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Abstract

During the 2009 H1N1 pandemic, many individuals adopted a “wait and see” approach to vaccinating

until further information was available on the course of the pandemic and emerging vaccine risks. This

behaviour implies two sources of strategic interactions between individuals: both perceived vaccine risk

and the probability of becoming infected decline as more individuals become vaccinated. Here we analyze

the outcome of these two strategic interactions by combining game theory with a mathematical model of

disease transmission during an outbreak of a novel influenza strain. We include a case where perceived

vaccine risk declines according to the cumulative number of individuals vaccinated. A common Nash

equilibrium strategy exhibited by this model is a “wait and see” strategy where some individuals delay

the decision to vaccinate, relying on the herd immunity provided by early vaccinators who also act as

“guinea pigs” that validate the safety of the vaccine. The occurrence of “wait and see” strategies leads to a

higher disease burden than occurs under socially optimal vaccine coverage. The model also exhibits both

feedback and feed-forward processes. Feedback takes the form of individuals adjusting their vaccinating

behaviour to accommodate changing transmissibility or risk parameters. Among other effects, this causes

in the epidemic peak to occur at approximately the same time across a broad range of R0 values. Feed-

forward takes the form of high initial perceived vaccine risk perpetuating high perceived vaccine risks

(and lower vaccine coverage) throughout the remainder of the outbreak, when perceived risk declines

with the cumulative number vaccinated. This suggests that any effect of risk communication efforts at

the start of a pandemic outbreak will be amplified compared to the same level of risk communication

effort distributed throughout the outbreak, since any reductions in initial perceived risk will also result
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in reduced perceived risk throughout the outbreak.

Author Summary

During the 2009 H1N1 pandemic, postponing vaccination until further information was available on

the course of the outbreak and emerging vaccine risks was a very common psychology. This behaviour

implies two sources of strategic interactions between individuals: perceived vaccine risk at any time was a

function of how many individuals had already acted as “guinea pigs” by accepting the vaccine earlier, and

these earlier vaccinators also provided herd immunity to later vaccinators. Hence, both perceived vaccine

risk and the probability of becoming infected decline as more individuals become vaccinated. Here we

amalgamate game theory with a mathematical model of infectious disease transmission to analyze the

strategic interactions of vaccine behaviour during a pandemic outbreak of a novel influenza strain. We

study the numerical solutions of the system to gain insight into dynamic interplay between vaccinating

behaviour, disease transmission, and risk perception during the outbreak. We find that the system

exhibits both feed-forward and feedback mechanisms. Feed-forward mechanisms take the form of initially

elevated levels of perceived vaccine risk perpetuating elevated perceived vaccine risk through the outbreak.

This suggests that imparting accurate and useful vaccine safety information for a new vaccine before and

during a pandemic outbreak is crucial.

Introduction

The recent emergence of pandemic (H1N1) 2009 highlighted the vulnerability of human populations to

emerging infectious diseases [1–3]. During the pandemic, vaccines were quickly developed to mitigate

transmission of the novel H1N1 influenza strain [4]. However, many individuals hesitated to vaccinate.

The reasons for this are numerous and variable [5,6], but a leading reason was concern about side effects [7].

This concern may have been exacerbated by the fact there were no large safety studies upon which to

base such conclusions for this particular vaccine, even though very similar vaccines had previously been

demonstrated to be safe [8–11]. In the face of such uncertainties, many individuals adopted a “wait

and see” strategy: deferring a decision to vaccinate until more information on vaccine risks and disease

epidemiology was available [12].
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The possibility of a “wait and see” approach to vaccinating during a pandemic outbreak creates

two potential sources of strategic interactions between individuals. Firstly, individuals who choose to

vaccinate early in the pandemic provide herd immunity that protects individuals who wait until later

to vaccinate, or who do not vaccinate at all. The strategic interaction between individuals as a result

of herd immunity in the context of voluntary immunization programs has previously been studied with

mathematical models for the case of vaccinating decisions made over relatively long timescales [13–23],

but not in the case of vaccinating behaviour during a single outbreak. Moreover, the use of a novel vaccine

that has not been tested in a large group may cause individuals to have elevated perception of vaccine

risk, at least until a sufficient number of persons have been safely vaccinated. This gives rise to a second

source of strategic interactions during a pandemic: those who vaccinate early in the pandemic essentially

act as “guinea pigs”, providing formal or informal information on vaccine safety that can be used by

those who prefer to “wait and see”. This source of strategic interaction in vaccine decision making has

also not been characterized in a mathematical modelling framework.

The strategic interplay between individual behaviour and disease dynamics, informed by perceived

vaccine and infection risks, can be modeled and analyzed using game theory [24]. Game theory describes

how individuals act in strategic interactions, where their payoff depends on the decisions of other in-

dividuals. Game theory often involves finding the Nash equilibrium of the system. In the context of

populations games, this is a strategy such that no sufficiently small group of individuals can achieve a

higher payoff by adopting a different strategy [25–27]. The Nash equilibrium is, therefore, considered to

be stable, and the strategy that the population is expected to adopt.

Here we construct a game theoretic model of vaccinating behaviour during the course of a single

outbreak of pandemic influenza in a population, where strategic interactions arise both through herd

immunity and through the potential for declining perceived vaccine risk as a function of increased vaccine

coverage. Disease dynamics are described by a compartmental Susceptible-Infectious-Recovered (SIR)

model. We consider a case where perceived vaccine risk is constant throughout the outbreak and we

compare this to a case where perceived vaccine risks declines in proportion to the cumulative number

of individuals vaccinated. The latter case reflects greater availability of information (either formally or

informally) upon which to base vaccinating decisions as more individuals become vaccinated. Among

other possibilities, we allow individuals to adopt a “wait and see” strategy of delaying vaccination either

until the vaccine risk is better understood, or in the hopes that enough other individuals will vaccinate
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to make their having to vaccinate unnecessary. We compute the Nash equilibrium and compare it to

socially optimal strategies of uptake during the outbreak for a range of scenarios. Our objective is to gain

insights into possible strategic mechanisms that may operate during a pandemic outbreak, and possible

vaccinating behaviour patterns that may therefore evolve.

Model

In the following subsections, we describe the behavioral submodel that governs individual vaccinating

decisions given information on risks and disease prevalence, and the transmission submodel that governs

disease transmission as it depends on vaccinating behaviour during the outbreak. We also describe the

algorithm used to determine the Nash equilibrium vaccine coverage.

Behavior submodel: The behavior submodel is formulated as a population game, where the payoff

to an individual depends on the average behaviour of the population [23, 28]. Vaccination is voluntary

(i.e. individuals are not coerced to vaccinate in any way) and individuals do not pay for vaccination,

as was the case in many countries during the 2009 influenza pandemic. The players of the game are

individuals in the population, all of whom are eligible for being vaccinated. The strategy set is

{k|0 ≤ k ≤ 53}. (1)

where k = 0 is a strategy of vaccinating before the outbreak starts, such that the individual is immune

by the time the outbreak begins; k = 53 is a strategy of never vaccinating; and for all other values

1 ≤ k ≤ 52 in the set, k is the week that the individual vaccinates. For instance, k = 1 denotes that the

individual vaccinates during the first week of the outbreak. As indicated, vaccine is administered in the

population on a specific day of each week for instance through a weekly immunization clinic. (Assuming

weekly rather than daily administration maintains the strategy set at a manageable size.) This strategy

set defines a frequency distribution of strategies in the population:

Φ = {φ
k

: 0 ≤ φ
k
≤ 1, φ

k
real} ∀k = 0, . . . , 53. (2)

where φk is the proportion of the population playing strategy k, and
∑53

k=0 φk = 1.

Each individual receives a baseline payoff L in the absence of disease or vaccine: this represents
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baseline expected health before risks from the disease or the vaccine are taken into account. In the

case where perceived vaccine risk is constant during the outbreak, vaccinating at any time incurs a

penalty r
vac

due to perceived probability of adverse events from vaccination. The efficacy of the vaccine

is ǫ, and successfully immunized individuals are fully protected two weeks after vaccine administration.

Thus, if any individual receives a vaccine on week k, the vaccine will only start working from week

k + 2 onward. Likewise, contracting infection incurs a penalty r
inf

in non-vaccinated individuals and

individuals unsuccessfully vaccinated.

Let ρ
≤k

be the probability that a susceptible person is infected during or before week k when the

distribution of strategies in the population is Φ, and likewise let ρ
>k

be the probability of infection after

week k. Let Π
k
(Φ) denote the payoff to an individual playing k when the distribution of strategies in the

population is Φ. Then the payoff Π
k
(Φ) is given by

Π
k
(Φ) =































L − r
vac

− r
inf

ρ
>0

(1 − ǫ), for k = 0,

L − r
vac

− r
inf

ρ
≤k+1

− r
inf

ρ
>k+1

(1 − ǫ), for 1 ≤ k ≤ 52,

L − r
vac

− r
inf

ρ
≤52

, for k = 53,

(3)

where the use of subscript k + 1 occurs because of the two week period before vaccines provide fully

protective immunity in a vaccinated person. The quantities ρ
≤k+1

and ρ
>k+1

are determined from the

transmission submodel according to a calculation described in the appendix.

We also define and explore a second case where perceived vaccine risk declines as more individuals

become vaccinated. Initially, perceived risk is elevated, reflecting hesitation to use a vaccine that has

not undergone post-licensure population-based safety studies. As more individuals choose to become

vaccinated without experiencing significant adverse events, the perceived risk begins to decline in inverse

proportion to the cumulative number of individuals vaccinated, until at a certain point it comes into

alignment with the actual vaccine risk. Hence we define the perceived vaccine risk at each week k,

rk
vac

: k → (0, 1) as

rk
vac

=















b
cV +d

, if V < a
racvac

r
acvac

, otherwise

(4)
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where V = N
∑k

j=0 φ
j
, a, b, c, d ∈ R, and r

acvac
denotes the actual risk of vaccine. For the case where

perceived vaccine risk declines during the outbreak, the function rk
vac

replaces the parameter rvac in

equation (3). The model assumptions, strategy set, and payoff functions are otherwise identical to the

case where perceived vaccine risk is constant throughout the outbreak. We note that the perceived vaccine

risk at the time of vaccination determines payoff and hence behaviour, not the actual vaccine risk racvac

that eventually becomes known–the actual vaccine risk may determine actual health impacts but it is

perceived vaccine risk early in the outbreak that determines behaviour and hence vaccinating patterns

in the population. We also note also that rk
vac implies a strategic interaction since its value depends on

how many individuals have vaccinated beforehand.

The Nash equilibrium distribution for this game is the distribution of strategies

Φ∗ = {φ∗

k
: 0 ≤ φ∗

k
≤ 1, φ∗

k
real} ∀k = 0, . . . , 53

such that any small group of individuals adopting a different strategy, and thus shifting the distribution

Φ∗, thereby receive a lower payoff. To define the Nash equilibrium, recall that φ∗
k

is the proportion of the

population that adopts strategy k when the population distribution is Φ∗. Now suppose that a fraction

(1−f) of these individuals continue playing strategy k, but a fraction f play some strategy k̃ 6= k. Hence

we have the following changes in the population distribution Φ∗:

φ∗

k
→ φ∗

k
(1 − f) ≡ φalt

k
, (5)

φ∗

k̃
→ φ∗

k̃
+ fφ∗

k
≡ φalt

k̃
, (6)

and the distribution of strategies is otherwise unchanged. We denote the new population distribution as

Φalt. We define Φ∗ to be a strict Nash equilibrium distribution if

Π
k̃
(Φalt) < Π

k
(Φ∗), (7)

for all k̃ 6= k and for sufficiently small f . This means that Φ∗ is a Nash equilibrium distribution if no

small fraction f of individuals playing a given strategy can achieve a higher payoff by adopting a new

strategy k̃ 6= k. The payoff functions depend upon the probabilities of being infected for an individual

who has or has not vaccinated by week k, which are computed from the transmission submodel.
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Transmission submodel: Disease transmission in the population is described by a Susceptible-Infectious-

Recovered (SIR) model which is modified to distinguish between vaccinated and unvaccinated susceptible

individuals (Figure 1) [29,30]. Weekly vaccination in the population gives rise to an impulsive system of

differential equations, where disease transmission follows the SIR model in-between periods of vaccine ad-

ministration, and vaccination is introduced as an impulse to the system of ODEs once per week. Because

the vaccine is not fully efficacious, a fraction of vaccinated population remain susceptible to the disease.

We denote the number of vaccinated, yet susceptible, individuals by S
vac

. Accordingly, the transmission

model equations are given by

dS

dt
= −β

SI

N
,

dS
vac

dt
= −β

S
v
I

N
,

dI

dt
= β

(S + S
v
)I

N
− γI,

dR

dt
= γI, (8)

where β denotes the transmission rate, γ denotes the recovery rate, and N = S +S
vac

+I +R denotes the

total population size. The number vaccinated in week k is V
k

= Nφ
k
, so a proportion ǫV

k
of individuals

who vaccinate in week k are moved to the recovered class R while the remaining (1− ǫ)V
k

are moved to

the compartment S
vac

.

Algorithm for determining Nash equilibrium : To identify candidates for the Nash equilibrium, we

used a simulated annealing algorithm that begins with an initial set Φ = {φ
k
} of vaccine coverages for all

strategies 0 to 53 such that
∑

φ
k

= 1. Under this vaccine coverage, we simulate the SIR model for a full

outbreak and compare the payoff for each strategy. Then, the distribution of individuals strategies in the

population, Φ, was adjusted such that individuals moved to adopt strategies that were more successful.

For instance, if the payoff to vaccinate in some week k exceeded the payoff to vaccinate in the preceding

week k − 1, then a fraction of individuals were moved from the k − 1 strategy to the k strategy. Then,

the SIR model was simulated again and the process was repeated, each time moving individuals such

that the constraint
∑

φ
k

= 1 is continued to hold and individuals moved toward strategies of higher
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payoff. For mixed Nash equilibriua, this algorithm resulted in Φ such that the payoff is the same for each

strategy k, and this distribution was taken to be the candidate for the Nash equilibrium. To ensure that

the algorithm converged to the Nash candidate, the values of φk were periodically disturbed to prevent

convergence to a local minimum (simulated annealing). This final Nash equilibrium candidate was then

tested by challenging it with randomly selected alternative strategies being played by a small group in

the population and comparing the total payoffs for the small group versus the remainder who continued

to play the Nash equilibrium strategy. If the challenging groups always received a lower payoff, then the

Nash candidate was taken to be the Nash equilibrium.

Results

The Nash equilibrium vaccine coverage in each week of the pandemic can vary greatly depending on

parameter values and the feedback between disease prevalence and individual vaccinating behaviour. In

the following subsections, we first describe results for the case where perceived vaccine risk is constant

over the course of the outbreak. We then describe the case where perceived vaccine risk declines as the

number of vaccinated individuals increases. Baseline parameter values appear in Table 1 and these are

the values used in all simulations except when specified otherwise.

Case of constant vaccine risk

For the case where vaccine risk r
vac

is constant throughout the outbreak, some typical examples of the

Nash equilibrium vaccine coverage in each week, and the corresponding epidemic curve, are shown in

Figure 2 for several values of vaccine efficacy ǫ and disease risk r
inf

. For the case of higher disease risk,

the most widely adopted strategy is k = 0 (advance vaccination before the outbreak) for both high and

low vaccine efficacy, and a small proportion of the population vaccinate within the first five weeks. The

outbreak is curtailed due to vaccination and the peak of the outbreak occurs in week 3. In contrast, for

the case of lower disease risk, the most widely adopted strategy is k = 2, and the epidemic peak is larger

but also occurs later. Moreover, a larger proportion of population chooses never to vaccinate when disease

risk is low. Thus, a lower disease risk means more individuals adopt a “wait and see” strategy, resulting

in a larger outbreak that peaks later. This delaying behaviour occurs even though the perceived vaccine

risk is constant throughout the outbreak. The higher vaccine efficacy scenarios are qualitatively similar
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to the lower vaccine efficacy scenarios, however lower vaccine efficacy results in higher overall vaccine

coverage and fewer pure non-vaccinators. This paradoxical effect occurs because when the vaccine is not

sufficiently efficacious, infection transmission is less affected. The reduced strength of herd immunity

means more individuals want to vaccinate and thus free-riding on herd immunity does occur as much.

Predictably, the overall Nash equilibrium vaccine coverage increases, and vaccination occurs sooner, as

vaccine risk declines or disease risk increases (Figure 3). The Nash equilibrium coverage for zero vaccine

risk is purely advance vaccination, whereas in case of zero infection risk, the Nash equilibrium coverage

is simply non-vaccination. Advance vaccination only occurs for very low values of the vaccine risk (this

is relatively insensitive to changes in disease risk). For most values of vaccine and disease risk in these

ranges, the dominant mode of behavior is delaying vaccination by up to 6 weeks.

An important question when considering the impact of individual choice on vaccine coverage is whether

rational behaviour results in suboptimal health outcomes. To address this question it is necessary to

compare the total burden due to disease and vaccine adverse events under the Nash equilibrium versus

the total burden under a defined socially optimal strategy that provides the most benefit to the population

as a whole. Previous models of vaccination games for endemic infections have often shown that disease

burden under the Nash equilibrium is higher than under the social optimum due to free-riding [31], but

whether this will hold for a vaccination game where individuals make strategic decisions in the course of

a single outbreak has not been investigated.

Here, the social optimum is defined as the vaccine coverage such that the sum total burden in the

whole population from either vaccine adverse events or infection is minimized. We analyzed the total

burden under the Nash equilibrium versus the socially optimal strategies and compared the corresponding

vaccine coverage. For a wide range of values of the vaccine risk rvac, the total burden is higher under the

Nash equilibrium than the social optimum (Figure 4A). This occurs because the Nash equilibrium strategy

typically involves at least some portion of the population adopting a “wait and see” strategy. However,

“wait and see” is never socially optimal because it would involve first exposing part of the population

to the risk of being infected and then vaccinating them anyway. Hence under the social optimum,

individuals either receive advance vaccination or are never vaccinated. This pattern of vaccinating is seen

in the proportion of individuals being vaccinated in advance (k = 0) as a function of rvac for the Nash

equilibrium and the social optimum. As rvac increases, the proportion of the population receiving advance

vaccination declines under both the Nash equilibrium and the social optimum, but it declines more under
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the Nash equilibrium because individuals begin adopting “wait and see” strategies (Figure 4B). For

sufficiently high vaccine risk rvac, advance vaccine coverage is zero under both the Nash equilibium and

the social optimum because the risk of the vaccine rvac now outweighs the risk of disease rinf and hence

there is no incentive to vaccinate from either the rational individual perspective or the socially optimal

perspective.

The Nash equilibrium vaccine coverage also depends on the basic reproductive ratio R0 , which is the

average number of secondary infections produced by a single infected person in an otherwise susceptible

population (Figure 5). As R
0

increases, advance and early vaccination (k < 3) becomes more common.

This occurs because individuals faced with a more transmissible pathogen will tend to choose to vaccinate

earlier. In contrast to the shift in vaccine coverage in response to higher R0, the location of the epidemic

peak does not change as R0 changes: it remains at approximately 3-4 weeks for all values of R0 evaluated.

This is interesting, because in the absence of vaccination, higher R0 causes the epidemic to peak sooner

(Figure 5, first column). The relative constancy in the location of the epidemic peak despite changing

R0 for the case where individuals vaccinate strategically is due to a feedback mechanism: higher R0 also

stimulates more individuals to adopt advance or early vaccination to fend off infection, and this tends

to delay the peak, counteracting the effect of higher R0. This shows that vaccinating behaviour may

regulate disease prevalence through feedback mechanisms, as a function of disease severity and vaccine

risk perception.

Case of declining vaccine risk

So far we have considered the case of constant vaccine risk over time. However, if the vaccine is new, the

perceived vaccine risk may initially be elevated, as occurred in the 2009 H1N1 pandemic [7, 8, 10, 11]. In

this subsection, we consider the case where the perceived vaccine risk decreases as the cumulative number

of individuals vaccinated increases during the course of the outbreak.

The parameter a in equation (4) controls how quickly perceived vaccine risk declines as more individ-

uals become vaccinated. Higher values of a result in slower declines in perceived vaccine risk and later

alignment of perceived risk with the actual risk, r
acvac

(Figure 6A). For higher values of a, more individu-

als vaccinate early in the outbreak (Figure 6B) which in turn decreases the incidence of infection (Figure

6C). For a = 2.5, there are two peaks in Nash equilibrium coverage over the course of the outbreak. The

first peak occurs due to rapid decline in perceived vaccine risk, whereas the second peak is due to delays
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caused by free-riding on herd immunity.

If these simulations are run again with identical parameters except the perceived risk is held constant

at racvac throughout (as in the first part of the Results) instead of declining gradually to racvac, then the

Nash equilibrium coverage strategy is primarily advance vaccination and disease incidence is much reduced

(Figure 6D). Hence, even when Nash equilibrium strategies are not socially optimal, the implications of

variable initial perceived risk are significant. Therefore, rapid communication of vaccine safety information

(through the media and other sources) can play a valuable role in aligning perceived risks with actual

probable vaccine risks more quickly and thus ensuring timely vaccination during a pandemic outbreak.

The initial level of perceived vaccine risk is also an influential determinant of long-term outcomes

(Figure 7). For a given value of a, a higher initial perceived risk results in a lower Nash equilibrium

coverage and higher perceived risk throughout the outbreak. This is due to a feedforward mechanism:

a higher initial perceived risk means that fewer individuals become vaccinated in the early weeks of the

outbreak. Hence there is less information upon which safety inferences can be made and fewer individuals

seek vaccination subsequently. As a result, perceived risk falls more slowly and Nash equilibrium coverage

is lower, when initial perceived risk is higher (Figure 7). Hence, initially high perceived vaccine risk can

perpetuate high perceived vaccine risk throughout the outbreak, resulting in lower vaccine coverage and

larger proportion of individuals avoiding vaccination altogether (Figure 7). This effect further emphasizes

the importance of early and timely risk communication: the fact that elevated initial perceived risk can

suppress vaccine uptake throughout the outbreak also means that the effect of any risk communication

efforts started early in the outbreak will be amplified, producing dividends throughout the outbreak.

Social optimum and Nash equilibrium vaccine coverages can also be compared for the case of declining

vaccine risk. As noted previously, the socially optimal strategy when vaccine risk is constant through-

out the outbreak is advance vaccination of some portion of the population and non-vaccination of the

remainder (Figure 4). However, if public health decision makers adopt a conservative approach and do

not have large databases to assess vaccine safety, then a socially optimal strategy might be to ramp up

vaccine coverage more gradually. For the case where vaccine risk declines over time (and we assume that

both immunization program decision-makers and individuals are acting on the same value of vaccine risk

rk
vac

), the socially optimal coverage requires some delay in vaccine coverage (Figure 8A). However, the

delay is still much less than the delay under the Nash equilibrium for the same parameter values (Figure

8C) and the overall coverage is higher. As a result, the outbreak size is still much larger under the Nash
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equilibrium than the social optimum (Figure 8B, D).

The negative feedback that results in conservation of the location of the epidemic peak for various

R0 values in the case of constant vaccine risk over time is retained when vaccine risk declines over time

(Figure 9). However, vaccine uptake can decline in the early weeks and then surge as individuals adjust

their perceived vaccine risk downward (Figure 9), as was observed in Figures 6 and 7.

Discussion

Here we analyzed strategic interactions among individuals making vaccination decisions during an out-

break of pandemic influenza. Previous models have analyzed such strategic interactions in the context

of endemic infections over longer timescales, but not over the course of a single outbreak. We assumed

administration of a new vaccine not previously tested in large population-based safety studies, causing

the perceived vaccine risk to initially be elevated. However, the perceived vaccine risk can decline in pro-

portion to the cumulative number of individuals vaccinated. As a result, the model system exhibits two

sources of strategic interactions: individuals who vaccinate early provide herd immunity for individuals

who decide to “wait and see” (free-ride), and they also validate the safety of the vaccine for individuals

who “wait and see”. The strategic interaction through herd immunity operates solely through negative

feedback, with more early vaccinators creating herd immunity that discourages subsequent vaccinating.

In contrast, the strategic interaction through declining perceived risk of the vaccine operates initially

through a feed-forward mechanism: having more early vaccinators validates the safety of the vaccine and

encourages later vaccination. However, the effect of this feedforward mechanism is again blunted through

negative feedback, since the resulting increase in vaccination will also increase herd immunity and then

operate to suppress subsequent vaccination.

As a result of the differing nature of strategic interactions during the course of an outbreak of a novel

pathogen where the vaccine is also novel, a range of phenomena are possible. The model predicted the

possibility of a “wait and see” Nash equilibrium strategy, where free-riding individuals are encouraged to

delay vaccination if enough other individuals become vaccinated before them. This occurs because pure

advance vaccination is often not a Nash equilibrium: pure advance vaccination precludes an outbreak,

which thus makes the payoff to free-ride by not vaccinating at all–or at least to “wait and see”–much

higher. This occurs even when the vaccine risk is constant during the outbreak but is more likely to
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occur if vaccine risk declines during the outbreak as more individuals become vaccinated. Pure advance

vaccination is only a Nash equilibrium for sufficiently high disease risk and/or sufficiently low vaccine risk,

such that the vaccine is essentially more dangerous than the disease. For certain parameter values, we

found it was possible for vaccine coverage to initially decline as the outbreak proceeded, but then surge

once enough individuals vaccinated to convince the rest of the population that the vaccine risk is low.

Also, we found that the negative feedback associated with herd immunity tends to conserve the location

of the epidemic peak as the basic reproductive ratio R0 is changed: higher transmissibility encourages

earlier vaccination which in turns tends to offset early epidemic peaks caused by increased R0. This

conservation of the location of the epidemic peak was due to the adjustment of individual behaviour

to meet changing epidemiological conditions caused by differing transmissibility or by reactions of other

individuals to perceived vaccine risk.

We found that socially optimal vaccine coverage involved earlier vaccination, and higher vaccine

coverage, than the Nash equilibrium strategy regardless of whether vaccine risk was constant or declining.

As a result, the total burden due to infection and/or vaccine adverse events was higher under the Nash

equilibrium than the social optimum (since delaying behaviour on account of exploiting herd immunity

is never socially optimal). This echoes previous game theoretical models for endemic disease suggesting

that the outcomes of individual choice under strategic interactions for infectious diseases generally do not

align with what is socially optimal. However, the results also suggest ways to minimize the impact in the

case of a pandemic outbreak. Feedforward mechanisms imply that an initially elevated perceived vaccine

risk will perpetuate higher perceived risk through most of the outbreak. Similarly, it was observed that

early vaccination is much more common under the Nash equilibrium when vaccine risk is at its actual

value from the start of the outbreak, instead of declining gradually to the actual value as perceived

risk declines. These two observations imply that any effect of risk communication efforts at the start

of a pandemic outbreak will be amplified and yield much greater dividends than the same level of risk

communication effort distributed throughout the outbreak, since any reductions in initial perceived risk

will also result in reduced perceived risk throughout the outbreak.

Immunization has long played an essential role in reducing morbidity and mortality for many com-

municable diseases worldwide, and it resulted in complete eradication of smallpox. At the same time, it

has been one of the most divisively polemic issues in health care since vaccination was first introduced in

the 1800s. Over the past 60 years, health behaviour research has contributed to an understanding of how
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and why people make decisions to accept or reject vaccines, especially with respect to the introduction

of new vaccines. This kind of research continues to be crucial, especially given the role of individual

choice in phenomena such as Measles-Mumps-Rubella vaccine and polio vaccine scares in recent years.

Parameterization of vaccine and disease risks using empirical data, and validation of the model against

time series of actual vaccine coverage during the 2009 H1N1 pandemic, would be valuable for validating

such models and understanding how they may be useful for planning for future pandemics. With better

empirical validation and continued development of theory, it is possible that mathematical models of

the interaction between disease transmission and individual vaccinating behaviour may contribute to the

toolbox that is used to protect the health of the public. The present model has illustrated strategic mech-

anisms operating during a pandemic outbreak that may contribute to determining patterns of vaccine

uptake over time, and has suggested several ways in which early risk communication is crucial.
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A Determination of probability of infection ρ
≤k+1

and ρ
>k+1

Let the proportion of the population that is susceptible (respectively, infected) before the first week be

denoted by S
0

(respectively, I
0
).

Now, proportion of population get vaccine at week-1 is φ
1

and this implies that susceptible on day-1 is

S
1

= S
0
(1 − φ

1
) and thus probability of being infected on day-1 is P

1
= λ

1
S

1
, where λ

1
= βI

0
.

Similarly, susceptible on day-2 is S
2

= S
1
− P

1
and probability of being infected on day-2 is P

2
= λ

2
S

2
,

where λ
2

= βI
1
. Thus we can obtain P

3
, P

4
,...,P

7
, etc. So, sum of the probability at the end of first week

P
wk−1

= P1 + P2 + ... + P7

= S0(1 − φ1)[λ1 + λ2(1 − λ1) + ... + λ7(1 − λ6)...(1 − λ1)].

Again, proportion of population get vaccine at the week-2 is φ
2
. So similarly, we obtain sum of the

probability at the end of second week

P
wk−2

= P8 + P9 + ... + P14

= S0(1 − φ1)(1 − φ2){(1 − λ7)...(1 − λ1)}[λ8 + λ9(1 − λ8) + ... + λ14(1 − λ13)...(1 − λ8)].

Thus generalizing the formulation, we obtain the sum of the probability of infection in week k is given by

P
wk−k

= P
7(k−1)+1

+ P
7(k−1)+2

+ ... + P
7k

= S0{(1 − φ1)(1 − φ2)...(1 − φ
k
)}{(1 − λ

7(k−1)
)(1 − λ

7(k−1)−1
)...(1 − λ1)}

[λ
7(k−1)+1

+ λ
7(k−1)+1

(1 − λ
7(k−1)+1

) + ... + λ
7k

(1 − λ
7k−1

)...(1 − λ
7(k−1)+1

)], (9)

where P
7k

= λ
7k

S
0
(1 − λ

7k−1
)...(1 − λ

1
)(1 − φ

1
)...(1 − φ

k
)) is the probability of infection at week k,

λ
i
= βI

i−1
/N denotes the force of infection and φ

k
denotes vaccination coverage at week k. Hence, the cu-

mulative probabilities ρ
≤k+1

and ρ
>k+1

are defined by ρ
≤k+1

=
∑(k+1)

j=1 P
wk−j

and ρ
>k+1

=
∑52

j=k+2 P
wk−j

.
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Tables

Table 1. Baseline parameter values

Parameters values/ranges References
Total Population (N) 100,000 –

Contact rate (β) 0.6 day−1 [32]
Recovery rate (γ) 0.33 day−1 [32]
Baseline payoff (L) 1 –

Risk of vaccine (r
vac

) 0.0005 –
Risk of infection (r

inf
) 0.001 –

Efficacy of vaccine (ǫ) 0.75 –
a see the text –
b 0.15 –
c 0.015 –
d 10 –
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Figure Legends
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Figure 1. Schematic diagram of epidemiological process between several compartments.
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disease risk, and low (ǫ = 0.6) and high (ǫ = 0.9) efficacy of vaccine. Incidence is per 100,000
populations. Percentage in the inset of each figure indicates the proportion of population choosing pure
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Figure 6. Nash equilibrium vaccine coverage at variable perceived risk of vaccine. (A) Variable vaccine
risk over weeks for different values of a in the risk function and (B) corresponding Nash equilibrium
vaccine coverage and (C) disease prevalence. The incidence is per 10,000 populations and r

inf
= 0.02.

Figure (D) indicates the vaccine coverage in the same parameter setup as in (B) except the vaccine risk
is constant = 0.0005 during the entire period of disease outbreak.
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Figure 7. Nash coverage at different initial risk and for different a values. First column exhibits Nash
equilibrium vaccine coverage, second column indicates corresponding variable vaccine risk and third
column shows the proportion of population choose non-vaccination if initial vaccine risk is different.
The parameter values are same as in Figure 6. The third panel of the figure indicates that the mean
vaccine coverage decreases with higher initial risk perception.
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Figure 8. Social optimum and Nash equilibrium vaccine coverage at variable perceived risk of vaccine.
(A) Social optimum and (C) Nash equilibrium vaccine coverage when vaccine risk varies over weeks
depending on earlier coverage. (B) & (D) exhibit corresponding disease incidence. The parameter
values are same as in Figure 6.
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Figure 9. Nash equilibrium vaccine coverage at different R
0

and for variable risk of vaccine over the
weeks. The parameter values are same as in Figure 6.


