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Web tension control of multispan
roll-to-roll system by artificial neural
networks for printed electronics
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Abstract

The mass production of printed electronic devices can be achieved by roll-to-roll system that requires highly regulated

web tension. This highly regulated tension is required to minimize printing register error and maintain proper roughness
and thickness of the printed patterns. The roll-to-roll system has a continuous changing roll diameter and a strong

coupling exists between the spans. The roll-to-roll system is a multi-input-multi-output, time variant, and nonlinear

system. The conventional proportional–integral–derivative control, used in industry, is not able to cope with roll-to-roll

system for printed electronics. In this study, multi-input-single-output decentralized control scheme is used for control of

a multispan roll-to-roll system by applying regularized variable learning rate backpropagating artificial neural networks.

Additional inputs from coupled spans are given to regularized variable learning rate backpropagating artificial neural

network control to decouple the two spans. Experimental results show that the self-learning algorithm offers a solution

to decouple speed and tension in a multispan roll-to-roll system.
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Introduction

The roll-to-roll (R2R) processing for electronics is

also known as web processing or reel to reel process-

ing, which is the process of making electronic devices

on flexible substrates. This is the future of electronic

devices as the process is carried out at normal room

conditions. The flexible substrate used in this system

can be of plastic such as polyethylene terephthalate

(PET), paper or metal sheet. R2R system is simpler

and cost effective method as compared to the conven-

tional manufacturing processes currently adopted in

electronic industry. R2R process comprises of select-

ing suitable ink, a printing system for printing the ink

on the substrate such as direct gravure, gravure offset,

microgravure, electrohydrodynamics, slot die printing

method, and finally curing of the ink.

The roughness and layer thickness defines the per-

formance of a device.1 Lee et al.2 showed that the

print thickness and roughness depend on the tension

while keeping all other parameters constant in a R2R

process. Hence printed electronics require highly regu-

lated tension in R2R process. Electronic devices com-

prise of more than one layer, so in printed electronics,

new layer must be printed on top of the previous layer

in a way that both layers are aligned. The alignment

error of two layers is known as register error.

Fluctuation in tension causes register error3 which

ultimately result in failure of the device. Graphic

media uses the R2R system for printing with accept-

able tension error of �10% of reference tension in

steady running state4 and register control error up

to 76.2mm.5,6 Song and Sul7 presented the tension

control for metal processing line. For printed

electronics, highly regulated tension is required as

compared to graphic printing.

R2R system is a multi-input multi-output

(MIMO), time variant, and nonlinear system. The

roll diameter of the unwinder roll decreases whereas

diameter of rewinder increases when the R2R system

operates and web is moved from unwinder to rewin-

der. This makes R2R system a time variant system.

Department of Mechatronics Engineering, Jeju National University,

South Korea

Corresponding author:

KyungHyun Choi, Department of Mechatronics Engineering, Jeju

National University, Jeju-si, Jeju-do 690756, Korea.

Email: amm@jejunu.ac.kr

Proc IMechE Part C:

J Mechanical Engineering Science

227(10) 2361–2376

! IMechE 2012

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0954406212473041

pic.sagepub.com

 at UNIV OF CONNECTICUT on June 25, 2015pic.sagepub.comDownloaded from 



The interactions between two spans make the system

nonlinear. Disturbances of R2R system include the

slip of web in NIP rolls, friction of the idle rolls, print-

ing processes tension disturbances, and backlash in

the gears. R2R system is a modular machine. Many

printed devices with different layer structures have to

be made on R2R system. A single device may require

different printing processes such as gravure offset,

electrohydrodynamic printing (EHD), or slot die.

Many researchers7–19 worked on tension control.

In control theory, there are two approaches for the

tension control of web. First, is mathematical model-

ing of the system and applying conventional control

and second is the optimization or tuning regulator

techniques. For mathematical modeling and conven-

tional control, a highly precise model of the system is

required. Modeling error between a system’s mathem-

atical model and the real-world system, parameter

variations, assumptions, and the external disturbances

in the practical control are the factors that have to be

taken into account for highly regulated tension.9

Pagilla et al.10 used proportional–integral (PI) control

for a model based decentralized control with assump-

tion that there is no slip between rolls and ignoring

time variant factor of diameter of rolls. Liu and

Davison4 described control approaches for MIMO

systems. Pagilla et al. and Kang et al. modeled the

system considering it nonlinear and time variant but

assumed that there is no slip between NIP rolls and

web materials and the idle rollers have no rotational

inertia. 11,12 Sakamoto and Fujino13 developed a

mathematical model and performed PI control.

Ebler et al.14 performed a tension control comparison

between load cells and dancers systems. Dwivedula

et al.15 presented a comparative study of active and

passive dancers. Lin16 developed an observer based

tension control for friction and inertia compensation.

Okada and Sakamoto17 simulated an adaptive fuzzy

based control on a model. Sakamoto18 estimated the

interaction between different spans for tension control

for a decentralized control scheme.

PI–derivative (PID) control once tuned has con-

stant parameters thus a critically damped system can

go into unstable oscillation once any disturbance

arises. Atherton and Majhi19 presented the limitations

of PID controller. Fuzzy controller can perform

better as the membership functions can be quantified

in a nonlinear way by the expert opinion but fuzzy

controller is a pre-tuned system which limits its cap-

abilities. The fuzzy control is equivalent to feed for-

ward neural networks (NNs).20 This gives a clear

advantage to BPNs over the fuzzy control scheme.

Wang et al.21 simulated a NNs control for tension

control for a single span R2R system compared with

conventional PID control.

In this article, the web tension of a three span R2R

system is controlled by applying regularized backpro-

pagating artificial neural networks (BPNs) with vari-

able learning rate (VLR). BPN with VLR offers

a multi-input-single-output (MISO) control system

that has the ability of auto tuning. The auto tuning

takes care of time variant nature of R2R system. The

inputs of BPN are tension from load cells, position,

and speed from encoders and roll diameters measured

by ultrasonic sensors. The coupling between spans is

minimized by introducing inputs of one span to next

span. The VLR BPN control is implemented on speed

control simulation and web tension control on a

three span R2R system. This self-learning algorithm

provides a solution to the web tension control of mul-

tispan R2R system for printed electronics.

Experimental setup

Hardware

R2R system used during the experiments is shown in

Figure 1. This R2R system has an unwinder, infeed,

outfeed, and rewinder spindles connected to servo-

motors housed in an industrial machine frame.

There are many idle rolls helping in guiding the

web. Load cells are used to measure the tension in

the spans. Ultrasonic sensors provide the diameter

of the unwinder and rewinder rolls. The web (PET)

unwinds at unwinder and is passed through a load cell

and idle rolls to the infeed comprising of first span,

where span is a web length between two adjacent

driven rolls. From infeed, the web passes through a

load cell and a lateral web control unit to gravure

offset printer and from gravure offset printer to a

load cell and to the outfeed. The web from the outfeed

passes through a load cell and a lateral web control

and is rewound on the rewinder making it the last

span. In this study, the gravure printer was not uti-

lized which makes this a three span system. Figure 2

shows the web path through the R2R system.

PET substrate is elastic in nature so the printing

was performed with low values of tension. If the print-

ing is performed with high values of tension it can

cause shrinkage problems after its removal which

eventually causes failure of the device. The drying

temperature of PET may be from 50�C to 120�C

depending on the ink properties. The PET is dried

in infrared (IR) heating chamber. The temperature

changes causes variations in strain, Young’s modulus

and thermal coefficient in this part of the PET.8 This

causes the web to surpass its yield strength and enter

into the plastic region hence causing permanent fail-

ure. Ultimately the tension was kept low for the above

mentioned reasons and was 0.56% of the yield

strength which is 5N.

Load cells were used to measure the tension values

in each span and ultrasonic sensors were used to

measure the diameter of the rolls at rewinder and

unwinder. National instrument analog to digital con-

verter modules were used to read the values of load

cells and ultrasonic sensors. The Mitsubishi servopack

MRJ-2S-70A and motors HC-KFS-73 were used.
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Figure 2. Web path and tension spans in the R2R system where all three spans of R2R system are shown.

Infeed motor acts as master velocity control where other three motors are in tension control. Two lateral control units keep the

lateral position of the web in check.

R2R: roll-to-roll.

Figure 1. R2R system showing load cells, infeed unit, pneumatic cylinder, outfeed unit, web guide system (lateral control), unwinder,

ultrasonic sensors, inkjet printing system, gravure offset printer, rewinder, and control panel.

R2R: roll-to-roll.
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The two lateral control units were connected to the

PXI by Profibus interface and are responsible for the

lateral control of web. A high-voltage power sup-

ply was controlled by PXI via USB, for EHD. The

electrical circuit diagram of the system is shown in

Figure 3. The rotational angle and speed of AC servo-

motors was calculated from the incremental encoder

pulses. A field-programmable gate array (FPGA) was

used to find the motion and speed of all motors.

A rugged PC-based platform (PXI) processes all the

data and artificial neural networks is implemented to

get the appropriate torque control signals for AC

servomotors.

Programming software

National Instrument Laboratory Virtual

Instrumentation Engineering Workbench (LabVIEW

8.6) was used to program the FPGA and PXI.

Hardware interfacing, code compilation, large

libraries, and parallel programming are the key fea-

tures of Labview. Multitasking in LabVIEW enables

the users to make different control loops.

Control scheme

The web tension control was achieved by deploying

artificial neural networks control algorithm.

Unwinder, outfeeder, and rewinder servomotors

were made to run in tension control while the infeeder

was made to run as the master velocity control of the

system. The inputs of BPN of one span were used for

the BPN of next span to minimize the interaction

between the spans. This control scheme is shown in

Figure 4 where ‘TA’ is the tension output from

control to servomotor, ‘VA’ the master control vel-

ocity, ‘V’ the velocity of servomotor, ‘E’ the encoder

count, ‘T’ the tension measured by load cell in

Newtons, and ‘U’ the roll diameter measured in centi-

meters by ultrasonic sensor. The speed of the web was

controlled by the master velocity control motor all

other motors were set to match the speed while keep-

ing the web at the prescribed tension of 5 N.

Artificial NN

Artificial neural network can also be called as NN.

NN is nonlinear and adaptive system hence NN can

take care of the disturbances and time variant char-

acteristics of the R2R system. NN consists of net-

works of artificial neurons in which the data flows

through and their weights are changed to reduce the

root mean square of error, during the learning phase.

A single neuron is shown in Figure 5 in which the

inputs are multiplied by the weights, the product is

added to bias and resultant is subjected to activation

function where an activation function is the mathem-

atical formulation that is used to calculate the output

of a neuron.

The input of NN is scaled to be within 0.1 to 0.9 to

get the maximum efficiency of backpropagation

method. NN is designed in layers. First layer is

called the input layer and last is called the output

layer. In-between layers are termed as the hidden

layers. Figure 6 shows the layers of a NN. A single

neuron in a layer is also called as a node. Its output is

given by equation

a
lð Þ
j ¼ f W

l�1ð Þ
j a

l�1ð Þ
j þ blj

� �

Figure 3. Electrical connection diagram of R2R system is shown where connections of ultrasonic sensors, load cell, pneumatic

actuators, and servodrives are connected to a FPGA which is inserted in PXI.

PXI directly controls lateral control units and high power supply for electro-hydrodynamics printing system.

FPGA: field-programmable gate array; R2R: roll-to-roll.
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where ‘f’ is the activation function, ‘W
l�1ð Þ
j ’ the

weights, ‘blj’ the bias, and ‘a
l�1ð Þ
j ’ the input of neuron

‘j’ of layer ‘l’. For R2R system, the inputs of the NN

control are the feedback from load cells, roll diameter

at the winder and unwinder, position from encoder

pulses of servomotors and velocity of servomotors

calculated from the encoder counts. The position

from encoder counts, velocity calculation of the

motors, and load cells calibration was performed in

FPGA. For first layer with input ‘x’ the output

becomes

a
1ð Þ
j ¼ f W

1ð Þ
j xþ b1

� �

Same activation function must be used on all nodes

in a layer but different activation functions can be

used for different layers. Sigmoid activation function

was employed in this article. Sigmoid activation

function is a nonlinear function as shown in equa-

tion (1). A nonlinear activation function allows the

network to compensate for the nonlinearity present

within the system.20

f xð Þ ¼
1

1þ e�x
ð1Þ

The derivative of equation (1) is as follows

d

dt
f xð Þ ¼ f 0 xð Þ ¼ f xð Þ � 1� f xð Þð Þ

‘zl’ is the intermediate value in a neuron before the

activation function is applied. So for the first layer ‘zl’

is described by the following equation

z 1ð Þ ¼ W 1ð Þxþ b1

Figure 4. Control architecture of R2R system is shown, where E and V are the servomotors encoders calculated position and

velocity, respectively, U the ultrasonic sensor to find roll diameter, T the tension by load cell, TA the NN calculated torque input to

motors, and VA the master velocity control signal given to infeed motor.

NN: neural network; R2R: roll-to-roll.

Figure 5. Structure of a single neuron is shown where inputs are multiplied to their corresponding weights and are added with bias

value.

This result is subjected to the activation function to get the output of a neuron.
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When the activation function is applied then the

output of the neuron is readily available and is

given as equation (2)

a
1ð Þ
j ¼ f z 1ð Þ

� �

ð2Þ

Feedforward NNs

In feedforward NNs, the data flow is one directional

that is from the input layer to next layers so the

process completes at the output layer. There is no

loop or feedback of data flow. A well-tuned feedfor-

ward system acts like a fuzzy system20 and can

handle nonlinear systems as well but as the weights

of the system remains constant hence for a time vari-

ant system the weights working for one instant

may not perform well under other. For a three

layer NN, as shown in Figure 6, the output of first

layer is given by equation (2). Following the same

sequence, the output at last layer, i.e. third layer is

stated as

a
3ð Þ
j ¼ f z 3ð Þ

� �

ð3Þ

The output equation for feedforward NNs shown

equation (3) can be expanded into

a
3ð Þ
j ¼ f3 W 3ð Þf2 W 2ð Þf1 W 1ð Þxþ b1

� �

þ b2
� �

þ b3
� �

Backpropagation method

A backpropagation NN (BPN) is the method of feed-

back system or loop in NN. This process22 has two

steps, the first step calculates the error from the desired

output to the actual output and then keeps on calculat-

ing the error for each neuron in the NN and the second

step updates the weights for all the neuron according to

that error. The BPN scheme is shown in Figure 7.

Calculation of error

Calculation of error starts from the difference between

the desired output value of the system from training

set ‘yj’ and the value of output layer ‘alj’. The error is

represented by ‘�
lð Þ
j ’where ‘�’ is the error in layer ‘l’

and at neuron (node) ‘j’.

For the NN shown in Figure 6, the error ‘�3j ’ of

output layer is

�
3ð Þ
j ¼ yj � a

3ð Þ
j

After the output layer, the error is calculated back

from output layer to input layer, layer by layer, thus

the error is propagating back from last layer to the

first layer

�
lð Þ
j ¼ W lð Þ

� �

�
lð Þ � f 0 z lð Þ

� �

f 0 z lð Þ
� �

¼ a
lð Þ
j � 1� a

lð Þ
j

� �

�
lð Þ
j ¼ W lð Þ

� �

�
lð Þ � a

lð Þ
j � 1� a

lð Þ
j

� �

Figure 6. NNs layer architecture is shown where inputs go into first layer known as input layer and outputs come from the last layer

known as output layer while in-between layers are known as hidden layer.

In this case there are three neurons in first layer, six in hidden layer, and a single neuron in output layer.

NNs: neural networks.

2366 Proc IMechE Part C: J Mechanical Engineering Science 227(10)

 at UNIV OF CONNECTICUT on June 25, 2015pic.sagepub.comDownloaded from 



The error in second and first layers for NN in

Figure 6 is given in equations (4) and (5), respectively.

�
2ð Þ
j ¼ W 2ð Þ

� �

�
3ð Þ � a

2ð Þ
j � 1� a

2ð Þ
j

� �

ð4Þ

�
1ð Þ
j ¼ W 1ð Þ

� �

�
2ð Þ � a

1ð Þ
j � 1� a

1ð Þ
j

� �

ð5Þ

Training and learning rate

Training is the process of updating weights. Initially,

the system is started by random values of weights and

bias values between 0 and 1. With BPN the weights

are auto tuned which makes BPN capable of dealing

with time variant nature of any system. After each

feedforward networks output, error value for each

neuron is calculated. These error values are used to

update the weights so the root mean square error is

minimized

W
lð Þ
New ¼ W lð Þ þ � al�1

j �
lð Þ
j

� �

here, ‘�
lð Þ
j ’is the error and ‘�’ the learning rate which is

the ratio effecting the speed and quality of learning.

After first cycle of tuning, all weights are updated so

that for the next tuning the system can start with

weights closer to the actual converging weights23

instead of random values.

Constant learning rate consumes more training

cycles. Also, the constant learning rate has to be opti-

mized because if the learning rate is high the system

may oscillate and become unstable while a low learn-

ing rate causes may cause the system to converge after

a long time thereby increasing the rise time.

Figure 7. NN programming design is shown where inputs of NN are tension, position, velocity, and roll diameter while using a VLR

BPN torque inputs for all motors are calculated.

NN: neural network; BPN: backpropagating artificial neural network; VLR: variable learning rate.
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Variable learning rate

For decreasing the rise time, a VLR approach24 is

adopted. The learning rate is proportional to the

error between the user prescribed value and the

system output. When the error is large the learning

rate is higher than optimum value so that the system

can train itself faster but for a smaller error the learn-

ing rate stays at the optimum value. The learning rate

‘�’ is presented as

� ¼

0, � b5E5b

�opt, � c5E5� b

b5E5c

�opt � E
�

�

�

�, � d5E5� c

c5E5d
�Max, otherwise

8

>

>

>

>

>

<

>

>

>

>

>

:

where E is the error, ‘�opt’ the optimized learning rate,

‘�Max’ the maximum limit for learning rate and error

margin ranges b, c, and d are shown in Figure 8.

Overfitting

R2R has a complex system model and in initial train-

ing BPN tries to memorize the data rather than learn-

ing from the trend. This makes the system to perform

well on training data but on unseen data the system

will have poor predictive performance. This state is

known as overfitting. As a remedy, limits are applied

for the training of system so that after getting a

suitable accuracy the training procedure stops.

Regularization term has been added to overcome

the overfitting problem. So with regularization term

the weight update equation become

W
lð Þ
New ¼ W lð Þ þ � al�1

j �
lð Þ
j

� �

þ �W lð Þ

where ‘�’ is the regularization parameter which is a

penalty on the weights and hence keeps the NN out of

over fitting.

Simulations

To get optimized values of learning rate and regular-

ization, speed control of motor was simulated in

LabVIEW environment. A sinusoidal reference vel-

ocity pattern is created. The BPN makes the motor

to track the speed pattern. Simulation shows that the

learning rate was initially high but it reaches the opti-

mum value as the system goes to a steady state. The

reference speed signal, speed of the motor, output of

BPN, and learning rate are shown in Figure 9.

It should be noted that speed control of a motor is

a SISO and time invariant system. This simulation

was done to check the abilities of the control

algorithm.

Experiments

Different configurations of NNs layer structures were

used to control R2R system. Final configuration is

Figure 8. Limits set on VLR corresponding to error so that the system may not go in unstable region.

Here, learning rate is zero if error is within acceptable range of b, an optimal learning rate is applied for error range of c, a proportional

learning rate is applied for range d, and beyond this range a maximum learning rate is applied.

VLR: variable learning rate.
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shown in Figure 6 which has three layers. First layer

has three neurons and seven inputs. Second layer has

six neurons and last layer has one neuron.

Regularized VLR BPN is applied on the R2R

system for tension and velocity control in a fashion

described in Figure 4.

Infeed is the master velocity control of the system

and was set to increase the speed from 0 to 1 rad/s in a

ramp form, where 1 rad/s is equal to 2.4m/min. A

ramp form is a good test signal as the inputs of

system are gradually changing function of time. The

unwinder, outfeed, and rewinder are set in tension

control mode and these motors make sure that the

tension of the system is at 5N. Printing system as grav-

ure offset printer, slot die, EHP, and electrohydrody-

namics atomization systems are installed in second

span known as printing span. The experimental par-

ameters used are mentioned in Table 1. The optimum

Figure 9. Simulation of speed control using regularized VLR backpropagation NNs showing the decrease of learning rate as the NN

is trained and error is decreased.

NNs: neural networks; VLR: variable learning rate.

Table 1. Experimental parameters for R2R

system control using regularized VLR backpropa-

gation NNs.

Parameter Value

Web width 120mm

Web thickness 0.5mm

Reference tension 5N

Master control speed 2.4m/min

Optimized learning rate 1E� 4

Optimized regularization rate 1E� 4

Learning rate error margins �0.05

Maximum learning rate 1E� 3

Diameter of infeed roll 80mm

Control loop time 1ms

NNs: neural networks; R2R: roll-to-roll; VLR: variable

learning rate.
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Figure 10. (a) Web tension control of R2R system at velocity ramp input by BPN control where the reference tension is set at 5N;

(b) the torque control inputs of motors corresponding velocity ramp input using BPN control scheme with tension, position, velocity,

and roll diameter are used as inputs of NN; and (c) VLR corresponding to the changes in tension in BPN where a proportional learning

rate with respect to error is selected to increase rise time.

BPN: backpropagating artificial neural network; R2R: roll-to-roll; VLR: variable learning rate.
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Figure 11. PID web tension control of R2R system where reference tension is 5N and master velocity control of system is

increasing.

PID: proportional–integral–derivative; R2R: roll-to-roll.

Figure 12. BPN web tension control of R2R system where reference tension is changed from 5N to 10N, 15N, and back in static

mode.

BPN: backpropagating artificial neural network; R2R: roll-to-roll.

Choi et al. 2371

 at UNIV OF CONNECTICUT on June 25, 2015pic.sagepub.comDownloaded from 



Figure 13. PID web tension control of R2R system where reference tension is changed from 5N to 10N, 15N, and back in static

mode.

PID: proportional–integral–derivative; R2R: roll-to-roll.

Figure 14. BPN web tension control of R2R system where reference tension is changed from 5N to 10N, 15N, and back in

dynamic mode with master velocity control set at 2.4m/min.

BPN: backpropagating artificial neural network; R2R: roll-to-roll.
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Figure 15. BPN web tension control of R2R system where speed of system is changed from 0.72 to 1.2m/min in a step form.

BPN: backpropagating artificial neural network; R2R: roll-to-roll.

Figure 16. Fast start of R2R system increasing speed of system from 0 to 2.4m/min in less than 4 s using BPN control scheme.

BPN: backpropagating artificial neural network; R2R: roll-to-roll.
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learning rate is the highest possible value of learning

rate. Figure 10(a) shows the experimental tension con-

trol of R2R with change in master velocity control.

The corresponding changes in output torques and

VLR are shown in Figure 10(b) and (c), respectively.

A conventional control PID is implemented for a

comparison with BPN. The tension control with

PID using a ramp input is shown in Figure 11,

where the reference tension was kept at 5N and

master velocity control was made to increase.

Step response study is a universal method to com-

pare different control systems, it provides data such as

overshoot, undershoot, settling time, etc. The steps of

5, 10, and 15N tension were chosen because 5N is the

minimum possible tension on the machine and step

sizes smaller than 5N did not produce significant dif-

ference between the response of the two control sys-

tems (i.e. PID and BPN). The tension changes in static

mode form 5N to 10N, 15N, and back in BPN con-

trol are shown in Figures 12 and 13 shows the PID

tension control with step response in static mode from

5N to 10N and 15N and back.

In dynamic mode where the master velocity control

of the system is set at 2.4m/min tension changes from

5N to 10N, 15N, and back controlled by BPN are

shown in Figure 14. A step response change in master

velocity control of R2R system is shown in Figure 15.

Here, the speed of system was varied from 0.72

to 1.2m/min in a step form. The tension was kept

constant at 5N.

A high-speed change in master velocity control

from 0 to 2.4m/min in a ramp form was achieved in

less than 4 s using BPN, as shown in Figure 16. The

time variant behavior of R2R system is shown in

Figure 17 where the changing diameters of unwind

and rewind rolls give a corresponding change in

BPN outputs.

Results and discussion

From experimental results, a high VLR for large error

makes the system converge faster. With the decrease

in error VLR is also shifted back to the optimum

value. The learning rate is equal to the optimum

Figure 17. R2R system with master velocity control increasing from 0 to 2.4m/min using BPN control scheme.

The changing roll diameter causes the corresponding change in the torque input of the unwind and rewind motors is shown.

BPN: backpropagating artificial neural network; R2R: roll-to-roll.

2374 Proc IMechE Part C: J Mechanical Engineering Science 227(10)

 at UNIV OF CONNECTICUT on June 25, 2015pic.sagepub.comDownloaded from 



value when the system is in steady state condition of

2.4m/min velocity. Figure 10 shows that the weights

are tuned and in steady-state BPN gives a smooth

tension control result where there are no spikes in

the response. Web tension controlled by PID control

is shown in Figure 11. Here, PID seems to be seen

struggling to maintain the tension control on a very

low value of 5N tension. There are many spikes of

more than 10N. These figure show that BPN offers

better control with multi-inputs and online tuning as

compared to conventional PID control.

When PID control is compared to BPN control in

step response of tension changes, BPN offers better

compensations to step responses of tension from 5N

to 10N and 15N, as shown in Figures 12 and 13. If the

sensitivity of PID is increased in this static mode than

PID control goes in oscillation in dynamic mode. BPN

is offering a good sensitivity in static mode without

going into oscillation in dynamic mode, as shown in

Figures 12, 14, and 15. In order to make the system

sensitive for controlling web tension at a low value of

5N, a high learning rate has been used in VLR BPN.

The use of the high learning rate is the main cause of

the spikes in initial tension during step changes.

The PID response in second span was much better

than first and third spans as in second span the time

variant nature of R2R system does not come into

play. While in Figure 17 BPN changes the input

torque of the rewind and unwind motor to cater for

the changing roll diameters of rewind and unwind

rolls. Here, it can be seen that in second span, the

torque for the outfeed motor remains the same as it

has no effect of changing roll diameters.

The experiments show that at constant speed the

tension in second span is within �1N. It should be

noted that noise of load cells is �0.7N. The VLR in

BPN make the system converge faster hence the rise

time of the system is improved. The coupling between

the spans is minimized by introducing the inputs relat-

ing first span to the next one. Keeping the system

tension low at 5N helps the web to stay in elastic

mode even in higher temperatures in IR curing

module. This low tension will also insure that the elec-

tronic devices printed on web will not crack when the

web shrinks. The tuning by BPN takes care of time

variant nature of R2R system which is introduced by

the continuously changing roll diameter of the unwind

and rewind rolls.

Conclusion

In this article, web tension control of a multispan

R2R system for printed electronics is achieved by

applying regularized VLR on BPN. An optimum

NN layer scheme for this task has been found which

has 3 layers and 10 neurons. The R2R is a MIMO,

time variant, and nonlinear system with a strong cou-

pling that exists between the spans. The BPN has

MIMO interface, nonlinear activation functions, and

auto tuning scheme. The MIMO system is controlled

by decentralized MISO scheme. The nonlinearity of

interaction of spans is minimized with introducing

multiple inputs from the corresponding interacting

spans and nonlinear activation functions. The auto

tuning of weights cater for the time variant nature

of the system. The steady-state error of second span

is within �1N where the load cells noise is �0.7N.

The experimental result of regularized VLR using

backpropagation neural networks control scheme

gives fast auto tuning while avoid system instability

hence giving a solution for a R2R system for printed

electronics.

Funding

This study was supported by Ministry of Knowledge

Economy, Korea through project ‘Strategy Technology

development project (10032149)’ and also this research

was supported by Basic Science Research Program through

the National Research Foundation of Korea funded by the

Ministry of Education, Science and Technology (2010-

0026163).

References

1. Wang Y, Sun XW, Goh GKL, et al. Influence of chan-

nel layer thickness on the electrical performances of

inkjet-printed In-Ga-Zn oxide thin-film transistors.

IEEE Trans Electron Devices 2011; 99: 1–6.

2. Lee C, Kang H, Kim C, et al. A novel method to guar-

antee the specified thickness and surface roughness of

the roll-to-roll printed patterns using the tension of a

moving substrate. J Microelectromech Syst 2010; 19(5):

1243–1253.

3. Lee C, Lee J, Kang H, et al. A study on the tension

estimator by using register error in a printing section of

roll to roll e-printing systems. J Mech Sci Technol 2009;

23(1): 212–220.

4. Liu W and Davison E. Servomechanism controller

design of web handling systems. IEEE Proc Amer

Control Conf 2002; 6: 4914–4921.

5. Yoshida T, Takagi S, Muto Y, et al. Register control of

sectional drive rotogravure printing press. Manuf Syst

Technol New Frontier 2008; 11: 417–420.

6. Cockrell W. Electronic register control for multicolor

printing. Trans Am Inst Electr Eng 1946; 65(8):

617–622.

7. Song SH and Sul SK. Design and control of multispan

tension simulator. IEEE Trans Ind Appl 2000; 36(2):

640–648.

8. Lee CW, Lee JW, Kim HJ, et al. A feed-forward tension

control in drying section of roll to roll e-printing

system. Proc 17th IFAC World Congr 2008; 17(1):

11865–11870.

9. Janabi-Sharifi F. A neuro-fuzzy system for looper ten-

sion control in rolling mills. Control Eng Pract 2005;

13(1): 1–13.

10. Pagilla PR, Siraskar NB and Dwivedula RV.

Decentralized control of web processing lines. IEEE

Trans Control Syst Technol 2007; 15(1): 106–117.

11. Kang CG and Lee BJ. MIMO tension modelling and

control for roll-to-roll converting machines. Proc 17th

IFAC World Congr 2008; 17(1): 11877–11882.

Choi et al. 2375

 at UNIV OF CONNECTICUT on June 25, 2015pic.sagepub.comDownloaded from 



12. Chen CL, Chang KM and Chang CM. Modeling and

control of a web-fed machine. Appl Math Modell 2004;

28(10): 863–876.

13. Sakamoto T and Fujino Y. Modelling and analysis of a

web tension control system. Proc IEEE Int Symp Ind

Electron ISIE ’95 1995; 1: 358–362.

14. Ebler NA, Arnason R, Michaelis G, et al. Tension con-

trol: dancer rolls or load cells. IEEE Trans Ind Appl

1993; 29(4): 727–739.

15. Dwivedula RV, Zhu Y and Pagilla PR. Characteristics

of active and passive dancers: a comparative study.

Control Eng Pract 2006; 14(4): 409–423.

16. Lin KC. Observer-based tension feedback control with

friction and inertia compensation. IEEE Trans Control

Syst Technol 2003; 11(1): 109–118.

17. Okada K and Sakamoto T. An adaptive fuzzy control

for web tension control system. Proc 24th Annu Conf

IEEE Ind Electron Soc IECON ’98 1998; 3: 1762–1767.

18. Sakamoto T. Decentralized controller design of web

tension control system in terms of interactions. Proc

IEEE Int Symp Ind Electron ISIE 1999; 3: 1466–1471.

19. Atherton DP and Majhi S. Limitations of PID control-

lers. Proc Am Control Conf 1999; 6: 3843–3847.

20. Li HX and Chen CLP. The equivalence between fuzzy

logic systems and feedforward neural networks. IEEE

Trans Neural Networks 2000; 11(2): 356–365.

21. Wang C, Wang Y, Yang R, et al. Research on precision

tension control system based on neural network. IEEE

Trans Ind Electron 2004; 51(2): 381–386.

22. Werbos PJ. Backpropagation through time: what it

does and how to do it. Proc IEEE 1990; 78(10):

1550–1560.

23. Lari-Najafi H, Nasiruddin M and Samad T.

Effect of initial weights on back-propagation and its

variations. IEEE Int Conf Syst Man Cybern 1989; 1:

218–219.

24. Amini J. Optimum learning rate in backpropagation

neural network for classification of satellite images

(IRS&1D). Sci Iranica 2008; 15(6): 558–567.

2376 Proc IMechE Part C: J Mechanical Engineering Science 227(10)

 at UNIV OF CONNECTICUT on June 25, 2015pic.sagepub.comDownloaded from 


