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Abstract

In this study we introduce a rescoring method to improve the accuracy of docking programs

against mPGES-1. The rescoring method developed is a result of extensive computational

study in which different scoring functions and molecular descriptors were combined to

develop consensus and rescoring methods. 127 mPGES-1 inhibitors were collected from lit-

erature and were segregated into training and external test sets. Docking of the 27 training

set compounds was carried out using default settings in AutoDock Vina, AutoDock, DOCK6

and GOLD programs. The programs showed low to moderate correlation with the experi-

mental activities. In order to introduce the contributions of desolvation penalty and confor-

mation energy of the inhibitors various molecular descriptors were calculated. Later,

rescoring method was developed as empirical sum of normalised values of docking scores,

LogP and Nrotb. The results clearly indicated that LogP and Nrotb recuperate the predic-

tions of these docking programs. Further the efficiency of the rescoring method was vali-

dated using 100 test set compounds. The accurate prediction of binding affinities for

analogues of the same compounds is a major challenge for many of the existing docking

programs; in the present study the high correlation obtained for experimental and predicted

pIC50 values for the test set compounds validates the efficiency of the scoring method.

Introduction

Microsomal prostaglandin E synthase-1 (mPGES-1) belongs to the membrane-associated pro-
teins involved in eicosanoid and glutathione metabolism (MAPEG) super family [1]. It is the
terminal enzyme in the metabolism of arachidonic acid (AA) via the cyclooxygenase (COX)
pathway (particularly COX-2), responsible for the conversion of prostaglandin H2 (PGH2) to a
more stable product prostaglandin E2 (PGE2). As PGE2 is a key mediator of pain and

PLOSONE | DOI:10.1371/journal.pone.0134472 August 25, 2015 1 / 16

OPEN ACCESS

Citation: Gupta A, Chaudhary N, Kakularam KR,

Pallu R, Polamarasetty A (2015) The Augmenting

Effects of Desolvation and Conformational Energy

Terms on the Predictions of Docking Programs

against mPGES-1. PLoS ONE 10(8): e0134472.

doi:10.1371/journal.pone.0134472

Editor: Jie Zheng, University of Akron, UNITED

STATES

Received: March 14, 2015

Accepted: July 10, 2015

Published: August 25, 2015

Copyright: © 2015 Gupta et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All data are available

from Harvard's Dataverse database: http://dx.doi.org/

10.7910/DVN/IYA8Y6.

Funding: The authors have no support or funding to

report.

Competing Interests: The authors have declared

that no competing interests exist.



inflammation [2], the enhanced mPGES-1 expression is associated with many pathological
conditions in humans; including myositis [3], rheumatoid arthritis [4], osteoarthritis [5],
inflammatory bowel disease [6], cancer [7, 8], atherosclerosis [9], and Alzheimer’s disease [10].
So, efforts are being made by several pharma companies for the development of anti-inflamma-
tory drugs, targeting mPGES-1.

Recently Zhan et al., generated the 3D structure of human mPGES-1 by employing homol-
ogy modelling approaches (11). Further, they applied molecular docking and molecular dynam-
ics simulations to get detailed insights into the substrate binding domain (SBD) of mPGES-1
protein. Koeberle and collaborators [11] have recently identified pirinxic acid derivatives as
potent mPGES-1 inhibitors, with IC50 of 1.3 μM. Hamza et al. [12] have also developed a series
of novel mPGES-1 inhibitors by employing a combination of large-scale structure-based virtual
screening, flexible docking, molecular dynamics simulations and binding free energy calcula-
tions. They identified (Z)-5-benzylidene-2-iminothiazolidin-4-one as a novel scaffold for fur-
ther rational design and discovery of new mPGES-1 inhibitors. In one of the recent reports,
Arhancet et al. [13] described the discovery of PF-4693627 as a potent mPGES-1 inhibitor, by
employing SAR and lead optimisation studies, for the potential treatment of inflammation. This
compound had improved pharmacokinetic profile with potent inhibition of mPGES, both in
vitro and in vivo. The application of computational studies in drug discovery projects is very
challenging. Simple docking algorithms are not accurate enough for in silico activity predictions,
whereas computationally expensive/efficient simulation methods require great expertise and
computational facilities. Hence there is a need to develop accurate and computationally inex-
pensive methods for prediction of activity against mPGES-1. Molecular docking is a key tool in
structural molecular biology and computer-assisted drug design. During the last three decades
molecular docking has emerged as a key tool in structure-based drug discovery. Molecular dock-
ing helps us to understand and predict molecular recognition, both structurally (predicting
binding modes), and energetically (predicting binding affinity) between entities of interest.
Docking has two main constituents, a scoring function and a search method. Scoring functions
segregate the various conformations generated on the basis of the most effective binding interac-
tions between the ligand and the protein [14]. It is a known fact that docking forms a good tool
for predicting the different poses or conformations in which the ligand binds to the protein. The
accurate prediction of the relative binding affinities (RBAs), however, still remains a challenging
task [14–16]. This is due to the fact that a single scoring function cannot hold well under all cir-
cumstances. In order to get insights into this problemWarren et al. [15] performed thorough
studies with a large and diverse set of receptors and ligands by using different methodologies.
When the results were analysed they found very weak correlation between the measured and
calculated binding affinities. The scoring functions of most of these docking programs are too
general i.e. they are not target specific. Drug discovery researchers started developing tuned/
consensus scoring functions which can increase the accuracy of in silico predictions [17–23].
Various studies have shown that the application of scoring functions together with other scoring
functions or molecular descriptors can improve the performance significantly. In the present
study we developed a scoring methodology specific to mPGES-1 which may be useful for more
accurate prediction of binding affinities and thus facilitating the medicinal chemistry projects to
identify and discover more potent inhibitors for mPGES-1.

Material and Methods

Preparation of Ligands

For this study 127 inhibitors of mPGES-1 were selected randomly from literature and
BRENDA [24] database. All the structures were prepared in Accelrys Draw and optimized
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initially using HF method in R.E.D server [25–29] and further optimized using DFT based
method i.e. B3LYP/6-31G(d) [30, 31] in Gaussian09 [29] to get the lowest energy conforma-
tions. The lowest energy conformations from Gaussian were further used for docking. The
dataset was further segregated into training set (27 compounds) (Fig 1) and external test set
(100 compounds) (Fig A,B,C in S1 File).

Docking

The prepared ligand structures were then docked into the mPGES-1 binding site using default
procedure implemented in AutoDock Vina [32], AutoDock [33], DOCK6 [34] and GOLD [35]
programs. The binding site of mPGES-1 was defined as was described earlier by Prage et al.
[36], and Jakobsson et al. [37]. All the input and output files for the docking programs used
can be found in the supplementary material.

Auto Dock Vina

Auto Dock Vina is based on Lamarckian genetic algorithm and empirical binding free energy
force field, assuring its enhanced performance and accuracy. After the preparation of ligands
and target protein and selecting the binding site residues in mPGES-1 the grid was placed in
the centroid of the selected residues. Then docking was performed using the default settings of
Auto Dock Vina. AutoDock Vina generates a maximum of 20 conformations for a single ligand
and the same were used in the present study. The scoring function of Vina, has advantages of
both knowledge-based potentials and empirical scoring functions. It extracts information both
from the conformational preferences of the receptor-ligand complexes and the experimental
affinity measurements [32].

AutoDock

AutoDock is an automated procedure for calculating the interaction of ligands with biomacro-
molecular drug targets. In the present study AutoDock 4.0 was used. AutoDock employs
Lamarckian genetic algorithm and empirical free energy scoring function to generate the bind-
ing modes of ligand within the protein active site [33]. The target protein and ligands were pre-
pared for docking calculation. The coordinates of the active site of the protein was used for
generation of grid file. Docking was performed and 200 conformations were generated for
every ligand.

Dock

Dock predicts the correct binding mode of small molecule in the binding site of protein, and
the corresponding binding energy using anchor and grow algorithm. In the present study
DOCK6 was used. For docking the box was generated using the GSH binding site coordinates
of mPGES-1; grid was computed using grid parameter file and flexible ligand docking was per-
formed using default parameters and for each ligand 200 conformations were generated. Grid
score of DOCK6 was used in the present study. The scoring in DOCK is based on the non-
bonded terms of molecular mechanic force field [38].

GOLD

GOLD (Genetic Optimization of Ligand Docking), a genetic algorithm based docking program
[36], was also used to perform the docking calculations. During docking, the default algorithm
speed was selected and the ligand binding site in mPGES-1 was defined. The number of poses
for each inhibitor was set to 200, and early termination was allowed if the top three bound
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Fig 1. Structure of training set compounds.

doi:10.1371/journal.pone.0134472.g001
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conformations of a ligand were within 1.5 Å RMSD. Higher Goldscore implies better result.
The Goldscore, Chemscore [39] and Astex Statistical Potential (ASP) score [40] are the scoring
methods available in GOLD.

Consensus Scoring

Consensus scoring is a method in which the binding affinities of ligands for a drug target are
predicted by using more than one scoring method [41]. In this study, a consensus scoring
approach was applied as an average of scores of AutoDock Vina and GOLD (Chem score, Asp
score and GOLD fitness score). As the scoring functions of AutoDock Vina and GOLD pro-
grams are in different range, prior to mean calculation and other statistical operations on the
docking scores, data normalization was performed to bring all the scores in a notionally com-
mon scale from 0 to 1 (Table 1). Data normalization was performed using the formula:(For
positive scores)

Normalized score ¼
ðx �minÞ

ðmax�minÞ

Table 1. Normalized scores of various docking programs andmolecular descriptors.

Compounds pIC50 Goldscores Chem
Score

AutoDock
score

Auto Dock
Vina Score

DOCK6
Grid Score

ASP
Score

LogP TPSA Vol Nrotb Consensus
score

1 5.46 0.19 0.33 0.12 0.55 0.67 0.48 0.47 0.95 0.88 0.6 1.54

2 4.10 0.22 0.47 0.74 0.75 0.12 0.16 0.04 0.13 0.00 0.2 1.60

3 4.66 0.28 0.54 0.26 0.70 0.01 0.24 0.01 0.73 0.00 0.2 1.76

4 4.80 0.31 0.50 0.40 0.75 0.07 0.22 0.08 0.73 0.08 0.2 1.78

5 5.37 0.00 0.23 0.80 0.50 0.08 0.00 0.57 0.20 0.38 0.33 0.73

6 5.59 0.40 0.16 1.00 0.60 0.13 0.24 0.24 0.20 0.16 0.27 1.40

7 5.00 0.08 0.15 0.79 0.35 0.20 0.01 0.46 0.20 0.30 0.33 0.59

8 5.17 0.21 0.00 0.55 0.15 0.18 0.06 0.58 0.20 0.44 0.47 0.42

9 5.00 0.44 0.52 0.20 0.90 0.61 1.00 0.90 0.40 0.82 0.8 2.86

10 5.19 1.00 0.12 0.27 0.45 0.80 0.57 0.45 0.78 0.58 0.87 2.14

11 5.00 0.60 0.15 0.04 0.00 0.56 0.33 0.55 0.78 0.46 0.87 1.08

12 5.66 0.91 0.36 0.05 0.25 1.00 0.75 0.79 0.78 0.84 1 2.27

13 5.00 0.34 0.56 0.51 0.25 0.30 0.28 0.16 0.40 0.10 0.53 1.43

14 5.00 0.46 0.59 0.38 0.65 0.68 0.49 0.29 0.54 0.40 0.8 2.18

15 5.15 0.51 0.84 0.39 0.00 0.46 0.37 0.53 0.40 0.43 0.73 1.72

16 5.00 0.51 1.00 0.00 -0.05 0.91 0.68 0.54 0.43 0.64 0.87 2.14

17 9.05 0.57 0.65 0.34 0.80 0.21 0.21 0.51 1.00 0.51 0 2.23

18 6.49 0.37 0.35 0.32 0.85 0.00 0.50 0.48 0.14 0.04 0.2 2.07

19 6.74 0.24 0.42 0.36 1.00 0.01 0.51 0.52 0.00 0.09 0.2 2.17

20 7.46 0.24 0.77 0.28 0.75 0.19 0.34 0.63 0.00 0.13 0.2 2.10

21 6.03 0.59 0.63 0.15 0.55 0.04 0.51 0.00 0.38 0.02 0.07 2.28

22 7.48 0.54 0.67 0.17 0.60 0.00 0.41 0.44 0.19 0.18 0.07 2.22

23 8.40 0.61 0.81 0.13 0.80 0.06 0.65 0.36 0.19 0.15 0.07 2.87

24 7.51 0.54 0.73 0.08 0.60 0.05 0.60 0.37 0.19 0.15 0.07 2.47

25 7.66 0.40 0.62 0.78 1.00 0.32 0.77 1.00 0.20 0.90 0.4 2.79

26 8.30 0.40 0.76 0.77 0.80 0.51 0.73 0.96 0.20 0.92 0.47 2.70

27 8.10 0.41 0.74 0.80 0.90 0.44 0.75 0.97 0.34 1.00 0.4 2.80

After data normalization and calculation of consensus score, correlation coefficient between the activity (pIC50) and the consensus score was calculated. It

was compared with correlation coefficient of all docking programs.

doi:10.1371/journal.pone.0134472.t001
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(For negative scores)

Normalized score ¼ 1�
ðx �minÞ

ðmax�minÞ

Where x = corresponding score, max = maximum score and min = minimum score of the
dataset

Receptor Specific Tuning/Rescoring Method

For the design of inhibitors, the detailed knowledge of thermodynamics of ligand binding is
very important. Upon binding of a ligand to its drug target, the change in Gibbs free energy,
known as free energy of binding (ΔGbind), determines the ligand’s binding affinity [42].

As ΔGbind is dependent on the change in enthalpy and entropy, optimizing these factors can
improve affinity of ligand [43]. The protein—ligand interactions contribute for the enthalpic
component while entropy is primarily attributed to the hydrophobic effect and desolvation
penalty, which can be explained in terms of molecular descriptors LogP, topological polar sur-
face area (TPSA) and volume of the inhibitor (Vol) [44, 45]. It is important to note that pro-
tein-ligand binding always takes place in aqueous environment. During the binding of ligand
to the protein a series of events will take place, i.e. desolvation of ligand and protein, conforma-
tional changes, and formation of intermolecular interactions [46, 47].

Hence, in the present study, some molecular descriptors were also incorporated with the
docking scores for the accurate prediction of binding affinities of ligands towards mPGES-1.
The molecular descriptors considered in the studies were LogP, TPSA, Vol and number of
rotatable bonds (Nrotb). The reason for including these molecular descriptors in the study was
to introduce the concept of desolvation energy penalty and conformational free energy changes
occurring when a ligand binds to a protein. For the prediction of LogP, TPSA, Vol and Nrotb,
a web based server named Molinspiration was used.

The total free energy of binding can be expressed as:

�DGbind ¼ DGcomplex � ðDGprotein þ DGligandÞ ¼ DGMM þ DGsol � TDS

Where, ΔGMM = molecular mechanics free energy;
ΔGsol = solvation free energy
TΔS = entropy contribution
The conformational energy penalty is critical for accurate estimation of free energy of bind-

ing (ΔGbind) of inhibitors [48]. Siebel et al. [49, 50] and Liljefors et al.[51] found that with every
1.4 kcal/mol increase in conformational energy of the bioactive conformation, there is decrease
in binding affinity by a factor of 10. The conformational energy that is required for the ligand
to adopt its bioactive conformation is crucial in understanding structure-activity studies [51,
52] and is critical in computer-aided ligand design [49]. In the present study, number of rotat-
able bonds (Nrotb) in the ligands was considered as descriptor of ΔGconf. The normalised val-
ues of LogP and Nrotb were calculated and added empirically to the normalised scores of
docking programs to assess the effects of these molecular descriptor terms on their predictions.

Validation

The most accurate rescoring methods and consensus scores were further validated using exter-
nal test set of 100 compounds. Regression analysis was performed on the training set of 27
compounds to identify the weights of each individual component in consensus score and
rescore. The weights were further used to predict/ calculate the affinity of test set compounds.
Statistical analysis of the predictions was performed using SPSS statistical software. The rescore
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was tested for its ability to predict compounds as active and inactive using the training set. The
training set contained 8 active, 9 inactive and 10 moderately active compounds. Efficiency of
the rescores was measured in terms of the number of active compounds in the top 8 and the
number of inactive compounds in the bottom 9.

Results and Discussion

The scores from various docking programs and molecular descriptors were considered as the
focus is on the development of a reliable consensus/rescoring method for in silicomPGES-1
activity prediction. The data from various programs was normalized to a common range of 0
to 1. The correlation coefficient (r) of scores of each individual program and mPGES-1 inhibi-
tion activity were calculated. Out of the four programs used, AutoDock Vina score exhibited
most significant correlation (r = 0.51) with the activity (pIC50) of the training set compounds,
followed by Chem score (r = 0.46) and ASP score (r = 0.36) (both obtained from GOLD pro-
gram), while the GOLD fitness score showed a correlation of 0.17. The average of the above
mentioned scores was considered as the consensus score. Consensus score showed positive cor-
relation (r = 0.59) with the activity of the training set compounds, better than the entire indi-
vidual scores (Fig 2).

The correlation of LogP TPSA, Vol and Nrotb with the activity were analysed (Table 2), and
it was found that out of the descriptors considered for ΔGsolv, LogP showed highest positive
correlation with the activity of the compounds and rotatable bonds showed negative correla-
tion. The negative correlation of Nrotb was in agreement to previous reports which suggest
flexibility of ligand contributes in the form of conformational free energy. So in the present
study, LogP and Nrotb were considered as molecular descriptors of ΔGsolv and ΔGconf

respectively.
The major component in free energy of the ligand is the interaction energy between protein

and ligand, ΔGinter. The docking scores were considered as a measure of ΔGinter. For the rescor-
ing method the effective binding free energy of each ligand was considered as an empirical
summation of normalised docking scores, LogP and Nrotb.

The rescoring function was calculated as:

Re score ¼ Docking scoreþ LogP � Nrotb

The correlation of the rescores with activity of the compounds was calculated (Table 3) and
the results showed significant improvement in the predictions of various docking programs.
The correlation of AutoDock Vina scores increased drastically from 0.51 to 0.75, with the
inclusion of molecular descriptors LogP and Nrotb. Most significant improvement was seen in
the case of Goldscore which increased to 0.89 from 0.17 with the molecular descriptor terms.
The consensus score also improved from 0.59 to 0.79. Overall the scores showed that there was
additive effect which caused improvement in the correlation of all the scores considered. These
results further confirmed the effectiveness of LogP and Nrotb as molecular descriptors of
ΔGsolv and ΔGconf respectively.

The predictions of the training set compounds were further analysed. The 27 compounds
taken for training set were classified into 8 active (IC50 � 100nM), 10 moderately active
(100nM� IC50� 10 μM) and 9 inactive molecules (IC50� 10 μM). These compounds were
then taken as reference for validating the efficiency of the docking scores and rescores in differ-
entiating active and inactive molecules from a pool of compounds. Firstly the individual dock-
ing scores (AutoDock Vina, Chemscore, ASP score, Goldscore and Consensus scores) were
analysed to get insights into the efficiency of the docking programs in predicting the binding
affinities and later the same operation was performed on the developed rescores.
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Fig 2. Scatter plots showing coefficient of correlation (r) and best line of fit for training set
compounds (a1 and a2 = AutoDock Vina score and AutoDock Vina rescore; b1 and b2 = Chem score
and Chem rescore; c1 and c2 = ASP score and ASP rescore; d1 and d2 = Goldscore and Gold rescore;
and e1 and e2 = Consensus score and Consensus rescore respectively).

doi:10.1371/journal.pone.0134472.g002
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Docking scores and rescores of the training set compounds were analysed to identify the com-
pounds occupying the top 8 and bottom 9 places. In the normalised AutoDock Vina score, it was
observed that the active compounds were having scores> 0.8 whereas the inactive compounds
were showing scores< 0.5. On this basis the cut-off values were designated to the active
(scores> 0.8) and inactive compounds (scores< 0.5) for AutoDock Vina scores and further anal-
ysis was performed on the basis of these cut-off values. Similarly, in the case of Chem score top 8
compounds were having scores> 0.67, while the bottom 9 compounds showed Scores< 0.36, in
case of ASP scores, active compounds exhibited scores> 0.6, whereas inactive compounds had
scores< 0.28; in case of Goldscores the top 8 compounds showed scores> 0.54 and the bottom
nine (inactives) had scores< 0.31, so the same cut-off value were assigned to characterize training
set compounds as active and inactive. Active compounds of the consensus score were the ones
having score> 1.86 and compounds having scores< 1.35 were considered as inactive. For Auto-
Dock Vina rescore compounds having score> 1.10 were called active and compounds having
scores< 0.42 were called inactive, while in case of Chem rescore, compounds showing
scores> 1.03 and scores< 0.28 were considered as active and inactive respectively. The active
and inactive compounds, in case of ASP rescore exhibited scores> 0.79 and score< 0.17 respec-
tively, and in case of GOLD rescore active compounds showed scores> 0.7 and inactive com-
pounds had scores< 0.24. In case of consensus rescore compounds having scores> 2.23 were
considered as active and compounds having scores< 1.15 were considered inactive (Table 4).

The results have shown that the efficiency of the docking programs clearly increases when
molecular descriptor terms LogP and Nrotb are included to explain ΔGsolv and ΔGconf respec-
tively. In the case of GOLD it was observed that only 4 compounds out of the active 8 are in
top 8 but in the GOLD rescore the number increased to 7. In Goldscore, one of the active mole-
cules was predicted to be least active, but in the case of GOLD rescore none of the active com-
pounds were predicted as inactive, further substantiating the better efficiency of the rescores
(Table 4). Similar results were found in the case of AutoDock Vina, Chem scores and consen-
sus scoring. AutoDock score predicted 5 compounds out of 8 as active and 3 as moderately
active, while in case of least active compounds, 4 were predicted as inactive, 4 as moderately
active and 1 as active. The results were however found much improved in AutoDock rescore
where 6 compounds were predicted as active and 2 as moderately active.

However the best results were found in case of Chem and Gold rescores. Chem rescore pre-
dicted all the 8 active compounds as active and 4 out of 9 inactive compounds accurately.
While the Gold rescore predicted 7 out of 8 compounds as active and 7 out of 9 compounds as
inactive. The results indicate that the rescoring method may be effective in eradicating false

Table 2. Correlation of normalized docking scores andmolecular descriptors with pIC50.

S No Scores/ Molecular Descriptor Correlation with pIC50

1. AutoDock Vina score 0.51

2. Chem score 0.46

3. ASP score 0.35

4. GOLD Fitness score 0.17

5. AutoDock score 0.02

6. DOCK6 score -0.23

7. Consensus score (Avg of 1 to 4) 0.59

8. LogP 0.45

9. Volume of the inhibitor (Vol) 0.20

10. TPSA -0.21

11. No. of rotatable bonds -0.48

doi:10.1371/journal.pone.0134472.t002
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positives and false negatives and increasing the accuracy of results. The results indicate clearly
that the rescore is predicting the binding affinities of mPGES-1 inhibitors more accurately and
the effectiveness of LogP and Nrotb may be further validated on other drug targets and mem-
brane proteins.

Further, the rescoring method was validated using external test set of 100 compounds.
Regression analysis was performed against scores obtained for training set of compounds. Each
of the scores of different docking programs, consensus scores and the molecular descriptors
were further used for the prediction of activity of test set compounds.

The formula used for prediction of pIC50 for the test set compounds after regression analysis
was:

Pr edicted pIC
50
¼ w1 � Docking scoreþ w2 � LogP þ w3 � Nrotbþ c

Where w1, w2 and w3 = weights obtained after regression analysis on the training set
compounds,

Docking score = docking scores of the test set compounds,
LogP = LogP values of test set compounds,

Table 3. Pearson and Spearman correlation between scores and rescores of docking programs with experimental values (pIC50) and sigma
2-tailed tests for the training set.

pIC50 AutoDock Vina rescore Chem rescore ASP rescore GOLD rescore Consensus rescore

pIC50 Pearson Correlation 1 .75** .84** .81** .89** .79**

Spearman Correlation 1.00 .67** .69** .81** .88** .71**

** denotes that the correlation is significant at 99% confidence level

doi:10.1371/journal.pone.0134472.t003

Table 4. Efficiency of docking scores and rescores in prediction of training set compounds as active, moderately active and inactive.

Scoring method Dataset validated Most active Moderately active Least active

Score AutoDock Vina Most Active 5 3 -

AutoDock Vina Least active 1 4 4

Chem Most active 6 2 -

Chem Least active 1 6 2

ASP Most active 5 2 1

ASP Least active 2 2 5

GOLD Most active 4 3 1

GOLD Least active 1 4 4

Consensus Most active 5 3 -

Consensus Least active 1 4 4

Rescore AutoDock Vina Most active 6 2 -

AutoDock Vina Least active - 5 4

Chem Most active 8 - -

Chem Least active - 5 4

ASP Most active 5 3 -

ASP Least active 1 1 7

GOLD Most active 7 1 -

GOLD Least active - 2 7

Consensus Most active 7 1 -

Consensus Least active 1 4 4

doi:10.1371/journal.pone.0134472.t004
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Nrotb = no. of rotatable bonds of test set compounds,
c = intercept obtained from regression analysis.
The correlation coefficient between the experimental and predicted pIC50 values for the test

set compounds was calculated (Table 5). AutoDock Vina showed the best results where the
experimental and predicted pIC50 of the test set exhibited the highest correlation (r = 0.70), fol-
lowed by consensus rescore and ASP rescore (r = 0.69), then Chem rescore (r = 0.68) and Gold
rescore (r = 0.63) (Fig 3).

When compared to other prominent drug targets from arachidonic acid metabolism, the
number of mPGES-1 inhibitors reported is limited. The test set molecules applied for valida-
tion of the scoring method contained analogues from various classes of inhibitors with varied
activity. It is a well-known fact that the accurate prediction of binding affinities for analogues
of the same compounds is a major challenge for many of the existing docking programs. In the
present study the high correlation obtained for experimental and predicted pIC50 values for the
test set compounds validates the efficiency of the scoring method. The results clearly indicate
robustness of the developed rescore as it holds well for the external test set compounds.

Current focus of researchers working in the area of molecular modelling and drug design is
towards improving the docking scores for the accurate and rapid prediction of binding affinities
of inhibitors towards drug targets. The concept of consensus scoring was introduced by Charif-
son et al. [53], wherein the efficiency of various docking programs was evaluated in combina-
tions. They observed that consensus scoring reduced the number of false positives predicted by
individual scoring functions, leading to enhancement in number of hits. Even in the present
study it was observed that the correlation of docking programs show improvement in consensus
as well as rescoring methods. In a number of studies researchers have included some molecular
descriptors along with the docking scores to predict the binding affinities accurately. Li et al. [54]
have developed a new scoring function called ID-Score to assess protein-ligand binding affinities.
Their scoring function is based on a comprehensive set of molecular descriptors playing crucial
role in protein-ligand interactions. The present study supports previous reports and also hint
that molecular descriptors like LogP and Nrotb can be applied as terms for ΔGsol and ΔGconf and
may increase the correlation of the docking programs against mPGES-1 inhibitor activity predic-
tion. The results clearly show that the molecular terms considered have an additive effect in the
predictions and contribute to the reduction in number of false positives and improvement in pre-
diction of true negatives. The contributions of LogP and Nrotb in the enrichment of binding
affinity predictions observed in the present study is in agreement with the reports of Wang et al.,
[55] and ID score of Meng et al., [56]. The validation of the approach using an external test set
further supports the potential of the scoring method in virtual screening experiments.

The prominent role of LogP in enhancement may be due to the fact that mPGES-1 is a
membrane protein and hydrophobicity of ligands helps in efficient transportation to the bind-
ing site embedded in the membrane. This hypothesis may be further validated by investigating

Table 5. Pearson and Spearman correlation and sigma 2 tailed tests between predicted pIC50 and experimental pIC50 of the test set.

Experimental
pIC50

Predicted pIC50

(Gold rescore)
Predicted pIC50

(AutoDock Vina
rescore)

Predicted
pIC50 (ASP
rescore)

Predicted pIC50

(Chem rescore)
Predicted pIC50

(Consensus
rescore)

Experimental
pIC50

Pearson
Correlation

1 .63** .70** .69** .68** .69**

Spearman
Correlation

1.00 .69** .72** .71** .70** .72**

** denotes that the correlation is significant at 99% confidence level

doi:10.1371/journal.pone.0134472.t005
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Fig 3. Scatter plots showing coefficient of correlation (r) between the experimental pIC50and predicted pIC50 by (a) AutoDock Vina rescore, (b)
Chem rescore, (c) ASP rescore, (d) Gold rescore and (e) Consensus rescore; for test set compounds.

doi:10.1371/journal.pone.0134472.g003
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the effects of LogP on the in silico predictions of other membrane proteins. The study may be
of significance as there is a need to develop/ improve in silico prediction methods that can be
applied for mPGES-1 inhibitor activity prediction. There are several reports where the
researchers performed docking studies on mPGES-1 to understand its SAR with the inhibitors
identified, but there are fewer reports of it being successfully applied for virtual screening pro-
cedure for the identification of lead compounds, the main challenge being the limitations of
the docking programs. Even though there are few reports of virtual screening methods against
mPGES-1, the inhibitors identified showed moderate activity in μM range [57]. As accurate
and efficient free energy calculations are time consuming and require high expertise, the
rescoring method developed in the present study may be helpful for medicinal chemists in
bringing down the time and costs involved in inhibitor development.

Conclusion

For the identification of inhibitors against drug targets, docking has become an established tech-
nique in drug discovery. There are a number of docking programs available but none of them are
suitable for all classes of drug targets. This led to the evolution of tuned scoring functions and
other rescoring approaches for improvement in the prediction of binding affinities of small mole-
cules towards the drug targets. In this paper, we developed a rescoring method by incorporating
the molecular descriptors to explain desolvation penalty and conformational energy of ligands.
The rescoring method showed significant improvement in the predictions of training set. The
rescore was also effective in differentiating active and inactive mPGES-1 inhibitors in the training
set in comparison with the individual docking scores. Further the effectiveness of molecular
descriptors LogP and Nrotb was validated using external test set molecules. The results clearly
indicate the applicability of LogP and Nrotb in in silicomPGES-1 activity prediction.
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