref. [2].
 $\not{ }^{\ddagger}$ We have recently obtained $[8] \theta=-4.6 \times 10^{-2}$ by making use of Weinberg's first spectral function sum rule.
 $\neq 6$ See Gross et al., ref. [11], for a detailed discussion on this point.
 $\neq 7$ Unless, of course, the sign of θ is different. It may be mentioned in this connection that, by including the effect of η^{\prime}, Oneda et al. [9] had obtained two distinct values of θ that differed in sign. Moreover, one value of θ there is about the same order of magnitude (but off by a factor of 3) as obtained by us in eq. (15) and another close in magnitude to the one obtained by Okubo and Sakita [10] without considering the η^{\prime} effects.

