
The update complexity of selection and related

problems

Manoj Gupta1, Yogish Sabharwal2, and Sandeep Sen3

1 Indian Institute of Technology, New Delhi

gmanoj@iitd.ernet.in

2 IBM Research – India, New Delhi

ysabharwal@in.ibm.com

3 Indian Institute of Technology, New Delhi

ssen@iitd.ernet.in

Abstract

We present a framework for computing with input data specified by intervals, representing un-

certainty in the values of the input parameters. To compute a solution, the algorithm can query

the input parameters that yield more refined estimates in form of sub-intervals and the objective

is to minimize the number of queries. The previous approaches address the scenario where every

query returns an exact value. Our framework is more general as it can deal with a wider variety

of inputs and query responses and we establish interesting relationships between them that have

not been investigated previously. Although some of the approaches of the previous restricted

models can be adapted to the more general model, we require more sophisticated techniques for

the analysis and we also obtain improved algorithms for the previous model.

We address selection problems in the generalized model and show that there exist 2-update

competitive algorithms that do not depend on the lengths or distribution of the sub-intervals and

hold against the worst case adversary. We also obtain similar bounds on the competitive ratio

for the MST problem in graphs.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms

and Problems

Keywords and phrases Uncertain data, Competitive analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.325

1 Introduction

A common scenario in many computational problems is uncertainty about the precise values

of one or more parameters. Many different models have been considered in the database

community for dealing with uncertain data. In one of the commonly used models, the un-

certain parameters are represented by probability distributions (for a comprehensive survey,

see[1]). In another model, the uncertain parameters are represented by interval ranges,

wherein the parameter may take on any value within the specified interval (see [12]). In this

paper, we focus on the latter model. More formally, we consider the model wherein we want

to compute a function f(x1, x2 . . . xn) where some (or all) xi’s are not fully known. The xi’s

are typically known to lie in some range (interval). Any assignment of xi = x′

i consistent

with the known range of xi is a feasible realization. The algorithm can make queries about

xi. This problem has been studied before [12, 9]. A common assumption made in the exist-

ing literature is that the exact value of xi is returned by a single query. However, in many

applications, a query about xi may only yield a more refined estimate of the xi. As a matter

of fact, in many such applications, it is not even possible to obtain the exact value of the

© M. Gupta, Y. Sabharwal, and S. Sen;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 325–338

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

326 The update complexity of selection and related problems

parameter. As an example, consider the case of handling satellite data such as maps. Due to

the large amount of data involved, the data is often stored hierarchically at different scales of

resolutions. Typically the data is presented at the highest level of resolution. Depending on

the area of interest, data may be retrieved for the next level of resolution for a smaller area

(zoom in) by performing a query. Now consider a query to find the closest hospital. Based

on the highest scale of resolution, the distances to the hospitals can be determined within

a certain range of uncertainty. If the closest hospital cannot be resolved at this level, then

further queries are required for certain hospitals to determine which amongst them is the

closest. These queries proceed down the hierarchical scales of resolution until it is resolved

which is the closest hospital.

Let us illustrate this model using the problem of finding minimum when the exact values

are not known but each element is associated with a real interval [ℓi, ri]. Consider the

three elements x1 = [3, 17], x2 = [14, 19], x3 = [15, 20]. Clearly any of these can be the

minimum element as these are mutually overlapping intervals. Suppose a query returns the

exact value, then with three queries, we obtain the complete information and the problem

is trivially solved. But the interesting question is - are three queries necessary ? Suppose

our first query yields that x1 = 10, then clearly we do not need to make any further queries.

On the other hand, the query may yield x1 = 16, so that we are forced to make further

queries. In a more general situation, where a query may return a sub-interval, we may obtain

x1 = [8, 16] that doesn’t yield any useful information about the identity of the minimum

element. On the other hand, if the query returns [8, 10], then we can conclude x1 to be the

minimum even though we do not know the exact value of x1.

It is natural to compare the number of queries made by the algorithm w.r.t. a hypothet-

ical OPT which can be thought of as a non-deterministic strategy that makes the minimum

queries for any feasible realization of the input. Moreover, the algorithm must contain a

certificate of correctness of the final answer, viz., that no more queries are necessary regard-

less of the number of unresolved parameters. This also brings up the related verification

problem, i.e., given an incompletely specified problem, does it contain sufficient information

for a solution to be computed (without further queries).

1.1 Related Previous Work

Kahan [10] described a technique for maintaining data structures for online problems like

flight-path collisions using predictive estimates to obtain higher efficiency. The estimates

could be used to prune objects that couldn’t provably affect the solution and only those

critical objects were updated that could affect the answer. Kahan’s work laid the foundations

for later work on kinetic data structures but in his paper, he focussed on describing a

framework for minimizing updates of critical objects. Kahan compared the efficiency of his

data structures with respect to a non-deterministic optimal algorithm, or more specifically,

the competitive ratio in the online setting. If our algorithm makes qS(n) queries for an input

S of size n, then it has competitive ratio c 1 iff for some constant α > 0,

qS(n) ≤ c · OPT (S) + α

where OPT may be thought of as a non-deterministic algorithm (coined as lucky in [10])

Note that OPT has an unfair advantage in being able to guess the optimal sequence of

1 So strictly speaking, the algorithm could take exponential time but may have a bounded competitive
ratio.

M. Gupta, Y. Sabharwal, and S. Sen 327

queries and ensure that it can be verified in collusion with an adversary controlling the

output of the queries.

For instance, if the given intervals are x1 = [2, 6], x2 = [2, 6], x3 = [2, 6], i.e., all of them

are identical, OPT may guess the answer to be x3 and if the query yields x3 = 2, then it

is verified. On the other hand, an algorithm has no means of distinguishing between the

xi’s. Even use of randomization does not appear to provide any significant advantage in

this scenario. Kahan [10] tackled this issue (without acknowledging as much) by changing

the problem definition to that of reporting all values that are equal to the minimum.

Khanna and Tan [12] also used the competitive ratio as a measure of efficiency of their

algorithms but their parameterization didn’t yield O(1) bounds. Their algorithms for selec-

tion was related to the clique number (maximum clique size) of the input. They compare

with Non-deterministic optimal and show that, no on-line algorithm can achieve a better

competitive ratio than the clique number.

A somewhat different model was used by Erlebach et al.[9], who showed how to compute

an exact minimum spanning tree for graph with interval data using minimal number of

queries. The final answer is a combinatorial description (in this case a spanning tree) and

not necessarily the weight of the spanning tree. Erlebach et al.[9] proved that their algorithm

has competitive ratio 2 when the edge weights are initially specified as open intervals. One

limitation of their result is the critical use of the property of open intervals which is used

to weaken the advantage of OPT in guessing and verifying the answer. Their results on

constant competitive ratio do not hold for closed or semi-closed intervals.

A recent motivation for this line of work came from caching problems in distributed

databases, (Olston and Widom [13]), where local cached copies are used for faster query

processing where the cached values are intervals that are guaranteed to contain the actual

value called the master value. Their work showed trade-off between the number of queries

and the precision ∆ of the actual answer. This model was further explored in the work

of [6, 5] that tackled fundamental problems like median-finding and shortest-paths. They

distinguished between the offline (oblivious) and online (adaptive) queries including weighted

versions where queries could have varying costs for different intervals. Unlike the previous

work, they compared their efficiency with respect to a worst case optimal rather than a non-

deterministic input-specific optimal. Therefore their results cannot be compared effectively

with the previous work. Other approaches like [2, 11] minimize the worst case deviation

from actual values or minimizing queries to get improved estimates of the expected solution

when the distribution is known [7, 8].

2 Our contributions

In this paper, we generalize the query model in several directions. We classify models based

on the types of the inputs allowed and the return type of the queries. The input may

specify a combination of points (P), open intervals (I) and/or closed intervals (C). This

leads to 7 variations , namely, O, C, P, OC, OP, CP and OCP. Similarly queries on intervals

(open/closed) may yield points (P), open intervals (I) and/or closed intervals (C)2. This also

leads to seven variations. These models are specified in Figure 1. We denote the models by

X-Y where X denotes the type of the input allowed in the input instance and Y denotes

the query return types where X and Y can take values from O, C, P, OC, OP, CP and

2 We can also handle semi-closed intervals but we have avoided further classification as they don’t lead
to any interesting results.

FSTTCS 2011

328 The update complexity of selection and related problems

O C OC P OP CP OCP

O Category-1 (Note α) (Note α) (Note α) (Note α) (Note α) (Note α)
C (Note α) Category-1 (Note α) (Note α) (Note α) (Note α) (Note α)

OC (Note α) (Note α) Category-1 (Note α) (Note α) (Note α) (Note α)
P trivial - - - - - -

OP Category-2 (Note α) (Note α) OP-P OP-OP (Note α) (Note α)
CP (Note α) Category-2 (Note α) Category-3 (Note α) Category-3 (Note α)

OCP (Note α) (Note α) Category-2 Category-3 (Note α) (Note α) Category-3

Figure 1 Models for studying uncertain data problems (see note for α below). The allowed input

types listed along the rows and the query return types listed along the columns. (The pure input

point model is trivial as no queries are required).

OCP (here the literals O, C and P correspond to open intervals, closed intervals and points

respectively). Thus for instance OP-P denotes the model wherein the input can consist of

open intervals as well as points and the queries can only return points.

(Note α): Although there are 49 models possible, many of them are unnatural as they can

lead to a change of the input type after some initial queries. The framework of such models

can be covered under the framework of another suitable model. For instance, a problem

under the O-P model would convert to OP-P model after a single query and is thus better

studied under the OP-P model. Similarly, the OC-C model can be covered under the OC-OC

model.

We categorize the valid models into 5 different categories (See Figure 1). The competitive

ratios are based on this categorization of the models. Category-1 corresponds to the models

where the input and query return types are only intervals (O-O, C-C, OC-OC models).

Category-2 corresponds to the models where the input may contain points by the queries

only return intervals (OP-O, CP-C, OCP-OC models). Category-3 corresponds to the models

where the input may contain closed intervals and the query may return points. The other

two categories correspond to the OP-P and OP-OP models themselves.

Our main results can be summarized as follows

1. We first generalize the models to practical scenarios wherein queries may return sub-

intervals as answers rather than exact values. The sub-intervals need not have any

properties with respect to lengths or distributions. In other words, with further queries,

we obtain increasingly refined estimates of the values until sufficient information has

been obtained, i.e., the verification problem can be solved. We show that the witness

based approach used in the previous models can be adapted to the models considered in

this paper. More specifically, we establish interesting relationships between the various

models (see Figure 2).

2. We study the selection problem of finding the kth smallest value and present update

competitive algorithms with different guarantees for the different models for this problem.

We also study the update complexity of minimum spanning tree problem under the

different models that is closely related to the extremal selection problem (finding the

heaviest edge in a cycle – also called the Red rule).

3. We also show that by deviating from the witness based approach studied in prior litera-

ture, we can actually obtain improved bounds for the selection problem. These algorithms

attain an additive overhead from optimal, that is similar to a competitive ratio of unity

for some cases and are interesting in their own right.

4. Given that closed intervals have not been successfully handled in prior literature[9] lead-

ing to unbounded competitive ratios, is it possible to characterize the problem more

precisely? For instance, do we run into the same issues if we allow queries to return

M. Gupta, Y. Sabharwal, and S. Sen 329

intervals? One approach for addressing issues with closed intervals is to output all the

optimal solutions[10]. It can be quite expensive to output all the solutions. Is there an

alternate framework that addresses the issues with closed intervals without determining

all the solutions.

We show that this problem is a characteristic of models that allow closed intervals in

the input and points to be returned in the queries. We extend our models to handle

closed intervals by using the notion of lexicographically smallest solution (in case multiple

solutions exist). This is a natural version in many problems where the initial ordering

is important and we will show later that this has the desired effect of limiting non-

deterministic guessing powers of OPT .

Another interesting variation could be assigning cost to a query depending on the the

precision of the answer given but we have not addressed this version in this paper. There is

a growing body of work that addresses the problem of computing exact answer with minimal

queries [3, 4] and coping with more generalized queries is an important and fundamental

direction of algorithmic research.

Problem Competitive Models Comment Source
ratio

OP T + 1 OCP-P Report all solutions Kahan [10]
Extremal OP T + 1 OP-P Value this paper
selection 2 · OP T Category-1,2 & OP-OP this paper

2 · OP T Category-3 lex first this paper

OP T + 1 OCP-P Report all solutions Kahan [10]
t · OP T CP-P t = clique no. Khanna-Tan [12]

K-selection OP T + k OP-P Value, ≤ k · OP T this paper
2 · OP T Category-1 element this paper
2 · (OP T + k) OP-OP this paper
2 · OP T Category-3 Value, lex first this paper

2 · OP T OP-P Erlebach et al.[9]
OP T + C OP-P C ≤ OP T this paper

MST C = no. of red rule
2 · OP T Category-1,2 & OP-OP this paper
2 · OP T Category-3 lex first this paper

Figure 2 Known results in prior literature and our new results.

3 Problem Definition

We consider a problem P where we are given an instance P = (C, A) that consists of

• an ordered set of data C = {c1, c2, . . . , cn} called a configuration; and

• an ordered set of data A = {a1, a2, . . . an} called areas of uncertainty such that ci ∈ ai ∀i.

The configuration C is not known to us – only the areas of uncertainty, A, are known. As an

example consider the problem, P, of finding the index of the minimum element. An example

instance is given by Pex = (C, A) where C is the ordered set of points C = {3, 7, 10} and A

is the ordered set of intervals (areas of uncertainties) A = {(2, 6), (5, 8), (9, 11)}.

We focus our discussion to problems where the input is Real data. Thus, the configuration

consists of points on the Real line ℜ, and the areas of uncertainty may be intervals on the

Real line. The concepts can be extended to higher-dimensional problems.

Verifier: We are also given a verifier V for the problem P, that takes as input the

areas of uncertainty, A and returns whether a solution of the problem P can be determined

FSTTCS 2011

330 The update complexity of selection and related problems

from A or not. For the example instance, Pex, described above, the verifier would return

false as it cannot determine a solution from the given areas of uncertainty. However, if the

intervals were A = {(2, 5), (6, 8), (9, 11)}, then the verifier would return true as clearly the

first interval has to contain the minimum.

Order-Invariance: An important characteristic of the problems we study is that the

result of the verifier is only dependent on the ordering of the areas of uncertainty. More

formally, consider two instances P = (C, A) and P ′ = (C ′, A′) where A = {a1, a2, . . . , an}

and A′ = {a′

1, a′

2, . . . , a′

n} for the same problem P. We say that P and P ′ are order-equivalent

if for every pair of indices i, j ∈ {1, 2, . . . , n}, it can be determined that ai ≤ aj iff it can be

determined that a′

i ≤ a′

j . We say that a problem P is order-invariant if the verifier returns

the same value for any two order-equivalent configuration instances. It is easy to verify

that the problems such as selection (finding minimum, finding kth-minimum) and minimum

spanning tree are order-invariant.

Update operations: We are allowed to perform update operations on the areas. Per-

forming an update operation on area ai results in knowledge of the area to a greater degree of

accuracy. More precisely, performing an update operation on ai in the instance P = (C, A),

where A = {a1, a2, . . . , ai−1, ai, ai+1, . . . , an} results in another instance P ′ = (C, A′), where

A′ = {a1, a2, . . . , ai−1, a′

i, ai+1, . . . , an} such that a′

i is completely contained in ai. An im-

portant characteristic of the models that we consider is that the results of updates on an area

are independent of updates on any other area. That is, given a multi-set S = {i1, i2, . . . , ik}

of indices of the areas, applying updates on the corresponding areas results in the same

instance, irrespective of the sequence in which these updates are applied. We refer to this

as the update independence property.

Solution: Our goal is to solve the problem P by performing minimum number of up-

dates, i.e., perform the minimum number of updates that result in an instance for which the

verifier returns true. For a problem instance P = (C, A), a solution, S, is defined to be a

multi-set of indices {i1, i2, . . . , ik} such that performing updates on the areas ai1
, ai2

, . . . , aik

results in a problem instance P ′ = (C, A′) for which V (A′) returns true, i.e., a solution of

the problem can be determined from A without performing any more updates. In this case,

we say that S solves the problem instance P . Let S(P) denote the set of all such solutions.

An optimal solution is a solution, S ∈ S(P) such that any other solution in S(P) has at

least as many indices, i.e., |S| ≤ |S′| for all solutions, S′ ∈ S(P). Therefore, an optimal

solution corresponds to a smallest set of indices that need to be updated in order to solve

the problem.

As mentioned before, the OP-P and the CP-P models have been studied before. We shall

show now show that the algorithms for the OP-P model can be generalized for the many

other models for problems that are order-invariant. These update competitive algorithms

are based on the concept of witness sets. We discuss these concepts in Section 4; these

concepts are borrowed from [4] and presented here with modifications suitable to discuss all

our models. Then we discuss how to extend these algorithms to other models.

4 The Witness Set Framework

For a problem instance P = (C, A), a set W is said to be a witness set of P if for every

solution S ∈ S(P), W ∩ S 6= φ. Thus, no algorithm can solve P without querying any area

from W .

Suppose that we have an algorithm, WALG, that given any instance P = (V, A) of the

problem, finds a witness-set of size at most k. Then there exists a k-update competitive

M. Gupta, Y. Sabharwal, and S. Sen 331

algorithm for the problem. The algorithm is presented in Figure 3. It simply keeps applying

algorithm WALG to find a witness set of size at most k and updates all the areas in the witness

set. It keeps doing this until the problem is solved.

Algorithm SOLVE(Problem Instance P , Verifier V , Witness Algorithm WALG)
Input: - problem instance P = (C, A),

- a verifier algorithm V for the given problem,
- a witness algorithm WALG for the given problem.

Output: k-update competitive solution to problem instance P

Initialize solution S = {};
If (V (A) returns false) /* problem instance is not yet solved */

W = WALG(P);
Update the areas in W to reduce the problem instance P to P ′ ;
S = S ∪ SOLVE(P ′, V, WALG);

Endif;
Output S;

Figure 3 Algorithm to determine k-update competitive solution given witness algorithm

The following lemma shows that the solution returned by this algorithm is k-update

competitive. Note that this result is independent of the model under consideration. The

witness algorithm and verifier however are dependent on the underlying model.

◮ Theorem 1. The solution returned by the algorithm in Figure 3 is k-update competitive

for the problem instance P .

Proof omitted.

Witness Algorithms For Different Models. Witness algorithms have been proposed

for several problems under the OP-P model. The following theorem shows that the same

witness algorithms can be used for various other models as well.

◮ Theorem 2. A witness algorithm for a problem under the OP-P model is also a witness

algorithm for the same problem under the category-1, category-2 and OP-OP models (i.e.,

O-O, C-C, OC-OC, OP-O, CP-C, OCP-OC and OP-OP models).

Proof omitted.

◮ Corollary 3. Algorithm 3 is k-update competitive under the category-1, category-2 and

OP-OP models with the same witness algorithms as that for the OP-P model.

Proof omitted.

We make an important observation here. While the reduction might seem straightfor-

ward, it is important to note many of these reductions are only one-way reduction. For

instance, we can reuse the witness algorithm for the OP-P model for the OP-O model but

not vice-versa. We demonstrate this later for the k-min selection problem, where we show

that while it is possible to design a 2-update competitive algorithm under the OP-P model,

it is not possible to design an algorithm that is better than k-update competitive under the

OP-O model using witness sets.

Another important observation we make is that prior literature has shown that no al-

gorithm can give bounded update complexity guarantees for the selection problem under

the CP-P models. However, we have derived constant factor update-competitive algorithms

for models involving closed intervals (i.e., the CP-C, C-C, OC-OC and OCP-OC models).

This highlights the fact that the problem is not in dealing with closed intervals but rather

with the combination of allowing closed intervals in the input and simultaneously allowing

queries to return points for such closed intervals.

FSTTCS 2011

332 The update complexity of selection and related problems

5 The selection problem

In an instance P = (C, A) of the k-Min problem, C = {p1, p2, · · · , pn} is an ordered set of

points in ℜ, and A = {a1, a2, · · · , an} is an ordered set of intervals on ℜ. The nature of the

intervals is determined by the model under consideration. The goal is to find the index of

the kth smallest element in C.

We denote by lj and uj , the lower and upper ends of the interval aj respectively. To

avoid overloading of notations, we will assume that lj and uj always refer to the latest known

values for the interval ranges, considering all the updates that have already been performed.

5.1 1-Min

In this section we look at the special case when k = 1, i.e., we are interested in finding the

index of the smallest value interval.

Witness Algorithm And Verifier. We first present the witness algorithm for the OP-P

model. Consider an instance P = (C, A). The witness algorithm chooses the interval with

the “smallest l-value” and the along with the interval with the next “smallest l-value” and

returns them as the witness set. The verifier simply determines if some interval can be

determined to be smaller than all the other intervals. Let S = {1..n} denote the set of

indices of the intervals. For any subset S′ ⊆ S, we define orderl(S
′) to be a permuta-

tion of indices in S′ in increasing order of the lower values of the corresponding intervals,

i.e., orderl(S
′) =< j1, j2, · · · , jm >, such that lj1

≤ lj2
≤ · · · ≤ ljm

. Similarly define

orderu(S′) =< j1, j2, · · · , jm >, such that uj1
≤ uj2

≤ · · · ≤ ujm
.

The witness algorithm and the verifier are formally presented in Figure 4.

Witness Algorithm:

1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. Return ap1

and ap2
as the witness set

Verifier:

1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. If x ≤ y for all x ∈ ap1

and y ∈ apj
, j 6= 1,

return the interval with index p1

as the solution
Else return false

Figure 4 Witness Algorithm and Verifier for 1-Min under the OP-P model

Note that an interval is declared to be the smallest interval only when no other interval

can contain a smaller value. Therefore the algorithm always outputs the correct interval.

Competitiveness. The following lemma shows that the algorithm is 2-update competitive

under the OP-P model.

◮ Lemma 4. The set W = {p1, p2} returned by the algorithm of Figure 4 is a witness set

for the 1-Min problem under the OP-P model.

Proof omitted.

It follows from Theorem 2 and Corollary 3 that we can derive 2-update competitive

algorithms for the category-1, category-2 and OP-OP models.

Tight Example. We now show that the update-competitive bound of 2 is tight for all the

models that allow the queries to return intervals, i.e., for the category-1, category-2 and

OP-OP models (but not the OP-P model). This is demonstrated by the following example.

We are given intervals A = {a0, a1, a2, . . . , an} where a0 = (1, 5) and aj = (3, 7) for all

1 ≤ j ≤ n. We argue that any algorithm can be forced to perform 2n queries while the OPT

M. Gupta, Y. Sabharwal, and S. Sen 333

can determine the interval containing the minimum with only n queries. Let S represent

the set of intervals A \ {a0}, i.e., S = {a1, a2, . . . , an}.

Suppose that the algorithm has already performed 2n−1 queries. The adversary behaves

as follows. For the first n − 1 queries on a0 it returns the interval (1 + iε, 5) in the ith query,

where ε is a small value < 1/(2n). For the first n − 1 queries on intervals from the set S

it returns the interval (6, 7). The remaining actions of the adversary are based on whether

the algorithm performs n queries on a0 or whether it queries n intervals from S. Note that

in performing 2n − 1 queries, the algorithm must encounter one of these cases. These are

considered in the following 2 cases:

• Case 1: The algorithm makes n queries to a0.

In this case the adversary continues to return the interval (1 + iε, 5) for the ith query on

a0 where i ≤ 2n−1 and it returns the interval (6, 7) for each subsequent interval queried

from S. Note that in this case, on performing 2n − 1 queries, the algorithm could not

have queried all the intervals from S. Therefore at the end of 2n − 1 queries, as there is

overlap between interval a0 and the unqueried intervals from S, the algorithm is forced

to make 2n queries. The OPT on the other hand can just query all the intervals in S.

The adversary will return the interval (6, 7) for OPT on the remaining intervals. Thus,

OPT is able to determine that a0 contains the minimum element by just performing n

queries.

• Case 2: The algorithm makes n queries to intervals in S.

In this case, the adversary returns (3, 4) for the last (nth) interval queried in S. For any

subsequent queries to a0, the adversary continues to return (1 + iε, 5) for the ith query.

Note that in this case, the adversary performs less than n queries on a0. Therefore at

the end of 2n − 1 queries, as there is overlap between interval a0 and the last queried

intervals from S, the algorithm is forced to make 2n queries. The OPT on the other

hand can just query all the intervals in a0. The adversary will return the value (2, 3)

for OPT on its nth query to a0 (recall that in this case the algorithm did not perform n

queries on a0). Thus, OPT is able to determine that a0 contains the minimum element

by just performing n queries.

It is surprising that though this tight example demonstrates that we cannot obtain better

than 2-update competitive algorithms for these models, it is possible to obtain a 1-update

competitive algorithm for the OP-P model; however, this is obtained by an approach different

from the Witness Set framework. This is discussed in more detail in Section 6.

5.2 K-Min

We now generalize the 1-min algorithm presented above to the kth-min problem, but under

the O-O model. We later discuss issues related to handling points under the OP-P model.

Witness Algorithm And Verifier. We now present a witness algorithm and verifier for

this problem under the O-O model.

We say intervals ai and aj are disjoint if ∀x ∈ ai, y ∈ aj , x ≤ y or vice-verse. The witness

algorithm checks if the first k − 1 interval are disjoint with the last n − k + 1 interval. If

that is the case, it returns the witness set of the 1-Min algorithm. Else it chooses apk
and

an interval from S′ with largest u value(aq1
) as the witness set.

The verifier takes the first k −1 intervals(S′) depending on their l values. The verifier

checks if these k − 1 intervals are disjoint from the apk
. Then it takes the last n − k

intervals(S \ (S′ ∪ apk
)) and checks if all of them disjoint with apk

. If both the condition

holds, it returns apk
else it returns false.

FSTTCS 2011

334 The update complexity of selection and related problems

Witness Algorithm:

1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk−1}
3. If x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ S \ S′

return witness set of 1-Min algorithm
4. Else

let < q1, q2, · · · , q|S′| > = orderu(S′)
return apk

and aq1
as the witness set

Verifier:

1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk−1}
3. If (x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ apk

)
and (x ≥ y ∀ x ∈ ai, i ∈ S \ (S′ ∪ apk

)
and ∀ y ∈ apk

)
return apk

else return false

Figure 5 Witness and Verifier Algorithm for K-Min under the O-O model

Competitiveness. The following lemma shows that the algorithm is 2-update competitive

for the O-O model. It follows using proofs similar to Theorem 2 and Corollary 3 that we

can derive 2-update competitive algorithms for the other category-1 models.

◮ Lemma 5. The witness set W returned by the algorithm of Figure 5 is a witness set for

the k-Min problem under the O-O model.

Proof omitted.

Tight Example. It is not difficult to construct examples similar to that discussed for the 1-

Min algorithm to show that the update-competitive bound of 2 is tight under the category-1

models.

It is interesting to note here that while a 2-update competitive algorithm can be designed

for the k-min problem under the category-1 models, no algorithm can be better than k-

update competitive for this problem under models that allow points, i.e., the category-2

and OP-P models. This is illustrated by the following example3. Suppose we have 2k areas

of which k are open intervals of the form (0, 5) and k are fixed points of the value 3. For

the first k − 1 intervals queried by any algorithm, the adversary returns 1 and for the kth

interval, the adversary returns 4 (or interval (3.5,4.5) as the case may be), thereby forcing

k queries. However, OPT only needs to update the interval with value 4 and can thereafter

return any of the k fixed points of value 3 as the kth smallest.

However, in the next section we show that it is possible to design algorithms for the k-

Min problem under these models that allow for points, obtaining update competitive bounds

with additive factor k (i.e., the algorithm performs k more updates than OPT). This however

is achieved by bypassing the Witness set framework.

6 Bypassing the Witness Set framework

While the witness set framework, studied in prior literature, provides a general method

for solving problems with data uncertainty under the update complexity models, it has its

limitations. We demonstrate this by presenting algorithms that require to perform only k

more queries than OPT for the kth-Min selection problem. Note that, for the 1-Min problem

this implies a 1-update competitive algorithm, as only one query more than OPT is required

to be performed.

3 This was pointed out by an anonymous reviewer of a previous version

M. Gupta, Y. Sabharwal, and S. Sen 335

6.1 1-Min

Consider the following algorithm. We note here that the set of intervals returned by the

“Witness” Algorithm:

1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. Let A = {ap1

} and B = {p2, · · · , p|S |}
3. Return interval in A.

Verifier:

1. Let < p1, p2, · · · , p|S | > = orderl(S)
2. If x ≤ y for all x ∈ ap1

and y ∈ apj
, j 6= 1,

return the interval with index p1 as
the solution

Else return false

Figure 6 “Witness” Algorithm and Verifier for 1-Min under the OP-P model

“witness” algorithm is not a true witness set. However, we stick to the terminology for the

sake of consistency. The algorithm remains the same, it updates the intervals returned by

the “witness” algorithm until we obtain a solution.

◮ Lemma 6. Let cOP T be the total number of queries made by OPT to find 1-Min, then

total number of queries made by algorithm in Figure 6 is at most cOP T + 1 in the OP-P

model.

Proof omitted.

Note that this simple algorithm for 1-Min in OP-P model fails for the OP-O model.

Consider the following example. Let there be two intervals I1= (2,20) and I2 = (19,21)

Suppose at the ith query of I1, we get a new interval (di, 20), where di < 19, so I1 and I2

will always intersect if we just query I1. The algorithm in Figure 6 always queries I1, so it

takes huge number of queries to find 1-Min. But if we just query I2, it returns a subinterval

(20.5,21). This is what OPT does and uses just one query to find the answer.

6.2 k-Min

Consider the algorithm in Figure 7 for k-selection in the OP-P model which generalizes the

result of the algorithm in Figure 6.

“Witness” Algorithm:

1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk}
3. let < q1, q2, · · · , qk > = orderu(S′)

Let S′
max = aqk

. Query S′
max.

4. If x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ S \ S′

return the “witness set” of the
1-Max algorithm of S′ (of Figure 6).

Verifier:

1. Let < p1, p2, · · · , pn > = orderl(S)
2. Let S′ = {p1, .., pk−1}
3. If (x ≤ y ∀ x ∈ ai, i ∈ S′ and ∀ y ∈ apk

)
and (x ≥ y ∀ x ∈ ai, i ∈ S \ (S′ ∪ apk

)
and ∀ y ∈ apk

)
return apk

else return false

Figure 7 Witness and Verifier Algorithm for K-Min under the OP-P model

◮ Lemma 7. The algorithm of Figure 7 uses atmost cOP T + min{k, n − k} queries where

cOP T is the minimum number of queries required by the OPT.

Proof omitted.

Now let us consider the OP-OP model. Note that since we have 2 · OPT algorithms

for the OP-O model and an OPT + k algorithm for the OP-P model, we can derive a

2 · (OPT + k) algorithm for the OP-OP model by combining these 2 algorithms. This is

FSTTCS 2011

336 The update complexity of selection and related problems

done by alternating the witness algorithms of the two models. This ensures that we only

need to perform at most twice the number of queries performed by the algorithms of either

of the two models.

7 Closed intervals with point returning queries

As discussed above, the competitive ratio is unbounded for the special cases where the

input allows for closed intervals and queries may return points (i.e., the category-3 models).

For instance consider the problem of finding the index of the minimum element. Further,

consider the problem instance P = (C, A) where ai = [1, 3] for all 1 ≤ i ≤ n. The adversary

in this case acts as follows; for each of our queries except the last, it returns 2. Finally, for

our last query, say on interval ak, it returns 1. On the other hand, OPT directly queries

interval ak and obtains the optimal solution. This results in an unbounded competitive

ratio.

The primary reason for this anomaly is the possibility of existence of multiple optimal

solutions. In such cases, the adversary is able to get away with few queries by just querying

the necessary intervals that reveal one of the optimal solutions. For any algorithm on the

other hand, it is not able to distinguish from the areas of uncertainty (as shown above)

which are the necessary intervals to query to reveal the optimal solution.

One of the ways that has been suggested in prior literature to deal with this special case

is to require all the optimal solutions to be output. However, it can be quite expensive to

output all these solutions. This raises the question of whether other reasonable conditions

can be laid on the structure of the required output that are not so expensive but reasonable.

We now consider such a condition, which we call the lexicographic condition, for which we

show that this special can be handled. Recall that the sets C and A that define a problem

instance are ordered sets. Thus, the set of indices that define a solution can be considered

as a string (called solution string) defined as follows: the length of the string is n and the ith

element of the string is set to 1 if it defines the solution and 0 otherwise. In the lexicographic

setting, amongst all the optimal solutions, we are interested in finding the solution for which

the solution string has the smallest lexicographic ordering.

Now consider again the example above. Note that, even though OPT queries ak and

determines a solution with optimal solution value, it cannot terminate without making

further queries as it cannot decide whether or not there exists another solution with the

same value but a smaller lexicographic ordering.

We note that new witness algorithms may require to be developed for the lexicographic

variants of the problems. However, we show by case of examples that these are not very

different from the corresponding witness algorithms for the original problems.

It can be shown that once a witness algorithm is developed for a lexicographic variant of

the problem under the CP-P model, the same witness algorithm can be extended to other

models along the same lines as discussed in Section 4.

Now let us consider the lexicographic variant of the 1-Min problem. In order to obtain

the witness algorithm for the lexicographic variant for the category-3 models, the notion of

ordering of intervals, orderl(.), needs to be extended to incorporate lexicographic ordering

and closed intervals. As before, for any subset S′ ⊆ S, we define orderl(S
′) to be a

permutation of indices in S′ in increasing order of the lower values of the corresponding

intervals, i.e., orderl(S
′) =< j1, j2, · · · , jm >, such that lj1

≤ lj2
≤ · · · ≤ ljm

. When

comparing two intervals with the same l-values, say lj and lj′ , ties are resolved as follows:

If aj contains a point x such that x < y for all y ∈ aj′ , then j precedes j′ in the ordering;

M. Gupta, Y. Sabharwal, and S. Sen 337

similarly if aj′ contains such a point, then j′ precedes j; and if neither can be established,

then the lexicographically smaller index precedes the larger one in the ordering. Thus, if

one of the intervals, say aj , is open from the left and another interval, say aj′ , is either

closed from the left or a point, then j′ precedes j in the ordering; in all other cases, the

lexicographic smaller of j and j′ precedes the other in the ordering.

The witness algorithm and verifier are formally presented in Figure 8. Note that the

verifier is also modified so that it can check that the minimum interval can be determined

or not based on the lexicographic ordering.

Witness Algorithm:

1. Let < p1, p2, · · · , p|S| > = orderl(S)
2. Return ap1

and ap2
as the witness set

Verifier:

1. Let < p1, p2, · · · , p|S| > = orderl(S)
2. If (x ≤ y ∀ x ∈ ap1

and y ∈ apj
, pj > p1)

and (x < y ∀ x ∈ ap1

and y ∈ apj
, pj < p1),

return the interval with index p1

as the solution
Else return false

Figure 8 Witness Algorithm for 1-Min under the CP-P model

The proof of update competitiveness is similar to the case for the original problem.

◮ Lemma 8. The set W = {p1, p2} returned by the algorithm of Figure 8 is a witness set

for the lexicographic 1-Min problem under the CP-P model.

Proof omitted.

The fact that no algorithm can be better than 2-update competitive for the 1-Min prob-

lem under the CP-P model follows from the same reasoning as for the OP-P model.

We can extend this 2-update competitive algorithm for the other category-3 models using

techniques similar to that in Section 4.

Finally, we can design 2-update competitive algorithms for the k-min version as well

under these models by using similar techniques.

8 Minimum Spanning Tree

In the Lexicographic MST problem, we are given a graph G = (V, E). The edge lengths are

specified with uncertainty. Let E = {e1, e2, . . . , en} be the ordered set of edges. Then the

ordered set C = {v1, v2, · · · , vn} denotes the values of the edge lengths and the ordered set

A = {a1, a2, · · · , an} denotes the intervals within which the edge lengths are known to lie.

The goal is to find the lexicographically smallest MST under the category-3 models.

A 2-update competitive algorithm for the MST problem was given by [9] under the OP-P

model. By applying Theorems 2 and Corollary 3, we conclude that it is 2-update competitive

for the Category-1,2 and OP-OP models as well. The Lexicographic MST problem can be

solved under the Category-3 models with few changes to the algorithm described in [9]. This

gives us the following result.

◮ Theorem 9. There exists a 2-update competitive algorithm for the Lexicographic MST

problem under the Category-3 models.

Remark: It may be noted that the algorithm described in [9] in conjunction with Lemma 6

can be used to derive an OPT +C update competitive algorithm for the MST problem under

the OP-OP model where C is the number of red-rules applied by the optimal algorithm. Note

that C can be much less than OPT .

FSTTCS 2011

338 The update complexity of selection and related problems

9 Conclusion

We extended the one-shot query model to the more general situation where a query can

return arbitrary sub-intervals as answers and established strong relationships between these

models. Many of the previous results in the restricted model can be generalized based on

this relationship that simplifies the task of designing algorithms for the more general model.

This is far from obvious as the sub-interval query model presents some obvious challenges

because the uncertainty (in the values of any parameter) can take an arbitrary number of

steps to be resolved and can be controlled by an adversary. One drawback of this approach

is that the actual algorithmic complexity is overlooked and we only focus on the competitive

ratio which is justified on the basis of very high cost of a query. For future work, the

algorithmic complexity needs to be incorporated in a meaningful way.

References

1 Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms and applica-

tions. IEEE Trans. Knowl. Data Eng., 21(5):609–623, 2009.

2 Ionut D. Aron and Pascal Van Hentenryck. On the complexity of the robust spanning tree

problem with interval data. Oper. Res. Lett., 32(1):36–40, 2004.

3 Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann

0002, Matús Mihalák, and L. Shankar Ram. Network discovery and verification. IEEE

Journal on Selected Areas in Communications, 24(12):2168–2181, 2006.

4 Richard Bruce, Michael Hoffmann, Danny Krizanc, and Rajeev Raman. Efficient update

strategies for geometric computing with uncertainty. Theory Comput. Syst., 38(4):411–423,

2005.

5 Tomás Feder, Rajeev Motwani, Liadan O’Callaghan, Chris Olston, and Rina Panigrahy.

Computing shortest paths with uncertainty. In STACS, pages 367–378, 2003.

6 Tomás Feder, Rajeev Motwani, Rina Panigrahy, Chris Olston, and Jennifer Widom. Com-

puting the median with uncertainty. SIAM J. Comput., 32(2):538–547, 2003.

7 Ashish Goel, Sudipto Guha, and Kamesh Munagala. Asking the right questions: model-

driven optimization using probes. In PODS, pages 203–212, 2006.

8 Sudipto Guha and Kamesh Munagala. Model-driven optimization using adaptive probes.

In SODA, pages 308–317, 2007.

9 Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Rajeev Raman.

Computing minimum spanning trees with uncertainty. In STACS, pages 277–288, 2008.

10 Simon Kahan. A model for data in motion. In STOC, pages 267–277, 1991.

11 A. Kasperski and P. Zielenski. An approximation algorithm for interval data minmax regret

combinatorial optimization problem. Information Processing Letters, 97(5):177–180, 2006.

12 Sanjeev Khanna and Wang Chiew Tan. On computing functions with uncertainty. In

PODS, pages 171–182, 2001.

13 Chris Olston and Jennifer Widom. Offering a precision-performance tradeoff for aggregation

queries over replicated data. In VLDB, pages 144–155, 2000.

	Introduction
	Related Previous Work

	Our contributions
	Problem Definition
	The Witness Set Framework
	The selection problem
	1-Min
	K-Min

	Bypassing the Witness Set framework
	1-Min
	k-Min

	Closed intervals with point returning queries
	Minimum Spanning Tree
	Conclusion

