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Abstract: Mangrove forest coastal ecosystems contain significant amount of carbon stocks and
contribute to approximately 15% of the total carbon sequestered in ocean sediments. The present
study aims at exploring the ability of Earth Observation EO-1 Hyperion hyperspectral sensor in
estimating aboveground carbon stocks in mangrove forests. Bhitarkanika mangrove forest has
been used as case study, where field measurements of the biomass and carbon were acquired
simultaneously with the satellite data. The spatial distribution of most dominant mangrove species
was identified using the Spectral Angle Mapper (SAM) classifier, which was implemented using the
spectral profiles extracted from the hyperspectral data. SAM performed well, identifying the total area
that each of the major species covers (overall kappa = 0.81). From the hyperspectral images, the NDVI
(Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) were applied to assess
the carbon stocks of the various species using machine learning (Linear, Polynomial, Logarithmic,
Radial Basis Function (RBF), and Sigmoidal Function) models. NDVI and EVI is generated using
covariance matrix based band selection algorithm. All the five machine learning models were tested
between the carbon measured in the field sampling and the carbon estimated by the vegetation
indices NDVI and EVI was satisfactory (Pearson correlation coefficient, R, of 86.98% for EVI and
of 84.1% for NDVI), with the RBF model showing the best results in comparison to other models.
As such, the aboveground carbon stocks for species-wise mangrove for the study area was estimated.
Our study findings confirm that hyperspectral images such as those from Hyperion can be used to
perform species-wise mangrove analysis and assess the carbon stocks with satisfactory accuracy.

Keywords: blue carbon; hyperspectral data; mangrove forest; carbon stock; Bhitarkanika Forest
Reserve; regression models; machine learning

1. Introduction

Mangrove forest coastal ecosystems provide several beneficial functions, both to terrestrial and
marine resources [1,2]. Mangrove forests contain significant amount of carbon stocks and are one of
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the sources of carbon emissions [3]. Coastal habitat contributes more than half of the total carbon
sequestrated in ocean sediments, only 2% of the total carbon is sequestered by coastal habitat [4].
Mangroves provide essential support to the ecosystem, thus, their decline also results in socio-economic
loss. Previous studies demonstrated the existence of mangrove forests in several countries (about 120
in total) including tropical as well as sub-tropical ones, with coverage of 137,760 km2 across the
earth [5]. Recently, Hamilton and Casey (2016) provided key information concerning mangrove forest
distribution worldwide. The total mangrove area in India is 4921 km2, which comprises about 3.3% of
global mangroves [6]. Due to their valuable contribution in biomass, carbon sinks as well as numerous
other benefits for biodiversity of mangrove forests ecosystem are considered as a valuable ecological
and economic resources worldwide [7,8].

Resources are declining and continuously limiting in its spatial extent due to human induced as well
as natural factors which is putting pressure with every passing time [9], thus, the rapid altering of the
composition, structure, and behavior of the ecosystem and their capability to deliver ecosystem services
is declining [10–12]. This decline happens at a fast rate by 0.16% to 0.39% annually at global level [13].
It is estimated that mangroves store 1.23± 0.06 Pg of carbon globally sequestered from coastal ecosystem
is one of the integral parts of the global carbon circulation [14]. Annually, around 131–639 km2 of
mangrove forests are being destroyed; in terms of overall carbon loss, it goes up to 2.0-75 TgCYr−1 [13].

Valiela et al. [15] demonstrated that mangrove forests in tropical countries are the most threatened
ecosystems. The major threat is the conversion of mangrove forests in other land use types
and categories, such as aquaculture, coastal development, construction of channels, agriculture,
urbanization, coastal landfills, and harbors, or deterioration due to indirect effects of pollution [1,16].
Allen et al. [17] described about the impact of natural threats on mangrove forest which includes sea
level rise, tropical storm, insects, lightning, tsunami affected [18], and climate change. Yet, those are
considered as minor threats, as the mangrove forest degradation rate is much less because of natural
causes than anthropogenic factors. Several studies have provided evidence of the decline of mangroves
population, which are already critically endangered [15] or approaching the state or verge of extinction
in some of countries where these eco-sensitive fragile ecosystems exist (data demonstrated that
approximately 26 are listed where mangrove are in grave situation out of a total 120 countries) [12,19].
It is therefore imperative to monitor mangrove forests for their biodiversity, biomass, and carbon stocks
at regular time intervals to provide suitable database and help in conservation strategies. There are
critical studies [20–22] the mangrove forest ecosystem and its biodiversity in India [23], where authors
stressed on the importance of mangrove forests [24] and conservation priorities [21]. Some authors
also demonstrated the degradation of mangrove and their impact [20,23–25]. There have been several
published studies that focused on assessing the blue carbon stored in the mangroves around the world
and in India; yet, a species-wise blue carbon analysis with significant accuracy is missing. Species-wise
blue carbon analysis can be used to evaluate the impact of global climate change on different types of
mangrove species and can also help in ecosystem services and policy makers to accurately evaluate the
ecological as well as economical trade off associated with the management of mangroves ecosystem.

Blue carbon is nothing but the carbon stored and captured in coastal and marine ecosystems
in different forms globally, such as biomass and sediments from mangrove forest, tidal marshes,
and seagrasses. About 83% of global carbon is circulated through oceans. A major contribution is
through coastal ecosystems [4] such as mangrove forests in form of biomass and carbon stocks [26].
Thus, blue carbon stock assessment of tropical regions, especially mangrove forests, is an issue for
global change research [27], in order to effectively manage such ecosystems to reduce loss of biomass
and carbon stock. Therefore, these ecosystems provide an exceptional candidate for research such as
carbon change mitigation program such as REDD+ (Reducing Emissions from Deforestation and Forest
Degradation) in third world countries or developing countries [28–30] and Blue Carbon studies around
the coastal regions in the world [31,32]. The coastal line covers a large area, which can be surveyed at
a high temporal resolution with a very cost-effective way through remote sensing approach and is
able to generate databases for each of the mangrove forest sites. Use of technologies such as Remote
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Sensing is crucial as a tool for assessing and monitoring mangrove forests, primarily because many
mangrove swamps are inaccessible or difficult to field survey [33].

Previous work by the authors as well as other researchers has allowed assessing the biomass
of the several mangrove plant species and has provided the biomass of species individually.
Chaube et al. [34] employed AVIRIS-NG (Airborne Visible InfraRed Imaging Spectrometer Next
Generation) hyperspectral data to map mangrove species using a SAM (Spectral Angle Mapper)
classifier. Authors identified 15 mangrove species over Bhitarkanika mangrove forest, reporting an
overall accuracy (OA) of 0.78 (R2). They also concluded that the hyperspectral images are very useful
in discriminating mangrove wetlands, and having a finer spectral and spatial resolution can be crucial
in investigating fine details of ground features. Kumar et al. [35] used the five most dominant classes
of mangrove species present in Bhitarkanika as training sets to classify using SAM on Hyperion
hyperspectral images, and archived an OA of 0.64. Ashokkumar and Shanmugam [36] demonstrated
the influence of band selection in data fusion technique; they performed classification using support
vector machine and observed that factor based ranking approach shown better results (R2 of 0.85)
in discriminating mangrove species than other statistical approaches. In another study, Padma and
Sanjeevi [37] used an identical algorithm by integrating Jeffries-Matusita distance and SAM to map the
mangrove species within the Bhitarkanika using Hyperion Image with an OA of 0.86 (R2 value).

Presently, the spatial distribution maps of mangroves are generated using Earth Observation
(EO) Hyperion datasets [26]. Table 1 illustrates the wetland research, which employed several
algorithms for the assessment using various data types. Identifying different species in a mangrove
forest is a fundamental yet difficult task, as it requires a high spatial and spectral resolution satellite
images. To identify different species within the study area, EO-1 Hyperion hyperspectral data is
currently acquired and field-sampling points are taken to generate the endmember spectra. This study
demonstrated the use of vegetation indices (in this paper NDVI (Normalized Difference Vegetation
Index) and EVI (Enhanced Vegetation Index)) for estimating carbon stock within an area with a
significant accuracy. Presently, the field inventory data were incorporated with the hyperspectral
image to derive the carbon stock. Three different NDVI and EVI based models were used to determine
the total blue carbon sequestered by each species within the study area.

In purview of the above, this study aimed at evaluating the net above ground carbon stocks
present at Bhitarkanika mangrove forest ecosystem, particularly with relevant field inventory and
remote sensing approaches.

Table 1. Showing the recent studies in mangrove classification and mapping using different techniques.

Technique Used Datasets Study Location Ref. Year

Maximum Likelihood
Classifier (MLC) Aerial Photographs Texas, USA [38] 2010

MLC and The Iterative
Self-Organizing Data
Analysis Technique

(ISODATA) algorithm

Landsat, Radar Satellite
(RADARSAT), Satellite Pour l

Observation de la Terre (SPOT)
Vietnam [39] 2011

MLC IKONOS Sri Lanka [40] 2011

Unsupervised Landsat and The Linear Imaging
Self Scanning Sensor (LISS-III)

Eastern coast of
India [41] 2011

Sub-Pixel Moderate Resolution Imaging
Spectroradiometer (MODIS) Indonesia [42] 2013

Spectral Angle Mapper
(SAM) Hyperion Florida [34,

43] 2013

Neural Network Landsat Global [44] 2014

Object based Landsat Vietnam [45] 2014
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Table 1. Cont.

Technique Used Datasets Study Location Ref. Year

Object based

Advanced Land Observing
Satellite (ALOS) Phased Array

type L-band Synthetic Aperture
Radar (PALSAR)/ Japanese Earth

Resources Satellite 1 (JERS-1)
Synethetic Aperture Radar (SAR)

Brazil and Australia [46] 2015

Hierarchical clustering
Hyperspectral Imager for the

Coastal Ocean (HICO) and
HyMap

Australia [47] 2015

Tasseled cap transformation Landsat Vietnam [48] 2016

NDVI Landsat Vietnam [49] 2016

MLC IKONOS, QuickBird, Worldview-2 Indonesia [50] 2016

Object based Support Vector
Machine SPOT-5 Vietnam [36,

51] 2017

Iso-cluster Landsat Madagascar [52] 2017

Random Forest Landsat Vietnam [53] 2017

K-means Landsat West Africa [54] 2018

Decision Tree Landsat China [55] 2018

Data Fusion
ALOS PALSAR & Rapid Eye Egypt [56] 2018

Compact Airborne Spectrographic
Imager (CASI) and Bathymetric

Light Detection and Ranging
(LiDAR)

Mexico [57] 2016

Structure from Motion (SfM)
Multi-View Stereo (MVS)

Algorithm
Unmanned Aerial Vehicle (UAV) Australia [58] 2019

Hybrid decision tree/
Support Vector Machine

(SVM)
Hyperspectral Galapagos Islands [33] 2011

Hierarchical cluster analysis Compact Airborne Spectrographic
Imager (CASI)

South Caicos, United
Kingdom [59] 1998

Feature Selection Algorithm CASI Galeta Island,
Panama [60] 2009

SAM Airborne Imaging Spectrometer
for Applications (AISA)

South Padre Island,
Texas [61] 2009

SVM Earth EO-1 (Earth Observation)
Hyperion

Bhit arkanika
National Park, India [35] 2013

MLC & Hierarchical neural
network CASI Daintree river

estuary, Australia [62] 2003

Object based Classification UAV based Hyperspectral Image Qi’ao Island, China [63] 2018

SAM Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS)

Everglades National
Park, Florida, USA [64] 2003

SAM EO-1 Hyperion Talumpuk cape,
Thailand [65] 2013

Pixel based and Object based
classification CASI-2 (CASI-2) Brisbane River,

Australia [66] 2011

SAM
Airborne Visible/Infrared Imaging
Spectrometer—Next Generation

(AVIRIS-NG)

Lothian Island and
Bhitarkanika

National Park, India
[34] 2019
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2. Materials and Methods

2.1. Study Area

Our study site is located in the Kendrapara district of Odisha, India, which lies between
20◦41′36.70” and 24◦45′28” N latitude and 86◦54′17.29” and 86◦92′8.96” E longitude (as shown in
Figure 1). Geographically, it covers an area of around 41.05 Km2 of which mostly low-lying (10–25 m
above mean sea level) covered with dense mangrove forests. The Bhitarkanika Forest Reserve is a
protected forest reserve with a unique habitat and ecosystem. About two-third of the Bhitarkanika
Forest Reserve is covered by the Bay of Bengal, and this estuarial region (lies within Bramhani-Baitarni)
is a predominant inter tidal zone. Bhitarkanika Forest Reserve is home to a diverse types flora and
fauna including some endangered species; it is the second largest mangrove forest in India formed by
the estuarial formation of Brahmani-Baitarni, Dhamra, and Mahanadi rivers [67].
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Figure 1. Location map of the Bhitarkanika Forest Reserve, Odisha India. Figure 1. Location map of the Bhitarkanika Forest Reserve, Odisha India.

The study area comes under the humid sun-tropical climatic region broadly having three seasons
namely, summer in which the temperature reaches up to 43 ◦C, winter in which the temperature goes
down to as low as 10 ◦C, and the rainy season in which this region faces flash floods and frequent
cyclones between the months of June to October. The Bhitarkanika Forest Reserve was chosen for the
present study because it contains variety of heterogeneous species. In our work, the 10 most dominant
mangrove species (as shown in Table 2) were identified and used for further analysis.
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Table 2. In-situ measurements of different mangrove species in the Bhitarkanika forest reserve.

Species Tree Height
(m)

Diameter at Breast
Height (DBH)

(cm)

No of
Trees

Wood
Density
(g/cm3)

Stem
volume

(m3)

Biomass
(t. ha1)

Carbon stock (t.
C ha1)

1 Excoecaria agallocha L. 18.45 ± 2.11 20.14 ± 2.56 11 0.49 6.46 222.74 ± 11.17 104.68 ± 5.24
2 Cynometra iripa Kostel 17.23 ± 1.62 16.54 ± 4.39 10 0.81 3.70 231.43 ± 29.09 108.77 ± 13.67
3 Aegiceras corniculatum (L.) 15.03 ± 1.82 22.17 ± 2.81 9 0.59 5.22 262.44 ± 13.84 123.34 ± 6.50
4 Heritiera littoralis Dryand ex Ait. 18.17 ± 2.17 17.21 ± 2.56 10 1.06 4.22 339.13 ± 23.85 159.39 ± 11.21
5 Heritiera fomes Buch.-Ham. 12.35 ± 1.03 18.83 ± 2.94 12 0.88 4.13 287.66 ± 12.81 135.20 ± 6.02
6 Xylocarpus granatum Koenig 14.13 ± 2.01 27.52 ± 4.28 5 0.67 4.20 379.64 ± 38.10 178.43 ± 17.90
7 Xylocarpus mekongensis Pierre 15.38 ± 1.98 20.28 ± 3.40 8 0.73 3.97 162.13 ± 26.30 76.20 ± 12.36
8 Intsia bijuga (Colebr.) Kuntze 12.29 ± 1.38 26.69 ± 4.90 9 0.84 6.18 196.92 ± 32.78 92.55 ± 15.40
9 Cerbera odollam Gaertn. 12.24 ± 1.86 28.56 ± 5.05 6 0.33 4.70 355.36 ± 24.69 167.01 ± 11.60

10 Sonneratia apetala Buch.-Ham. 11.25 ± 1.67 21.85 ± 4.06 10 0.53 4.22 351.14 ± 23.14 165.03 ± 10.87
Average 278.86 ± 23.57 131.06 ± 11.08
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2.2. EO Data Acquisition

EO-Hyperion images (L1Gst) were obtained over the study area from the United States Geological
Survey (USGS). The specifications of Hyperion sensor are illustrated in Table 3. Hyperion has a spatial
resolution of 30 m and 242 spectral bands covering 356 nm to 2577 nm wavelengths. The Hyperion
data strip passing over Bhitarkanika Forest Reserve is shown in Figure 2. Out of the 242 spectral bands,
46 bands are considered as bad bands (including 1–7, 58–78, 120–132, 165–182, 185–187, and 221–242
bands), and thus, these were not considered in further analysis. Bad bands have a high amount of
noise caused by the water absorption in atmosphere, band overlaps, and lack of proper illumination.
The performed image pre-processing includes noise removal and cross track illumination correction.
In addition, atmospheric correction has been applied to remove atmospheric noises using the FLAASH
(Fast Line-of-sight Atmospheric Analysis of Hyper Spectral-cubes) module in ENVI (v. 5.2) software [68].
After completing this step, endmember extraction was performed for each of the targeted species using
the final Hyperion reflectance image and the in-situ GPS (Global Positioning System) locations.

Table 3. Hyperion Data Description

Satellite Data EO-Hyperion

Path/Row 139/45
Spatial Resolution 30 meters

Flight Date 31 December 2015
Inclination 97.97 degree

Cloud Cover <5%
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2.3. Field-Inventory Based Biomass Measurement

Field sampling was undertaken during 2015 for the study site. The foremost steps are the prior
knowledge of the mangrove plant species; their location and its structure were essential for collecting
the sample data for geospatial analysis. Random and the most homogenous patches within the
Bhitarkanika Forest Reserve were selected for the field survey to measure tree height, number of
samples (trees), Diameter at Breast Height (DBH), and total number of species within the plot.

As the study site selected is 36.42 km2 falling within the range of Hyperion data strip (Figure 2).
Hyperion image has limited coverage over the Bhitarkanika forest range, and for this reason, a region
was selected that falls within the area covered by the Hyperion field of view. The samples were
collected by making a 90 × 90 m2 grid and it is further divided into nine equal 30 × 30 m2 sub-grids, i.e.,
90 sub-grids were examined. The most homogenous grid was taken into consideration. This process
was then repeated to identify the 10 most homogenous mangrove plant species within the study
area and samples were collected using GPS and Clinometer. The field data records the vegetation
parameters using GPS in multiple directions. The number of tree species was counted within the plot
in random sampling design in the Bhitarkanika Forest Reserve [69]. An overview of the methodology
implemented is available in Figure 3. These major species were identified for the study site and their
spectral profile was extracted using EO-1 Hyperion dataset. Total area covered by these species was
36.42 km2 (see Figure 2). Non-vegetative regions were masked out from the study region.
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The Spectral Angle Mapper (SAM) supervised classification algorithm was used for the land
use/cover classification using ENVI software [70,71]. SAM is a physically-based spectral classification
algorithm, according to [72] that calculates the spectral similarity between a pixel spectrum and a
reference spectrum as “the angle between their vectors in a space with dimensionality equal to the
number of bands” [72]. SAM uses the calibrated reflectance data for classification and thus relatively
insensitive to illumination and albedo effects. End-member reference spectra used in SAM were
collected directly from acquired hyperspectral images. SAM compares the angle between reference
spectrum and each pixel of an image in n-D space [72–74]. This ‘spectral angle’ (α) is calculated as:

α = cos−1 ( t.r )
( ‖t‖ ‖r‖ )

(1)

where α is the angle between reference spectra and endmember spectra, t is the endmember spectra,
and r is the reference spectra.

A thorough and detailed investigation was performed to develop a criterion to estimate different
species and determine variety of communities present in that ecosystem. To perform the sampling,
firstly, the area is sub-divided into homogeneous patches or units, and furthermore, the samples were
taken within these homogenous patches. The total number of transect sampling units to determine the
allowable error was calculated using (Chacko, 1965) as follows:

N =
t(CV)2

E2 . (2)

where N is the total number of samples, t is the Student’s (t-statistics) value at a 95% significance level,
CV is the coefficient of variation (in %), and E is the confidence interval (in mean %).

While performing the field sampling, a transect of 30 m × 30 m plot was laid on the most dominant
patch for each species inside the protected area of Bhitarkanika forest reserve. The collected field
sampling points were further distributed, and 2/3 of the samples were used for generating the models,
whereas 1/3 of the samples were used for validation purpose. Table 2 has shown the field measurements
of each species, e.g., scientific name, tree height, DBH, total number of trees within the sample plot,
wood density of each species, biomass, and carbon stock. The trees whose girth height was below
1.32 m and DBH < 10 cm were not taken under consideration. The geographical location (latitude and
longitude) was recorded using hand-held GPS. There were several mathematical equations developed
and used by researchers for biomass estimation of trees [75–81]. These equations are species specific,
particularly in the tropics. The general equation has been developed in modified form. It is more
general in nature ([78,82,83]) and applicable in field. It is not possible to cut all the trees to estimate
their biomass. Considering the mathematical terms, the models were developed by [76,77,83,84].
The model developed by [75] (1989) to estimate above ground biomass has been used in the present
investigation. The literature revealed that this method is non-destructive and is the most suitable
method. The biomass for each tree is calculated using the following allometric equation [76,83,85]:

Y = exp
[
−2.4090 + 0.9522 ln

(
D2
× H × S

)]
. (3)

where Y is above ground biomass (t. ha1), D is the diameter at breast height, H is the tree height,
and S is the wood density. The average wood density (S) for each species is taken from the wood
density database provided by the International Council for Research in Agroforestry (ICRAF). From the
acquired wood density, it was found that the wood density of Cerbera odollam Gaertn. was lowest
(0.3349 gcm3), followed by Excoecaria agallocha L. (0.49 gcm3) among all. Heritiera littoralis Dryland ex
Ait. had the highest (0.848 gcm3) wood density. The above ground carbon was calculated using the
following formula to estimate biomass [83,85,86]:

Y = B ∗ 0.47 (4)
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where Y is the above ground carbon stock (t. ha1) and B is the above ground biomass per hectare (t. C ha1).
The precise location of the in-situ ground control points of each species were further used to

generate the spectral profile using Hyperion hyperspectral data as shown in Figure 4. The generated
spectra of each species were given as an input to the SAM classifier. It is observed that Intsia bijuga
(Colebr.) Kuntze is showing the highest reflectance among other observed species, whereas Aegiceras
corniculatum (L.) has the lowest reflectance.
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2.4. Covariance Matrix Based Band Selection

Hyperspectral data are a set of hundreds of narrow bands at different wavelengths posing problems
related to computational complexity, high data volume, bad bands, etc. Therefore, dimensionality
reduction of hyperspectral data is considered as one of the solutions for the aforementioned issue.
The dimensionality reduction technique is further classified into two groups, namely, feature extraction
and feature selection. In the present study, an approach has been made to select the best band for
calculation of different vegetation indices. Band selection generally involves two major steps, which are
selection of criterion function and optimum band searching. The selection criterion applied in this
study is the one proposed by [87], which was named Maximum ellipsoid volume criterion (MEV).

Mathematically it can be formulated as:

J(s) = det
( 1

M − 1

)
STS
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where M is the number of pixels and S is the selected bands with S = [x1, x2, . . . , xn] and ST is the
column vector with ST = [x1, x2, . . . , xm]T. Here, n and m are the number of bands and m is the number
of number of pixels.

Additionally, for the band searching purpose, sequential forward search was implemented,
which basically works on the principle of “down to top”. Here, the first band is defined as the band
with maximum variance and the remaining band is compared one by one. While selecting the optimum
band, the constant value

(
1

M − 1

)
. is neglected. Thus, Equation (4) can also be written as:

Bk = ST
kSk (5)

where Bk is the covariance matrix and Sk = [x1, x2, . . . , xk]. Therefore, we have:

Bk = ST
kSk (6)

= [x1, x2, . . . , xk]T [x1, x2, . . . , xk]

=


xT

1 x1 xT
1 x2 . . . xT

1 xk

xT
2 x1 xT

2 x2 . . . xT
2 xk

. . . . . . . . . . . .
xT

kx1 xT
kx2 . . . xT

kxk


According to the rule of determination, the relation between Bk and Bk+1 is described as:

det(Bk+1) = det(Bk)
(
ak − dT

kB−1
k dk

)
(7)

Equation (7) was further used for determining the optimum band; the band that maximizes the
value of det(Bk+1) was termed as the optimum band. This band selection method was applied at blue,
red, and near infrared bands to further calculate the NDVI and EVI indices.

2.5. NDVI and EVI

In our study, the vegetation indices of NDVI and EVI were employed, which were computed from
the Hyperion hyperspectral data to assess the total above ground carbon stock using different allometric
regression models [26]. The covariance matrix based band selection algorithm as per described in
Section 2.4 determines the specific band for the calculation of vegetation indices. It was observed that
the optimum band in NIR (Near-Infrared) region is R793.13 (surface reflectance at 793.13 nm), in Red
region, it is R691.37 (surface reflectance at 691.37 nm), and in Blue region the optimum band is observed
at R447.17 (surface reflectance at 447.17 nm). The NIR and Red bands were used to calculate the NDVI;
as shown in Equation (5), its value ranges from −1 to +1. The negative NDVI values shows waterbody
and bare soil, whereas positive values are the green vegetation. The higher the NDVI value, the higher
will the density of forest or vegetation be because of the high NIR reflectance and low Red reflectance
coming from dense vegetation [88,89]. NDVI has been widely used to monitor vegetation health,
density, changes, amount and condition of vegetation:

NDVI =
(R793.13 −R691.37)

(R793.13 + R691.37)
(8)

EVI (Enhanced Vegetation Index) was originally developed as an improvement over NDVI; EVI
is basically an optimized vegetation index that is used to enhance the sensitivity of high biomass
region and it decouples the background variables as well as the atmospheric influences [90,91]. EVI is
calculated as follows:

EVI = 2.5∗
(R793.13 −R691.37)

(R793.13 + 6∗R691.37 − 7.5∗R447.17 + L)
(9)

where L is the adjustment factor, generally 1.
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In the present study, both NDVI and EVI were employed to correlate the carbon stock of the
Bhitarkanika mangrove forest. EVI is considered as more robust proxy of biomass and carbon stock
estimation, as it has better resilience to saturation and resistant to atmospheric contamination and
soil [90,92].

Five different models, linear, polynomial, logarithmic, Radial Basis Function (RBF), and sigmoidal
function, were utilized for assessing carbon using hyperspectral data derived from NDVI and EVI
indices. The relationship of field measured above ground carbon with the NDVI and EVI vegetation
indices for all the five models were calculated. The field measured above ground carbon was trained
with NDVI and EVI values retrieved from hyperspectral image in each of the five models. The 2/3 of
the in-situ measurements were used for training the data, while 1/3 of the remaining data were used
for testing the models.

3. Results

This section provides a concise and precise description of the experimental results for blue carbon
for a mangrove forest.

3.1. Spatial Distribution of Species

This section demonstrates the species-wise carbon stock spatial distribution and overall
carbon stock of the Bhitarkanika forest reserve and delivers a brief analysis on the overall results.
SAM classification (Figure 5) achieved an OA of 84% and a kappa coefficient (k) of 0.81. These results
indicate that SAM classification algorithm performed very well in determining the major plant species.
These outputs were further taken into account and were used to derive the estimated carbon stock for
each species using NDVI and EVI models and illustrating the species-wise carbon stock.

As per Table 4, it has been observed that the total aboveground carbon from EVI and NDVI
derived aboveground carbon are 459.82 kt. C and 514.47 kt. C, respectively. The NDVI derived carbon
is showing higher value than the EVI derived carbon because NDVI values can be influenced by the
atmospheric contaminants, topography, soil, and dense biomass. These can lead to the increase in
the irradiance of the NIR band and result in bias. It should also be noted that NDVI saturates in
dense vegetation so that the accuracy of NDVI values differ by land use, topography, and atmospheric
conditions [90,93–95]. Santin-Janin et al. [96] used non-linear model coupled with NDVI and EVI
estimates to estimate the biomass and carbon stock. Wicaksono et al. [97] employed 13 vegetation
indices to assess the above ground carbon of mangrove forest and concluded that the best fitted above
ground carbon model for mangrove species derived from vegetation indices was EVI1 (R2=0.688),
whereas for below ground carbon GEMI (R2=0.567) showed the best fit. Similarly, Adam et al. [95]
utilized the narrow band vegetation indices with all possible band combinations using hyperspectral
data for above ground biomass and concluded EVI is more robust for the assessment. Different band
selections were used by them to enhance the predictive accuracy, the best three combinations for
estimating EVI are (a) 445 nm, 682 nm, and 829 nm, (b) 497 nm, 676 nm, and 1091 nm, and (c) 495 nm,
678 nm, and 1120 nm.
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Table 4. (a) Species-wise carbon stock derived from NDVI and (b) EVI for the Bhitarkanika forest reserve.

(a) Species Name NDVI Derived Carbon Stocks

Area (km2) Total carbon (kt. C) Min carbon (t. C ha-1) Max carbon (t. C ha-1)
Ave. carbon ± SD (t.

C ha-1)

1 Excoecaria agallocha L. 3.80 52.25 68.14 258.23 143.48 ± 17.39
2 Cynometra iripa Kostel 3.77 42.20 55.28 226.90 115.88 ± 19.61
3 Aegiceras corniculatum (L.) 0.96 54.59 69.66 254.65 149.90 ± 5.57
4 Heritiera littoralis Dryand ex Ait. 2.07 53.08 83.76 225.30 145.55 ± 7.88
5 Heritiera fomes Buch.-Ham. 4.21 51.69 72.47 258.83 141.95 ± 10.60
6 Xylocarpus granatum Koenig 6.41 54.69 55.28 252.01 150.50 ± 15.51
7 Xylocarpus mekongensis Pierre 0.48 47.48 67.35 258.84 130.39 ± 12.70
8 Intsia bijuga (Colebr.) Kuntze 1.66 50.21 83.36 256.40 137.87 ± 12.57
9 Cerbera odollam Gaertn. 8.34 56.36 68.52 219.66 154.78 ± 18.39

10 Sonneratia apetala Buch.-Ham. 4.72 51.84 76.91 254.54 142.34 ±22.46
Total
Area (36.42 km2) 36.42 514.47

(b) Species Name EVI Derived Carbon Stocks

Area (km2) Total carbon (kt. C) Min carbon (t. C
ha−1)

Max. carbon (t. C
ha−1)

Ave. carbon ± SD (t.
C ha−1)

1 Excoecaria agallocha L. 3.80 45.22 56.57 225.45 124.18 ± 10.15
2 Cynometra iripa Kostel 3.77 31.02 61.25 241.22 85.19 ± 26.29
3 Aegiceras corniculatum (L.) 0.96 44.35 63.30 222.70 121.80 ± 16.38
4 Heritiera littoralis Dryand ex Ait. 2.07 42.45 57.17 190.22 116.57 ± 22.72
5 Heritiera fomes Buch.-Ham. 4.21 47.38 55.28 229.22 130.11 ± 32.21
6 Xylocarpus granatum Koenig 6.41 46.90 67.66 253.04 128.78 ± 15.70
7 Xylocarpus mekongensis Pierre 0.48 50.60 66.66 218.84 138.95 ± 20.75
8 Intsia bijuga (Colebr.) Kuntze 1.66 53.10 97.24 253.40 145.83 ± 18.84
9 Cerbera odollam Gaertn. 8.34 48.56 61.51 209.66 133.36 ± 10.19

10 Sonneratia apetala Buch.-Ham. 4.72 50.19 61.05 235.54 137.83 ± 15.30
Total
Area (36.42 km2) 36.42 459.82
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3.2. Estimation of Carbon Stock Using Spectral Derived Indices

This section presents the carbon stock assessment for mangrove forest using different models
namely, linear, logarithmic, polynomial (second degree), RBF, and sigmoidal function. All the models
were trained with the EVI and NDVI generated relations with the ground measured data as well as
tested with the modeled biomass and observed carbon stock as shown in Figure 6. The latter figure
illustrates the performance of each model for EVI and NDVI based estimations; it can be observed that
the RBF model performed better than the others.
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Figure 6. (a) Performance analysis of different models with EVI based carbon estimation and in-situ
measurements (b) Performance analysis of different models with NDVI based carbon estimation and
in-situ measurements. In both cases, the index-derived carbon estimation shows good agreement
between measured and estimated carbon stock and either index could provide a good estimation.
From the results EVI (R2 = 86.98%) seems to perform slightly better than NDVI (R2 = 84.1%). However,
since the sample size is small (10 observations) the results are too close to say with statistical confidence
that this hypothesis is true. However, the literature (see Section 3.1) indicates that this is indeed the
case. The EVI and NDVI based carbon stock for each species (identified in the present study) is shown
in Table 4.

According to the distributed EVI value, it has been concluded that a good amount of area is under
dense coverage of forest species; moreover, it has shown higher estimation of carbon stock than NDVI.
EVI varies from 0.35 to 6.9 and it is more sensitive to branches and other non-photosynthetic parts of
the vegetation (parts different from leaves). EVI is more sensitive to plant parameters, as it avoids
the atmospheric effects as well as the soil background. The results illustrate that EVI derived carbon
varies from 27.22 to 215.35 t. C ha−1 for linear, 85.39 to 236.66 t. C ha−1 for log, 104.72 to 306.70 t.
C ha−1 for polynomial, 55.281 to 253.4 t. C ha−1 for RBF and 54.068 to 363.7 t. C ha−1 for sigmoidal
function models (See Figure 7A–E). NDVI derived carbon varies from 111.11 to 184.14 t. C ha−1 for
linear, 112.53 to 187.50 t. C ha−1 for log, and 109.85 to 181.57 t. C ha−1 for polynomial, 55.281 to 258.84 t.
C ha−1 for RBF, and 46.5 to 357.17 t. C ha−1 for sigmoidal function models (See Figure 7F–J). Estimated
carbon is highest for EVI derived sigmoidal function model with highest carbon content up to 363.7 t.
C ha−1 and lowest for linear regression models reaching up to only 27.22 t. C ha−1. Lowest estimated
carbon for NDVI derived carbon stocks comes to be 46.5 t. C ha−1 for the sigmoidal function model
and highest values was observed as 357.17 t. C ha−1 for the sigmoidal function model.
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The carbon stock values from the satellite-derived indices fall within the expected ranges for
mangrove carbon stocks. NDVI values range from 0.5 to 0.65; the latter shows a healthy, dense mangrove
forest in Bhitarkanika. The final interpretation result reveals that the middle northern part of the study
area is showing higher biomass values (~250 t. C ha−1). Thus, it is concluded that these regions are
highly dense and stores an ample amount of blue carbon in it.

The polynomial regression model using EVI is found to be suitable for the estimation of carbon
stock at the study site, with an R2 of 0.87. EVI has shown high amount of estimated carbon ranges as it
is more sensitive to biomass, and ultimately affecting the carbon estimation as compared to the NDVI
and can be seen from Figure 7 and Table 4 whereas, NDVI has shown more consistent outcomes in the
case of minimum and maximum estimated carbon stocks.

3.3. Species-Wise Carbon Stock Assessment

The classification results generated from SAM classifier and the covariance matrix based optimum
band selection for generating vegetation indices were further used to extract the species-wise carbon
stock as well as the area covered by each species in the Bhitarkanika forest reserve (see Figures 8 and 9).
Figure 9 illustrates the NDVI derived carbon distribution map for each major species, while Figure 8
demonstrates the EVI derived carbon distribution map for each major species. It is also important to
notice that the carbon stock of each species shows some variance, which is investigated and presented
in Figures 10 and 11. Furthermore, the outcome of species-wise carbon stocks depends upon the
species classification accuracies for species distribution classification maps.
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Figure 10. Box plot showing species-wise above ground carbon stock derived from NDVI.



Remote Sens. 2020, 12, 597 19 of 25

Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 27 

 

 

 

Figure 10. Box plot showing species-wise above ground carbon stock derived from NDVI. 

 

Figure 11. Box plot showing species-wise above ground carbon stock derived from EVI. 

  

0

50

100

150

200

250

300

C
a
rb

o
n

 (
M

g
.C

.h
a

-1
)

0

50

100

150

200

250

300
C

a
rb

o
n

 (
M

g
.C

.h
a

-1
)

Figure 11. Box plot showing species-wise above ground carbon stock derived from EVI.

Total area covered by the major mangrove species was around 36.42 km2. Cerbera odollam Gaertn
covers the largest part of the forest, approximately 22.90% of the total area. Total estimated carbon for
the EVI derived indices is 49.82 kt. C. and total carbon estimated for the Bhitarkanika forest derived
from NDVI indices is 514.47 kt. C. Using EVI-derived carbon stocks, the highest contribution of
carbon stock is the Intsia bijuga (Colebr.) Kuntze species with 53.10 kt. C (11.54%). From the NDVI
derived carbon stocks, Cerbera odollam Gaertn seems to contribute the most with 56.36 kt. C (10.95%).
Field measured carbon was recorded lowest for the species Xylocarpus mekongensis Pierre, which was
76.20 t. C ha−1. Figure 8 shows the spatial distribution of carbon derived from EVI for each species.
Intsia bijuga (Colebr.) Kuntze shows highest carbon content up to 253.4 t. C ha−1. The highest carbon
stocks as derived from NDVI were displayed for Xylocarpus mekongensis Pierre at 258.84 t. C ha−1.

As such, while Cerbera odollam Gaertn covers most of the area (22.9%), differences in carbon per
hectare (Carbon area density) promote Intsia bijuga (Colebr.) Kuntze as the highest contributing species
in the Bhitarkanika forest with EVI-derived carbon stocks. This is due to the large difference between
EVI and NDVI derived carbon area density for Cerbera odollam Gaertn (average 128.78 ± 15.702 t. C
ha−1 and 150.498 ± 15.51 t. C ha−1). Cross-referencing with the measured values presented in Table 2
(165.03 ± 10.87167.02 t. C ha−1), leads to the conclusion that the NDVI derived carbon stocks for Cerbera
odollam Gaertn are more accurate. This conclusion is not reflective of all the species. Out of the 10
species examined, the average Carbon area density of EVI is closer to the measured value in six of them,
while NDVI derived Carbon area density is more accurate in the other four. The greatest divergence
between EVI and NDVI estimated carbon area densities is for Cerbera odollam Gaertn. Significant
differences are also shown for Intsia bijuga (Colebr.) Kuntze and Xylocarpus mekongensis Pierre.

A species-wise box-plot is generated to assess the variation in different species-wise carbon stock
estimated using EVI and NDVI, which is shown in Figures 10 and 11, with the minima, maxima,
median, 25% quartile, and 75% quartile. The average carbon stock measured from field sampling is
131.07 t. C ha−1. Average EVI derived carbon stock ranges from 77.86 t. C ha−1 to 135.28 t. C ha−1 and
for NDVI derived carbon stock 116.57 t. C ha−1 to 145.82 t. C ha−1 for the Bhitarkanika mangrove
forest. As such, both EVI and NDVI estimated averages are in agreement with the average carbon
stock measured from the field.
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4. Conclusions

Mangrove forests store a large quantity of blue carbon in plants, both in the form of biomass and
as sediment in the soil. Anthropogenic activities threaten these forests nowadays due to conversion
to other land use types. Such transition of forest areas is a major source of carbon emissions to the
atmosphere. As such, carbon stock assessment is essential to reduce the loss of biomass in such
ecosystems. Species-wise blue carbon analysis can be used to assess the impact of global climate change
on different mangrove species as well as to help policy makers to accurately evaluate the ecological
and economical trade off associated with the management of mangroves ecosystem. The present
study aimed at demonstrating the use of hyperspectral EO data for species identification in a highly
diversified mangrove ecosystem and for calculating total carbon stored. The Bhitarkanika forest in
India was chosen as a study site and Hyperion hyperspectral images were used.

There have been several studies on the blue carbon stored in mangroves, however, thus far, a
species wide blue carbon analysis with significant accuracy was missing. This study attempts to
mitigate that gap of knowledge by estimating the above-ground carbon stocks for each of the 10 major
species that were identified and found dominant in the study area.

Hyperspectral data from EO-1 Hyperion were collected and processed to extract the biophysical
parameters of interest. Near co-orbital field measurements of biomass and carbon measurements were
acquired for validation. The in-situ locations of mangrove species were used to generate spectral profile.
The spatial distribution of the major mangrove species was identified using the SAM classification
algorithm, which performed reliably well (e.g., kappa coefficient κ = 0.81). NDVI and EVI radiometric
indices were calculated from the optimum bands, obtained by covariance matrix based band selection
algorithm. Several models were tested to relate NDVI and EVI with carbon stocks. The RBF model
performed best (R2 = 86.98% for EVI and R2 = 84.1% for NDVI) and was subsequently used in this
study to estimate carbon stocks for the 10 dominant species and the entire study area.

Despite the significance of mangrove ecosystem and blue carbon for local as well as global
climate, the drastic transformation of mangrove forests into other land use types is directly affecting
the livelihood around it, which can be seen through the shortage of firewood, regular soil erosion,
and decrease in fishing zones. Therefore, there should be adequate digital information about the
coverage, biomass, and carbon content of the mangrove forest for quick management and planning.
The present study provides evidence that NDVI and EVI indices have a very promising potential to
be applied in classifying the dominant species of mangrove forests and coastal ecosystems according
to their carbon content. These indices can provide adequate estimates of maximum, minimum,
and average carbon content for a large area and show the spatial distribution of carbon, and thus,
biomass. The above-ground carbon stocks for each species were estimated and presented in this study.
For the whole study area, the carbon stocks were estimated 459.82 kt. C. from EVI and 514.47 kt. C.
from NDVI.

The only limitation faced in this study was the limited availability of Hyperion data and that
too covering a part of Bhitarkanika as shown in Figure 2. Using the same methodology with spectral
images from different satellites could provide better coverage, and thus carbon stock estimations of
different areas. Future studies could focus on different ecosystems to assess the effectiveness for this
method and estimate carbon stock for different areas and ecosystems in order to provide the tools for a
better evaluation of biomass and global carbon stocks; this remains to be seen.
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