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The impact of rare but severe 
vaccine adverse events on 
behaviour-disease dynamics: a 
network model
Samit Bhattacharyya1, Amit Vutha2 & Chris T. Bauch3

The propagation of rumours about rare but severe adverse vaccination or infection events through 
social networks can strongly impact vaccination uptake. Here we model a coupled behaviour-disease 
system where individual risk perception regarding vaccines and infection are shaped by their personal 
experiences and the experiences of others. Information about vaccines and infection either propagates 
through the network or becomes available through globally available sources. Dynamics are studied on 
a range of network types. Individuals choose to vaccinate according to their personal perception of risk 
and information about infection prevalence. We study events ranging from common and mild, to severe 
and rare. We find that vaccine and infection adverse events have asymmetric impacts. Vaccine (but not 
infection) adverse events may significantly prolong the tail of an outbreak. Similarly, introducing a small 
risk of a vaccine adverse event may cause a steep decline in vaccine coverage, especially on scale-free 
networks. Global dissemination of information about infection prevalence boosts vaccine coverage 
more than local dissemination. Taken together, these findings highlight the dangers associated with 
vaccine rumour propagation through scale-free networks such as those exhibited by online social 
media, as well as the benefits of disseminating public health information through mass media.

Vaccination has been one of the most effective and cheapest measures to prevent infectious disease transmission 
since the discovery of smallpox vaccine in the year 1796 by English physician Edward Jenner1. Smallpox was one 
of the most devastating diseases in the history of humankind, but after implementing a worldwide mass vaccina-
tion program, the disease was certified by the World Health Organization (WHO) as being globally eradicated in 
19802,3. Today, most childhood infectious diseases are vaccine preventable, and can be controlled and eliminated 
by mass vaccination. Almost all countries have implemented some kind of routine childhood immunization pro-
gram to control infectious diseases, with varying success4–7.

Individual vaccine decision-making is influenced by a range of factors, including historical, political, social, 
health and epidemiological8–17. A focus of mathematical models is often the epidemiological factors behind vac-
cine decision-making. For instance, disease dynamics–in particular, the generation of herd immunity and thus 
low disease incidence by high vaccine coverage–plays a role because individuals show less incentive to seek vacci-
nation when they perceive a low risk of being infected8. The collective outcome of individual decisions not to get 
vaccinated reduces herd immunity, which may result in localized outbreaks18.

Perceived risk associated either with vaccines or the infections they prevent is also a driving factor in vac-
cine decision-making8. Despite the success of vaccines in controlling various infectious diseases and the strong 
safety profile of all modern vaccines, they are often perceived as risky by some members of the public19–23. When 
adverse health events are coincident with vaccination, individuals are prone to blame the vaccine24–27. For 
example, VAERS (Vaccine Adverse Events Reporting Systems, CDC and Food & Drug Administration, USA) 
received 128,717 case reports describing adverse events (such as fever, injection-site edema, rash, agitation, chest 
pain, vomiting, including paralysis and death) after immunization from January 1991 to December 200128,29. 
During this period, 14.2% of all reports received were serious adverse events including deaths (1.4–2.3%), and 
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life-threatening illness (1.4–2.8%). However, follow-up clinical and epidemiological investigation demonstrated 
strong evidence that vaccines were not the cause of these serious outcomes. The highest rates of reported adverse 
events were for rotavirus and pertussis vaccines (vaccines against childhood infectious diseases), and the lowest 
rates were for influenza and hepatitis B vaccines.

Online social media and mass media can serve to further disseminate perceptions of vaccine risks to the 
point that vaccine refusal can significantly impact vaccine coverage and herd immunity. For instance, significant 
declines in vaccine coverage caused outbreaks for the measles-mumps-rubella (MMR) vaccine “scare” in the 
1990s as well as for polio in the 2000s30–35. The consequences of real or perceived adverse effects and changes in 
risk perception thus play a crucial role in the vaccine uptake in population36. Information about adverse events is 
often passed from one individual to another through their network of social contacts. Individual risk perception 
also depends on how individuals use information such as locally or globally available information to estimate 
their perceived risk. Therefore, when humans respond to the presence of a disease and make decisions that affect 
its control, we have a situation where both infectious pathogens and information about the pathogens spread 
simultaneously and interact with human decision-making37.

A significant body of literature explores models of the coupled dynamics of human and natural systems, for 
study systems ranging from land use to vaccinating behavior38–51. For instance, game theory has been integrated 
into epidemiological models to investigate vaccinating behaviour and analyze how different patterns in vaccine 
uptake and disease dynamics can emerge from simple assumptions52–55. Evolutionary game theory approaches 
that include more realistic aspects of decision-making such as social learning and social norms have also been 
developed53. Some research uses the framework of social contact networks to analyze the impact of heterogene-
ous contact patterns on individual vaccinating behavior56–62. However, most previous coupled behaviour-disease 
models simply assign a fixed cost to the decision to vaccinate, and do not distinguish between the probability of 
vaccine adverse events (whether common or rare) and their health impact (whether mild or severe).

Here, we explore these issues by developing a social network model of the coupled dynamics of infection 
spread, vaccinating behaviour, and individual risk perception due to adverse events, either from vaccination or 
infection. Adverse events are perceived to occur to a vaccinated or infected individual, and information about the 
event spreads to their neighbors through a contact network. To capture the ephemeral nature of information, the 
intensity of the information decays over time as it passes from neighbor to neighbor in a ripple effect. We model a 
self-limiting acute infection that can be prevented through vaccination and that spreads through the same contact 
network. Our objective is to understand how coupled behaviour-disease dynamics depend on the probability of 
adverse events either from vaccination or infection, and their respective severity. To observe the effect of contact 
patterns, we also consider different social networks such as regular lattice, random network, small world network, 
power law network, and an empirically-derived network. Our results suggest that a small probability of a severe 
adverse event may have an outsized impact on vaccine uptake and cumulative infections, depending on the con-
tact pattern among individuals. Our analysis also indicates that global information has larger effect than local 
information, in terms of increasing vaccine coverage. In the next section, we describe the model.

Methods
Model and assumptions.  We consider vaccination decision dynamics on a social network. We describe 
these aspects of the model structure in the following subsections: spreading of infection, spread of informa-
tion on adverse events over the network that change the individual perceived risk, and individual vaccination 
decision-making.

Spreading of infection.  We consider the standard SIR framework to model disease spread. The probability that a 
susceptible individual in the network acquires infection depends on the rate of disease transmission and the 
number of infected neighbors NInf

i . Let β be the transmission probability of infection. Therefore, at each time step, 
each susceptible i is infected with probability

Prob 1 (1 ) (1)Inf
N Inf

i
β= − − .

An infected individual recovers and becomes immune with probability γ per time step.

Vaccination decision-making.  We assume two strategies in the vaccination dynamics: vaccinator or 
non-vaccinator. Individuals can switch between these strategies. An individual’s vaccination decision is a func-
tion of payoffs for both strategies, i.e., perceived risk of infection and perceived benefits of vaccination. Suppose 
Xi indicates the strategy of individual i in the network, then

=
−{X i

i
1, if is vaccinator,
0, if is non vaccinator (2)i

We assume that every individual i has their own level of perceived vaccine risk CV,i and perceived infection risk 
CI,i. The values of these may change over time according to rules discussed in the following subsection. If PV,i is the 
perceived payoff of an individual i who is a vaccinator and PNV,i is the perceived payoff for non-vaccinator, then
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where θi is the perceived probability of infection (also discussed below). The individual decision to become a 
vaccinator is motivated by maximizing the payoff. We also assume that individuals switch strategies according to 
the Fermi-Dirac function, such that the probability of individual i switching to vaccinator is:

ξ
Φ Δ =

+ − Δ
P

P
( ) 1

1 exp( )
,

(4)i i
i

where ΔPi = P(Xi = 1) − P(Xi = 0) is the payoff gain of node i given by ΔPi = −CV,i + CI,iθi. For example, if ΔPi > 0, 
the node i will vaccinate with probability Φi(ΔPi). When ΔPi = 0, the individual i will vaccinate or not vacci-
nate with equal probability. The parameter ξ determines the individual responsiveness to payoff differences. The 
equation (4) known as the Fermi function has been widely used to decision-making models63. For low values 
of ξ, equation (4) changes more gradually as Pi goes from negative to positive, meaning that individuals are less 
responsive to the payoff differences. However, for high values of of ξ in equation (4) indicates that individuals are 
highly responsive to the payoff differences.

Adverse events and spread of the information.  Adverse events may occur either from vaccination or infection. 
We define an infection adverse event as a significant health outcome perceived to arise from an infection (such as 
hospitalization for pneumonia). Similarly, an vaccine adverse event is a significant health outcome perceived to 
arise from becoming vaccinated (such as experiencing a severe flu-like illness). Individuals use their perception of 
risk in their decision-making rather than the actual risk, meaning that they may misattribute certain experiences 
to the infection or the vaccine. Individuals experience an adverse event upon infection or vaccination with some 
probability. The information about an individual’s adverse events due to infection or vaccine propagates through-
out the network and influences the perceived risks of neighboring nodes. We assume the intensity of the informa-
tion decays as it propagates through the network from one node to its neighboring nodes, much like ripples in a 
pond. Hence, individuals take in information from all over the network, although it is attenuated depending on 
how far they are from the individual who experienced the adverse event. The perceived risks CV,. and CI,. change 
as per the following rules:

	 (i)	 Whenever individual j gets vaccinated, there is a probability αV of an event. In this case, their value of 
CV,j is increased by an amount κV. Their neighbour’s value of CV,j is increased by an amount κV ∗ ω where 
0 < ω < 1. Their neighbour’s neighbour’s value of CV,j is increased by an amount κV ∗ ω2, etc.

	(ii)	 Whenever individual j gets infected, there is a probability αI of an infection adverse event. In this case, 
their value of CI,j is increased by an amount κI. Their neighbour’s value of CI,j is increased by an amount 
κI ∗ ν where 0 < ν < 1. their neighbour’s neighbours value of CI,j is increased by an amount κI ∗ ν2, etc.

The perceived probability of infection θj in equation (3) for individual j depends on information about global 
prevalence of infection versus local prevalence in their network neighborhood. We define θj as follows:

θ ρ

ρ

=

+ −

# local infections
# all infected in the population

(1 ) # global infections
# all infected in the population

,
(5)

j

where ρ denotes the relative importance of local vs. global information. The demarkation of local and global 
infection depends on the neighborhood size n, where n = 1 denotes immediate neighbors of individual j, n = 2 
implies neighbors’ neighbors, and so on.

Simulations.  Contact network.  We analyze the effect of adverse events on vaccination dynamics across dif-
ferent network types. Our baseline analysis uses a power-law (scale-free) network but we also explore model 
predictions using a lattice, a small-world network, an Erdos-Renyi random network, and an empirically-derived 
network. All these networks have similar node numbers ~5000. The degree distribution of the power-law network 
is given by Ck−2.7 with average degree 2. The average degree of the Erdos-Renyi random network is 31 and the 
average degree of the small world network is 12 (Figure S1). Contact networks were generated using the igraph 
software package for complex network research64. Scale-free networks were generated using the Barabasi-Albert 
preferential attachment algorithm65. Random networks of varying average degree were generated using the Erdos 
Renyi G(n, p) model, with values of p varied to produce varying average degrees66. Small world networks were 
generated using the Watts-Strogatz algorithm67. We used five contact networks of 10,000 nodes each, obtained 
by sampling subnetworks from a large contact network derived from empirical contact patterns in Portland, 
Oregon68–70. The average degree for all five network lies in the range 75–80 (Figure S1). The properties of these 
networks are described in more detail in ref.71.

Simulation Algorithm.  First, we describe the simulation algorithm in the absence of any vaccination, which 
allows us to calibrate the transmission parameters. Here, we assume that individual nodes can be in one of three 
mutually exclusive states: Susceptible, Infected, or Recovered. The steps in the algorithm are as follows:

	 1.	 Generate the contact network and assign all individuals as susceptible.
	 2.	 Randomly select a finite number of individuals and assign them to the infected state.
	 3.	 Infect susceptible individuals by infected neighbors with probability given by equation (1) and, recover 

infected individuals with probability γ per time step.
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	 4.	 Introduce demographic events (i.e., birth) by making a random node susceptible with probability 0.004 per 
capita per year. To protect from stochastic extinction of infection, a very minimal level of case importation 
is considered by making a random susceptible node as infected with probability 0.002 per capita per year.

	 5.	 Repeat steps 5–8 until the system shows no new infections in three consecutive steps.

We thus simulate the transmission of disease and calibrate epidemic parameters to ensure that infection risk 
in an unvaccinated population is equal across the network types. Once this baseline, vaccine-free scenario has 
been established, we introduce vaccination decisions for individuals (nodes) in the network. Here, we assume that 
individuals can have Vaccinated status along with the other three status. The steps of the simulation algorithm for 
epidemic scenarios in presence of vaccination are as follows:

	 1.	 Generate the contact network and assign all individuals as susceptible.
	 2.	 Randomly select a finite number of individuals and assign them to the infected state.
	 3.	 Compute θj, the perceived probability of infection for each individual in the network in the initial 

time-step.
	 4.	 Randomly assign each individual a perceived vaccination risk CV,j and perceived infected risk CV,j, by 

uniformly sampling the unit interval (0, 1). Each individual acquires the status of vaccination according to 
its vaccination strategy, except vaccinated individuals cannot become unvaccinated. Vaccinated individuals 
are immune to infection.

	 5.	 Compute the payoffs for each individual, and use the Fermi-Dirac form of the decision function to decide 
whether individuals choose the vaccinator strategy (Equation 4).

	 6.	 Trigger adverse infection and vaccination events by randomly sampling the unit interval with probabilities 
αV and αI respectively. Update perceived risks for all individuals in the network based on the distance of a 
given individual from the source of the adverse event.

	 7.	 Infect susceptible individuals by infected neighbors with probability given by equation (1) and, recover 
infected individuals with probability γ per time step.

	 8.	 Introduce demographic events (i.e., birth) by making a random node susceptible with probability 0.004 per 
capita per year. To protect from stochastic extinction of infection, a very minimal level of case importation 
is considered by making a random susceptible node as infected with probability 0.002 per capita per year.

	 9.	 Repeat steps 5–8 until the system shows no new infections in three consecutive steps.

We calibrate the choice and cost parameters and again scale baseline values such that major disease outbreak 
expands for around 3–4 months in absence of vaccination (see result). When vaccination is present in the sys-
tem, we calibrate base values of different parameters so that it attains high vaccination coverage in the absence of 
adverse events. Next, we introduce adverse events and again check their transient effects on vaccination decision 
dynamics part of the model calibration. The baseline parameter values resulting from this calibration exercise 
(Table 1) are used unless stated otherwise. These baseline parameter values could correspond to an outbreak of 
influenza in a population with access to a well-matched vaccine and who may choose to vaccinate during the 
outbreak, as occurred during the 2009 H1N1 pandemic for example. The equilibrium results represent the aver-
ages over 100 independent iterations of steps 5–9 in the algorithm. The simulation code was written in the C++ 
programming language and appears in supplementary information as Methods S1.

Results
We explore the effect of adverse events either from vaccines or infections on the individual vaccination decisions. 
We also explore the intensity of the effect of adverse events and decisions depend on whether individuals use local 
or the global information to estimate the perceived risk from infection.

Parameter Description Value, Range

β disease transmission probability 0.6, calibrated

1/γ infectious period 3 days

αV probability of adverse event from vaccination parameter of interest, (0, 1)

αI probability of adverse event from infection parameter of interest, (0, 1)

κV Increment in perceived vaccine risk 0.6, (0, 1)

κI Increment in perceived infection risk 0.7, (0, 1)

ρ Weight of Local-Global information spread parameter of interest, (0, 1)

ω Information spread coefficient, vaccine adverse events 0.8, (0, 1)

ν Information spread coefficient, infection adverse events 0.8, (0, 1)

L Baseline payoff 1

ξ Degree of responsiveness to differences of payoff 6, (2–20)

1/μ Life expectancy 75 years

n Local neighborhood size parameter of interest, (1, 10)

Am Time window during which adverse event may occur 2 days

Table 1.  Baseline parameter values used in the simulation of model.
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Effect of adverse events.  The impact of vaccine adverse events on model dynamics is highly apparent in 
the tail of simulated outbreaks, but less apparent in the bulk of the epidemic curve (Fig. 1). When vaccination is 
introduced to the population, simulations–with or without the possibility of adverse events from either vaccines 
or infection–behave in similar ways for the bulk of the epidemic curve: vaccination reduces the epidemic peak to 
a similar degree whether or not adverse vaccine or infection events are included (although the peak is somewhat 
lower when infection adverse events are included, as expected). However, epidemics in the presence of vaccine 
adverse events–with or without the presence of infection adverse events–last 150% longer (300 more days) than 
epidemics in the absence of vaccine adverse events. This finding is robust across multiple stochastic realizations at 
the same parameter values: the average duration of the epidemic when vaccination is allowed is 168 ± 117 days in the 
absence of both vaccine and infection adverse events, compared to 272 ± 166 days in the presence of vaccine adverse 
events, or 303 ± 147 days in the presence of both infection and vaccine adverse events (Figure S2). Interestingly, the 
duration of the epidemic is lengthened–not shortened–when infection adverse events are introduced. For instance, 
the epidemic duration is 168 ± 117 days in the absence of both vaccine and infection adverse events, compared to 
213 ± 143 days in the presence of infection adverse events (but not vaccine adverse events). This long epidemic tail is 
due to pockets of unvaccinated individuals who continue to fuel the outbreak in its later stages. The size of epidemic 
peak and length of epidemic tail vary depending on whether individuals are using global or local information to 
determine their perceived infection probability (Figure S3). Also, the proportion of cumulative vaccination coverage 
depends on the dynamics of adverse events (Figure S4). For example, cumulative vaccination vaccination coverage 
is highest when there are only adverse infection events, and but it is lowest when there are adverse events from vac-
cination. This phenomenon suggests that the circulation of stories about vaccine adverse events in the population 
not only makes it difficult to achieve elimination due to herd immunity effects, as suggested by analyses of endemic 
disease states52,53, but it may also significantly prolong any given outbreak of a vaccine-preventable infectious disease.

Our baseline model assumes local spread of information about adverse events, since our objective was to study 
how information (whether true or false) that spreads through social networks can influence vaccinating behav-
iour. However, the case of global spread can be obtained in our model as a special case ω = ν = 1 (in this case, the 
information from a single event spreads throughout the network instantaneously, without a decay in its impact). 
Simulations of this special case emphasize the starkly differing patterns that occur for local versus global spread of 
information about adverse events (Figure S5). For instance, compared to the baseline scenario of Fig. 1 where dis-
semination of adverse events is local, we find that the epidemic peak is significantly lower in the presence of global 
dissemination of adverse infection events, with or without the presence of adverse vaccine events. Hence, global 
dissemination of adverse infection events (such as through mass media) may be a useful public health strategy.

In some cases, it has been observed that individuals show a much stronger reaction to spectacular rumours about 
vaccine adverse events than infection adverse events, and so, the news about the vaccine adverse event may spread more 
widely through social networks. To quantify the effect of this on model dynamics, we simulate the model under differ-
ent values of ω (the spreading coefficient of vaccine adverse event information) when ν = 0.25 and ν = 0.5 (Figure S6). 
At both values of ν, it is observed that the cumulative vaccine coverage and infection incidence are relatively unrespon-
sive to changes in ω when ω < 0.5, but beyond that point the vaccine coverage starts decreasing and infection incidence 
starts increasing steadily, as ω increases. These results show that the difference in how individuals pass on information 
about vaccines or infection can have nontrivial effects on population-level outcomes.

Figure 1.  A sample time series of the model simulation showing the proportion of infected persons over time 
(days). Each colour represents a different setting of the model: no vaccination allowed (blue); vaccination 
allowed, but no adverse events (red); vaccination and adverse vaccination events allowed (yellow); vaccination 
and infection adverse events allowed (purple); vaccination and both vaccine and infection adverse events 
allowed (green). Parameter values were αI = 0.01 = αV, ρ = 0.6, and n = 5, with other parameter values as in 
Table 1. The same random number seed was used for all scenarios.
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Model simulations show an asymmetry in how behaviour responds to changes in the probabilities of vaccine 
adverse events versus disease adverse events. Only small increases in the probabilities of vaccine adverse events 
αV and infection adverse events αI from zero are required to have a large impact on the cumulative vaccination 
coverage, cumulative infections, and number of vaccine and infection adverse events (Figs 2 and 3). However, 
these four outcomes react very differently to changes in αV compared to changes in αI. As αV is increased just 
slightly above zero, vaccine coverage drops very steeply, falling to approximately 6% at αV ≈ 0.1 (Fig. 2a). Further 
increases in αV cause only slight continuing declines in the vaccine coverage. This nonlinear response is also 
reflected in the cumulative number of infections, which increases suddenly as αV becomes nonzero and thereaf-
ter levels off with growing αV (Fig. 2b). The dependence of the number of adverse vaccine and infection events 
on αV reflects trends observed for vaccine coverage and number of infections (Fig. 2c,d). These four outcomes 
react to changes in the infection adverse event probability αI in a similar way, but the rise in vaccine coverage 
as αI increases above zero is somewhat less steep (Fig. 3a). However, it is worth noting that the dependence of 
these outcomes on αV is more gradual when αI is (unrealistically) large, and vice versa (see parameter planes 
in Figure S7). The asymmetric response of the model to αV versus αI reflects differing conditions for vaccine 
adverse events versus infection adverse events. In a context of low infection incidence (and therefore very few 
infection adverse events) even a small probability of vaccine adverse events can cause a significant decline in vac-
cine uptake. However, increasing the probability of infection adverse events in the context of an already endemic 
disease causes a more proportionate and gradual increase in vaccine coverage since the system is already far from 
the elimination threshold. Taken together, these results show that a small probability of adverse events can dra-
matically change individual vaccine decision-making and epidemic outcomes.

These simulations (Figs 2 and 3) were conducted on a scale-free contact network. Hence, we also explore how 
cumulative vaccine coverage and infections depend upon αV for a regular lattice, small-world network, random 
network, and empirically-derived networks (Fig. 4). These other network types show a more gradual response of 
model dynamics as αV increases from zero. This suggests that strong changes in model dynamics for small proba-
bilities of adverse events observed in Figs 2 and 3 are a function of network structure and not only the mechanism 
of decision-making per se. Of the alternative network types, the dependence of vaccine coverage and infections on 
αV is closest to linear for the regular lattice, perhaps on account of its homogeneous structure: all individuals have 
the same number of contacts and hence everyone experiences adverse events in their neighbourhood in a similar 

Figure 2.  Figure shows (a) cumulative proportion vaccinated; (b) cumulative proportion infected; (c) 
number of adverse vaccination events; and (d) number of infection adverse events under different values of 
the probability αV of a vaccine adverse event. The error bars show two standard deviations for 100 simulations 
conducted for each point on the plot. Parameter values were αI = 0.01, ρ = 0.6, and n = 5, with other parameter 
values as in Table 1.
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way. The dependence of vaccine coverage on αV is somewhat less gradual for the small-world, random and empir-
ical networks, on account of their more variable neighbourhood size. And, as already observed, the dependence 
is strong for the scale-free network on account of its highly skewed node degree distribution (Figs 2 and 3). The 
comparison of model dynamics for different network types shows that effect of the adverse events on vaccination 
decisions and hence on disease dynamics depends on the contact topology of individuals in the population.

Effect of local versus global information about infection cases.  Models provide a useful way of 
comparing the effects of local versus global transmission of information about cases of infection, since it is dif-
ficult to experimentally manipulate where individuals get their information from in real study populations. In 
our model, ρ governs whether individuals receive information about the number of infections in the population 
globally, from the number of cases in the entire population, or locally, from the number of infections in their net-
work neighbourhood. Also, individuals look at nth order neighbours to find information about infected cases. For 
instance, when n = 2, individuals count the number of infected cases in their neighbours and their neighbour’s 
neighbours.

Analysis of how the interplay between ρ and n determines cumulative vaccine coverage suggests that individ-
uals obtaining information from global sources may be optimal from a public health perspective. We investigated 
how cumulative vaccine coverage depends on ρ and n (Fig. 5). When ρ is large and thus individuals get much of 
their information about infections locally, an increase in n can increase vaccine coverage. This occurs because 
when individuals pay attention to a larger local neighbourhood of the network, they will see more infections, 
which in turn stimulates vaccine uptake by making the vaccinator payoff more attractive. Using larger neighbour-
hoods also allows individuals lead time to prophylactically vaccinate before the infection reaches their first-order 
neighbours. However, the increase in vaccine uptake as a function of n is relatively inefficient. For instance, when 
ρ = 1, an increase from n = 1 to n = 5 causes vaccine uptake to increase from 10% to ≈25%, but n = 5 is a very 
generous fifth-order neighbourhood size. It is possible to increase vaccine coverage still further by moving from 
n = 5 to an impractical n = 10, but this only increases vaccine coverage another 10%. In contrast, when individuals 
simply get all of their information globally (ρ = 0), vaccine coverage is higher (and does not depend significantly 
on n, as expected). This suggests that obtaining information from global sources may be optimal, both in terms 

Figure 3.  Figure shows (a) cumulative proportion vaccinated; (b) cumulative proportion infected; (c) number 
of adverse vaccination events; and (d) number of infection adverse events under different values of the 
probability αI of an infection adverse event. The error bars show two standard deviations for 100 simulations 
conducted for each point on the plot. Parameter values were αV = 0.01, ρ = 0.6, and n = 5, with other parameter 
values as in Table 1.
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of maximizing vaccine coverage as well as in terms of what is more practical compared to obtaining information 
from chains of neighbours.

We also explored the dynamics in the ρ and n parameter space for the other network types. The impact of 
local-global information depends to some extent on network type although our overall findings are the same. 
We found qualitatively similar dynamics, except that the transition to higher vaccine coverage is less continuous 
and happens at a lower neighbourhood size n for the small-world and random networks, although a third- or 
fourth-order neighbourhood size is still required for high vaccine coverage (Figure S8). For the regular lattice in 
the case of large ρ, the dependence of vaccine coverage on n is almost completely flat.

Figures 2 and 3 showed a strong dependence of vaccine coverage on small adverse event probabilities. We 
explored the impact of changing ρ on this outcome as well, finding that small increases in αV from zero continue 
to cause a steep decline in vaccine coverage regardless of whether ρ is low or high (Figure S9a,b), although the 
vaccine coverage for higher αV is relatively higher when individuals use global information. Finally, we explored 
an alternative functional form for how individuals use information about infections in their local neighbourhood 
to assess their infection risk. Instead of Equation 5 we used the formulation

# local infected neighbors
# all local neighbors

(1 ) # all infected in the population
Total population (6)

jθ ρ

ρ

=

+ −

As in Figs 2 and 3, we continue to observe a rapid decline in vaccine uptake upon introducing a small nonzero 
probability αV, and regardless of whether ρ = 0 or ρ = 1 (Figure S9c,d). Figure S9 shows substantial variability 
in the difference of vaccination coverage for ρ = 1 and ρ = 0 and corresponding infections as a result of local vs 
global information spread.

Figure 4.  Figure shows (a) cumulative proportion vaccinated and (b) cumulative proportion infected for 
different values of the probability αV of an adverse vaccination event, for a regular lattice, random network, 
and small world network with similar numbers of nodes. Subpanels (c) and (d) are same, but use five different 
empirically-derived networks. Details of the networks are given in the Methods. The error bars show two 
standard deviations for 100 simulations conducted for each point on the plot. We consider αI = 0.01, ρ = 0.6, 
and n = 5, with other parameter values are as in Table 1.
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Tradeoffs between severity and probability of adverse events, and range of information spread.  
We also investigated the relationship between the probability and severity of adverse events, and how far infor-
mation about those events spreads. First we explored whether model dynamics under a high probability of mild 
adverse events are similar to model dynamics under a low probability of severe adverse events. We explored sim-
ulation results across a range of values for αV such that αV × κV is a constant (where κV is the severity of vaccine 
adverse events). We did a similar exercise for αI such that αI × κI) is constant. We found that vaccine coverage 
declines only slightly with increasing αV (Fig. 6(a)) and is essentially unchanged with increasing αI (Fig. 6(c)). 
This result reflects our model assumption that the individual payoff depends (implicitly) on a multiplicative prod-
uct of the adverse event probability and the severity of the event, such that doubling the number of adverse events 
has the same average impact as doubling the severity of adverse events.

The variability between outcomes of different stochastic realizations is also unchanged as αV increases (Fig. 6). 
This might reflect that rare but severe adverse events–while relatively uncommon in the population–propagate 
further in the network on account of their great severity (higher κV and κI values). In contrast, information about 
commonplace events that are mild propagate less far in the network, but the event occurrences are also more 
widely distributed. Hence, the average effects of rare but severe events are similar to those of common but mild 
events in our highly controlled simulation experiment (see our Discussion section on the potential impacts of 
prospect theory and other probability distributions, however).

To further explore the interaction between range and severity, we contrasted model dynamics for a rare and 
severe vaccine adverse event that spreads far across the network (low αv, high κV, high ω) and a common and 
mild vaccine adverse event that spreads only locally (high αv, low κV, low ω) (Fig. 7). This scenario captures the 
observation from real populations that rare but frightening adverse events can be disseminated more widely 
through social networks than mild and commonplace events. The results show that rare but severe events that 
spread far across network cause a significant reduction in vaccination coverage (Fig. 7a,b, black lines), compared 
common adverse events that occur very frequently but do not spread very far (Fig. 7c,d, red lines). The former 
cause a decline in vaccine coverage as αV increases, while vaccine coverage does not decline at all as αV increases, 
in the latter. The outsized importance of rare events is shown by comparing utility function impacts of the two 
types of adverse events, as follows. When αV = 0.01 in the case of a rare but severe adverse event (Fig. 7a,b), we 
have that αV × κV = 0.015 as the impact on the utility function. In contrast, when αV = 1 in the case of a mild but 
common adverse event (Fig. 7c,d), we have that αV × κV = 0.1. The penalty imposed on the payoff function of 
an individual who experiences the mild event is much larger than what is imposed by a severe event (0.1 versus 
0.015), but because the information about the severe event spreads further, it has a greater impact on individual 
behaviour and cumulative vaccine coverage.

For comparison, we also display the outcomes for the opposite scenarios for events that are rare, severe, but 
do not spread far (Fig. 7a,b, red lines) and events that are common, mild and do spread far (Fig. 7a,b, black lines). 
In this (counterfactual) case, vaccine coverage declines dramatically with an increasing adverse event probability 
for the mild events that spread far, but not the severe events that spread locally. This emphasizes the importance 
of the parameter governing how far the information about the adverse events spreads through the social network. 
To further explore this counterfactual case, we compare a case of high κV and low ω to a case of low κV and high 
ω. As expected, we find that there is no significant change in the vaccine coverage across different probability of 
adverse event in case of higher κV and lower ω, but vaccinated population steeply declines when κV is lower and 
ω is high (Figure S8).

Figure 5.  (a) Cumulative proportion vaccinated and (b) cumulative proportion infected under different values 
of size (n) of local neighborhood and weightage (ρ) of local vs. global neighborhood. αV = 0.01 = αI with other 
parameter values are as in Table 1.
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Figure 6.  Figure shows the (a) cumulative proportion vaccinated and (b) cumulative proportion infected, 
when the product αVκV) of the probability of a vaccine adverse event (αV) and its severity (κV) remain constant 
(values of the product are indicated by the legend). Although there is little change in the average vaccination 
level as the value of the product increases, there is large variability in vaccine coverage. (c) and (d) show the 
same when the product (αIκI) of the probability (αI) of an infection adverse event and its severity (κI) remains 
constant. There is not much change in the average level, but large variability exists in both vaccinated and 
infected populations.

Figure 7.  Figure shows cumulative proportion vaccinated (a,c) and cumulative proportion infected (b,d) under 
different values of probability of vaccination event αv when there are severe but rare events that spreads globally 
(a,b: black lines), compared to when there are frequent and mild adverse events that spreads locally (c,d: red 
lines). The other parameter values are as in Table 1, except κv = 1.5, and ωv = 0.9 for the upper panels and 
κv = 0.1, and ωv = 0.1 for the lower panels. We also plot counterfactuals for each case for comparison (ωv = 0.1 
for the top panel and ωv = 0.9 for the bottom panel).
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Discussion
Many theoretical models of coupled behaviour-disease interactions represent a world where individuals mix 
homogeneously, where individuals all have uniform knowledge of vaccine and infection risks and impacts, and 
where those risks and impacts are represented by a single cost parameter in a utility function. For many appli-
cations this can be a useful approximation. However, rare but severe (real or perceived) adverse events associ-
ated with vaccines or infections can alter population vaccinating behaviour in different ways from common but 
mild adverse events. Moreover, news of these events may travel through online social media networks instead of 
through mass communication. In order to address these issues in a theoretical modelling framework we devel-
oped a social network simulation model of coupled behaviour-disease dynamics. We studied the influence of 
severity and rarity of adverse events on vaccinating decisions and disease dynamics during an outbreak, and how 
the outcomes depend on other features such as network structure and local versus global dissemination of infor-
mation about adverse events. Each individual can have a different perception of vaccine and infections risks that 
is shaped by their experience and the experiences shared by neighbours, or globally disseminated information.

Some of our findings are relevant to population vaccinating behaviour and public health interventions, espe-
cially in the age of online social media. For instance, we observed that vaccine adverse events, unlike infection 
adverse events, can cause epidemic outbreaks of vaccine-preventable infections to have a very long tail (Fig. 1). 
This necessitates a longer and more drawn out public health intervention. Moreover, a population undergoing 
such a dynamic represents a continued risk of disease exportation to currently unaffected populations. Our model 
also predicted that populations respond much more dramatically to the introduction of a small vaccine adverse 
event risk than they do to the introduction of a small infection adverse event risk (Figs 2 and 3), especially for 
scale-free networks. Moreover, the model predicts that when individuals use global information to estimate per-
ceived cost, the vaccine coverage is higher than when individuals use local information, regardless of whether 
those perceived costs are accurate or not. Because scale-free networks represent the structure of online social 
media networks through which debates about vaccine safety are increasingly channeled72–74, our results suggest 
that growing use of social media networks to obtain information about vaccines and infectious diseases could 
have a net negative effect on vaccine coverage. This suggests an important role for public health dissemination 
of information about global infection prevalence in populations, such as through Canada’s Fluwatch program75, 
CDC FluView76, and mass media.

Although the present study provides a useful framework for understanding how the adverse events from vac-
cination or infection affect individual vaccination choices, the model was built with simplifying assumptions that 
could impact model predictions. For instance, we assume that all the dynamics such as transmission of infection, 
information of adverse events, and individuals’ vaccination dynamics propagate on same network. In reality this 
may not be true: the infection network of a population can be very different from the social or other networks 
through which information and opinions spread. Second, we also assume that the network is static, However, 
real-world networks can evolve over the timescales of interest, and sometimes in response to infection dynamics. 
The degree of impact of adverse events either from vaccination or infection may also depend nonlinearly on the 
number of events occurring, but here we assumed a simple additive relationship that may not apply under all 
conditions in real populations. This presents scope for future research. Vaccine effectiveness is another potential 
important factor that can influence decisions-making. It has been shown by previous research that imperfect 
vaccines can generate nontrivial dynamics. For instance, beyond a certain point, increasing the vaccine efficacy 
can cause a decrease in the proportion of individuals who seek vaccination77,78. Our work may be improved by 
incorporating this important aspect of vaccination decision-making.

The present study suggests that individual vaccinating decisions respond differently to rare but severe vaccine 
adverse events, than to common but mild events, and that certain network types (such as scale-free networks) are 
particularly vulnerable to the harmful effects of false stories about severe vaccine adverse events. Models allow us 
to tease apart the influence of different potential mechanisms, and to explore how coupled behavior-disease sys-
tems will respond to different interventions. Thus, public health can use such models to increase vaccine accept-
ance. For instance, strategies of spreading knowledge through social networks about vaccine preventable diseases, 
using dramatic narratives and pictures to communicate disease risk, and correcting misconceptions and myths 
about vaccines79–81 could provide a counterweight to the effects of false vaccine risks spreading through scale-free 
social networks.
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