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ABSTRACT

Interaction of fluid forces with flexible structures is often prone to dynamical instabilities, such as aeroelastic flutter. The onset of this instability
is marked by sustained large amplitude oscillations and is detrimental to the structure’s integrity. Therefore, investigating the possible physical
mechanisms behind the onset of flutter instability has attracted considerable attention within the aeroelastic community. Recent studies have
shown that in the presence of oncoming fluctuating flows, the onset of flutter instability is presaged by an intermediate regime of oscillations
called intermittency. Further, based on the intensity of flow fluctuations and the relative time scales present in the flow, qualitatively different
types of intermittency at different flow regimes have been reported hitherto. However, the coupled interaction between the pitch (torsion)
and plunge (bending) modes during the transition to aeroelastic flutter has not been explored. With this, we demonstrate with a mathematical
model that the onset of flutter instability under randomly fluctuating flows occurs via amutual phase synchronization between the pitch and the
plunge modes. We show that at very low values of mean flow speeds, the response is by and large noisy and, consequently, a phase asynchrony
between themodes is present. Interestingly, during the regime of intermittency, we observe the coexistence of patches of synchronized periodic
bursts interspersed amidst a state of desynchrony between the pitch and the plungemodes. On the other hand, at the onset of flutter, we observe
a complete phase synchronization between the pitch and plunge modes. This study concludes by utilizing phase locking value as a quantitative
measure to demarcate different states of synchronization in the aeroelastic response.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084719

Elastic structures, such as aircraft wings, when subjected to fluid
loads lead to the formation of a mutual coupling between the
flow and the structure. At a critical value of the flow speed, there
is a sustained transfer of energy from the flow to the structure,
resulting in a dynamic instability called aeroelastic flutter. This
instability is self-feeding in nature and typically leads to structural
failure. Consequently, the aeroelastic community hitherto has
devoted substantial attention toward examining the mechanisms
that could possibly lead to flutter instability. However, the pres-
ence of nonlinearities and input fluctuating flows pose a challenge
in discerning the underlying mechanisms. This study devotes its
attention to this concern. Accordingly, a three-dimensional wing
is considered as a two degrees of freedom (2-DOF) airfoil in the
form of pitch (torsion) and plunge (bending) modes. The input
flow is modeled as randomly varying with time. By obtaining the
time histories of the aeroelastic responses, we address the tran-

sition to aeroelastic flutter from the parlance of synchronization
theory. Typically, a key step in synchronization studies involves
investigating a possible locking of phase/frequency values of the
output time responses. To that end, a considerable understanding
of the synchronization in chaotic and periodic oscillations can be
found in the literature. However, in scenarios involving intermit-
tent responses in the preflutter regime, the use of synchronization
framework demands further investigations. Here, we investigate
the coupled interaction between the pitch and the plungemodes as
the system transitions to flutter by performing numerical experi-
ments. To do the same, the relative phase between the pitch and
plunge oscillations is sought by invoking quantitative measures
such as phase locking value (PLV). It is revealed that the transition
to flutter is through a regime of intermittently phase synchronized
pitch and plunge modes, and, at the onset of flutter, complete
synchronization between the modes is observed.
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I. INTRODUCTION

Aeroelastic flutter is a manifestation of dynamic instability
involving a continuous transfer of energy from the flow to the struc-
ture. This instability is characterized by the onset of limit cycle

oscillations (LCOs) in the aeroelastic responses.1 Indeed, sustained

large amplitude LCOs experienced by the structure can lead to abrupt

failure due to overloading (or) lead to gradual failure due to the

development of fatigue cracks. Consequently, ensuring that operat-
ing conditions do not transgress into regimes of aeroelastic flutter

is of key importance. Preventing the onset of flutter is possible only

when the flutter boundaries are accurately obtained—which in turn

depends on the underlying description of the physical mechanism
that leads to this instability. Therefore, the physical insights behind
the onset of flutter have been extensively explored through both wind

tunnel experiments and numerical simulations.
Traditionally, in a two degrees of freedom (2-DOF) airfoil with

the pitch (torsion) and plunge (bending) modes, the onset of flutter
is explained by the coalescence of the modal frequencies.2 Here, the

modal frequencies refer to the frequencies of the pitch and the plunge
modes. This form of flutter is known as classical flutter or binary
flutter. Studies involving linear aeroelastic models were found to be
inaccurate in capturing the dynamics due to abrupt transitions to
flutter3 and manifestation of LCOs in the postflutter regime.4–6 Con-
sequently, nonlinearities in the structure or the aerodynamics of the

flow were modeled to account for the same. Shocks in transonic and
supersonic flow regimes and flow separation in the presence of large

angles of attack are examples of aerodynamical nonlinearities.6

The inclusion of nonlinearities in the aeroelastic system leads to
qualitative changes in the topology of its state space. Consequently,
one encounters a variety of bifurcations and in turn a variety of
nonlinear dynamical responses. For example, the inclusion of cubic
nonlinearity in stiffness is reported to give rise to Hopf bifurcation.6

At the flutter speed, the response dynamics transforms into sustained
LCOs and for flow speeds lower than the flutter speed, a decaying

signature in the response is observed. Introducing cubic nonlinear-
ities in both pitch and plunge degrees of freedom (coupled cubic
nonlinearities) can give rise to phenomenologically rich nonlinear
responses, such as chaotic behavior in the postflutter regime.7 It has
also been shown that the presence of a cubic nonlinearity even in a
single degree of freedom can give rise to chaotic response for certain
specific structural parameters.8 On the other hand, observations of
chaos in aeroelastic response have been reported even in preflutter
regimes by the introduction of a freeplay nonlinearity.4,6,9–11

The traditional paradigms adopted by the above literature to
investigate the aeroelastic problems, by and large, involve an assump-
tion of uniform and nonfluctuating flow. In other words, the flow is
assumed to be a deterministic parameter. However, realistic flows in
field possess randomly time-varying fluctuations.12,13 The presence
of input flow fluctuations can cause twofold changes: (i) disrupt the
traditionally established Hopf bifurcation, by giving rise to atypical
preflutter responses14,15 and (ii) change the stability boundary.16–18

The present study focuses on the former issue.
Stochasticity in input flows ensures that even at very low val-

ues of mean flow speeds, the response (the pitch and the plunge
responses) does not fully die down. Furthermore, at intermedi-
ate values of mean flow speeds (lower than the critical speed), a

noise induced intermittent aeroelastic response has been reported
in the literature.14,16,19,20 The qualitative nature of intermittent aeroe-
lastic responses has been shown to be dependent on the time scales
present in the input fluctuating flow, relative to that of the aeroelastic
system.15Numerical experiments carried out byVenkatramani et al.18

revealed that based on the intensity of flow fluctuations, the trajecto-
ries of the response keep moving between one attractor to another
(here, a fixed point response and LCOs) in an unpredictable fashion.
Consequently, the concepts of stochastic bifurcations were invoked
to describe such a transition from intermittency to flutter.

Through this, it becomes evident that flow fluctuations give rise
to atypical flutter routes via intermittency. In the wake of literature
investigating flutter (under deterministic flows) using the traditional
paradigms of modal frequencies, it is imperative that the mechanism
of intermittency route to flutter requires a systematic investigation.
The present study focuses on the same. Particularly, we examine
the coupled interactions between the pitch and the plunge modes
during intermittency route to flutter. The instantaneous interactions
between the pitch and plunge modes, in the context of the rela-
tive phase, have been discussed in the literature, but they are largely
restricted to the unstable flutter regime.1 The coupling between
the pitch and the plunge modes and the presence of a constant phase
locking in the flutter regime naturallymotivates one to investigate the
presence of synchrony in the system, during the transition to flutter.
To the best of the authors’ knowledge, investigating the evolution of
the relative phase difference as the system transitions from the regime
of intermittency to flutter has not received any attention in the litera-
ture. The same is addressed using the framework of synchronization
theory in this study. Using this approach, we show that the onset of
aeroelastic flutter is the result of not only the locking of the modal
frequencies but also the locking of their instantaneous phases.

This study devotes its attention to study the coupled interactions
between the pitch and plunge responses under noisy input flows.
To that end, we consider a pitch–plunge airfoil with cubic harden-
ing nonlinearity in the pitch degree of freedom. The fluid forces
are modeled using a Wagner function based on unsteady aerody-
namical formulation.1 The flow is assumed to be randomly varying
with time. In corroboration with the findings presented in Venka-
tramani et al.,15 flows with two different time scales of fluctuations
are considered as separate cases. The mean flow speed is assumed
to be the bifurcation parameter. Using the same, a response analy-
sis is systematically carried out first. The instantaneous phases of the
aeroelastic responses (both pitch and plunge) are computed using
a Hilbert transform based analytic signal approach. A quantitative
measure such as phase locking value that describes the underlying
synchrony is utilized next. It is shown that irrespective of the time
scales of the fluctuating flows, the onset of flutter instability is via a
complete phase locking mechanism of synchronization. The transi-
tion to this complete phase synchronization is demonstrated to occur
gradually, through an intermediate regime of intermittently phase
synchronized responses.

The organization of the rest of the paper is as follows. In Sec. II,
a brief overview of synchronization between coupled oscillators is
given. Section III provides the mathematical model of the structure
and the canonical model used tomodel the flow fluctuations.We dis-
cuss the results in Sec. IV. The salient outcomes that emerge from this
study are summarized and presented in Sec. V.
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II. SYNCHRONIZATION OF COUPLED OSCILLATORS:

AN OVERVIEW

Synchronization, in simple terms, is the adjustment of the
rhythms of coupled oscillators.21 This phenomenon was discovered
by Christian Huygens, while observing the locking of the beats of
two oscillating pendulums hung over a wall.22 The strength and the
type of mutual coupling were found to play an important role in
the process of synchronization.23 It is to be noted that synchroniza-
tion is an inherently nonlinear phenomenon,23 and both periodic and
chaotic oscillators have been found to exhibit synchrony.23–25 The
presence of synchrony has been investigated in diverse fields, such
as physical,26 biological sciences,27 and engineering systems, such as
electric circuits28,29 and thermoacoustic systems.30–33 Typically, the
presence of synchrony is analyzed by examining the instantaneous
phases and the frequency of the oscillations. Oscillators with uncor-
related amplitudes, but, exhibiting perfect locking of their instanta-
neous phases, i.e., the relative phase is constant, are said to be phase
synchronized.34

The route to synchronization for mutually coupled oscillators
can be explained using mechanisms, such as phase locking and sup-
pression of natural dynamics.23 Insights into the mechanism of syn-
chronization can be obtained by estimating the frequency content
and the time evolution of the instantaneous relative phases between
the oscillations. Typically, the instantaneous phases of the oscillations
are obtained by adopting the analytic signal approach35 wherein, the
analytic signal, ζ (t), is a complex quantity, whose real part is the origi-
nal signal, z(t) and whose imaginary part is its correspondingHilbert
transform (HT) given by

zH(t) = (1/π)P.V.

∫ ∞

−∞

z(τ )dτ

(t − τ)
, (1)

where P.V. is the Cauchy principal value of the integral. Thus, the
analytic signal can be written as

ζ(t) = z(t) + izH(t) = A(t)eiφ(t), (2)

where φ(t) represents the instantaneous phase, and, A(t) is the
instantaneous amplitude of the signal. Note that, for an aperiodic
signal with broadband power spectrum, the instantaneous phase
thus calculated from HT is not properly defined. However, it has
been shown in an earlier study that the relative phase between two
broadband signals calculated through HT closely matches with that
calculated through cross correlation.36 Hence, ignoring the slight
inaccuracy involved in calculating the instantaneous phase for broad-
band signals, we proceedwithHT-based instantaneous phases for the
present study.

Complete synchronization is exhibited when the relative phase
between the oscillators becomes constant or oscillates about a mean
value. On the other hand, a monotonous increase or decrease in the
relative phase denotes asynchrony between the oscillators. Further,
to demarcate the route to synchronization, the “peaks” or the pre-
dominant frequencies of the oscillators are estimated and observed
as the control parameter is varied. Relative movement of the fre-
quency peaks of the corresponding oscillators toward a common
frequency denotes the phase locking mechanism. Suppression of
one of the peaks, while the other peak remains stationary denotes

the suppression of natural dynamics mechanism. The movement
between the peaks is negligible in comparison to the phase locking
mechanism and the frequency peak of one of the oscillators shrinks
and disappears, denoting that the dynamics of one of the oscillators
is “suppressed” by the other oscillator.

In some cases, phase synchronization is presaged by a regime
of intermittent phase synchronization (IPS), where, regions of
synchronized oscillations coexist with regions of unsynchronized
oscillations.32,37 In this study, to quantify the amount of phase
synchronization between the responses at different regimes, the
phase locking value (PLV) of the responses is estimated. The mea-

sure, PLV = N−1|
∑N

j=1 exp(i△φj)|, where △φj = φj,plunge − φj,pitch is
the instantaneous phase difference between the plunge and pitch
responses at the jth instant. A perfectly synchronized state gives
a PLV of 1, while a completely asynchronous state of oscillations
gives a PLV close to 0. The PLV for an intermittent synchroniza-
tion gives a value between 0 and 1. Having presented the necessary
theoretical concepts of synchronization, we turn our attention to the
mathematical model studied here.

III. MATHEMATICAL MODEL

A. Structural model

This subsection presents a description of the structuralmodel of
the aeroelastic system. A three-dimensional wing is modeled as a two
degrees of freedom pitch–plunge airfoil by considering its bending
and torsion modes, respectively. To facilitate oscillations, the airfoil
is attached to translational and rotational springs at its elastic axis;
see Fig. 1. This model is well established in the literature to analyze
aeroelastic systems1,13,38,39 and is often referred to as “typical section.”
Such a model provides two-pronged advantages. One of the gov-
erning equations of motion can be cast into a set of second-order
ordinary differential equations and in turn reducing the computa-
tional complexities. The second advantage of the model is the pres-
ence of a limited number of degrees of freedom (pitch and plunge),
which in turn provides an easier glimpse into the synchronization
behavior in the respective domains of dynamical states. To incur
sustained LCOs in the postflutter regime, a cubic hardening non-
linearity in the pitch degree of freedom is assumed. The governing
nondimensional equations of motion for such a “typical section” are

FIG. 1. Schematic of the airfoil section.
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TABLE I. Nondimensional parameters of the airfoil.

rα µ xα ah βα ζ α ζ ǫ ω

0.5 100 0.25 –0.5 3 0 0 0.2

as follows:1,39

ǫ ′′ + xαα
′′ + 2ζǫ

ω

U
ǫ ′ +

(

ω

U

)2

(ǫ) = −
1

πµ
CL(τ ), (3)

xα

rα2
ǫ ′′ + α′′ + 2

ζα

U
α′ +

1

U2
(α + β3

α) =
2

πµrα2
CM(τ ). (4)

Here, ǫ represents the nondimensional plunge displacement, α is
the pitch displacement expressed in radians, ζǫ and ζα are the vis-
cous damping ratios in plunge and pitch, respectively, ωǫ and ωα are
the uncoupled natural frequencies in the plunge and pitch modes,
respectively. µ is the reduced mass, xα is the distance between
the elastic axis and the center of mass of the airfoil, ah is the distance
between the midchord and the elastic axis. ω is the ratio of plunge
to pitch uncoupled natural frequencies, βα is the coefficient of cubic
nonlinear stiffness in pitch, r2α is the radius of gyration, andCL(τ ) and
CM(τ ) are the aerodynamic coefficients which are presented and dis-
cussed in Sec. III B. Note that the differentiation is carried out with
respect to the nondimensional time τ . The structural parameter val-
ues used in these equations are taken to be the same as those used in
Lee et al.39 and are listed in Table I.

B. Aerodynamic model

Oncoming flow,U, results in a displacement of the airfoil, along
with the shedding of the wake behind the airfoil’s trailing edge.
Therefore, an estimation of the aerodynamic forces demands a rela-
tion between the input flow, airfoil displacements, and wake effects.
This is achieved by using Wagner’s function1,40 and in turn invoking
an unsteady aerodynamical formulation. The equations are typi-
cally cast in the time domain with integrodifferential terms and are
mathematically expressed as aerodynamic coefficients given below,

CL(τ ) = 2π[α(0) + ǫ ′(0) + (0.5 − ah)α
′(0)]8(τ)

+ 2π

∫ τ

0

8(τ − σ) × [α′(σ ) + ǫ ′′(σ )

+ (0.5 − ah)α
′′(σ )]dσ + π(ǫ ′′(τ ) − ahα

′′(τ ) + α′(τ )),
(5)

CM(τ ) = π(0.5 + ah)[α(0) + (0.5 − ah)ǫ
′(0)

+ ǫ ′(0)]8(τ) + π(0.5 + ah)

∫ τ

0

8(τ − σ)[α′(σ )

+ ǫ ′′(σ ) + (0.5 − ah)α
′′(σ )]dσ

+
π

2
ah

(

ǫ ′′(τ ) − ahα
′′(τ ) − (0.5− ah)

π

2
α′(τ ) −

π

16
α′′(τ )

)

.

(6)

The time dependent function 8(τ) in Eqs. (5) and (6) is known as
Wagner’s function and is approximated empirically as1

8(τ) = 1 − 0.165 exp(−0.0455τ) − 0.335 exp(−0.3τ). (7)

C. Flow fluctuations

Typical open literature often resorts to using wind spectra,
such as Dryden or von Karman spectrum to model the flow
fluctuations.13,17 The flow fluctuations generated through these spec-
tra by and large possess long time scale fluctuations, i.e., the flow
fluctuates at a rate much slower than the system scale.15 A disadvan-
tage of such a spectrum based model is the difficulty in control of
the underlying correlation structure. In other words, generation of
rapid fluctuations (short time scale fluctuations) becomes computa-
tionally tedious. Therefore, in order to gain control of the correlation
time of the input flow fluctuations (and in turn the time scales),
Venkatramani et al.15 used a canonical model to represent the flow
fluctuations.

Accordingly, the flow U is considered to fluctuate about a mean
component Um such that,

U(τ ) = Um + f (τ ). (8)

Here, f (τ ) represents the fluctuating component of the flow
speed, modeled as a sinusoid with randomly time-varying frequency
component as found in Refs. 15, 20, and 41. Thus, f (τ ) is repre-
sented as

f (τ ) = σUm sin(ωr(τ )τ ). (9)

Here, σ represents the intensity of the fluctuations, ωr(τ ) is the
frequency of the sinusoid having a random variation with time,
such that ωr(τ )= ω1 + κR(τ ). Note thatω1 represents the frequency
of the oscillation. This frequency is perturbed by an amount κ at
every time step using a uniformly distributed random number gen-
erator R(τ ). The addition of κR(τ ) at each time step introduces short
time scale fluctuations.

To generate the long time scale fluctuations, one typically resorts
to the use of a Karhunen–Loeve Expansion (KLE) as found in Venka-
tramani et al.15 However, the use of this methodology is rather
restricted to isolated cases of extremely long time scales. As the time
scales become shorter, one encounters a substantial computational
effort in generating the stochastic wind. Further, the use of KLE often
demands aGaussian autocorrelation function. If a non-Gaussian pro-
cess is involved, one needs to carry out a Nataf’s transformation to
obtain the equivalent Gaussian process.42 This, consequently, leads
to further computational difficulties, especially if one needs to vary
the scales of the fluctuation. Since the present study anticipates a need
for controlling the time scales of the flowfluctuations, a relatively ver-
satile model that alleviates the above issues is considered. By using a
moving average filter function, the flow was tailored to fluctuate at a
relatively slower rate, thereby generating long time scale fluctuations.
A typical moving average function computes the mean of the chosen
window and is represented by the following equation:43

Un =

∑b
i=a Ui

(b − a) + 1
, (10)

where U i is the flow speed at the ith instant, limits “a” and “b” are
defined by the window size, and Un is the average flow speed of the

Chaos 29, 043129 (2019); doi: 10.1063/1.5084719 29, 043129-4

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Time variation of the input flow under (a) short time scale fluctuations and
(b) long time scale flow fluctuations.

nth window. Changing the window size can generate tailored fluc-
tuations with the requisite correlation time. The “filt” command in
MATLAB is used in this study to perform the same.

A sample time history of the short time scale flow fluctuations,
U(τ ), is shown when Um = 2.8, σ = 0.8, ω1 = 0.11, and κ = 0.5 in
Fig. 2(a). The response is shown to vary rapidly with time, indi-
cating the overwhelming presence of very small time scales. This
observation is further supported by examining the spectrum of
the fluctuations provided in Refs. 15 and 18 and are not repeated
here for the sake of brevity. Figure 2(b) shows a sample repre-
sentation of a long time scale flow fluctuation, where Um = 2.8,
σ = 0.2, and a window size of 500 [which is equal to (b− a)+ 1
in Eq. (10)] is used in the filter function. The values of ω1 and κ

remain the same. On visually investigating the response, it becomes
evident that the response is quite different from Fig. 2(a). The
fluctuation of the flow is relatively very gradual with time. It is
worth remembering that here only a qualitative description of the
“short” and “long” time scale fluctuations are provided. A rigorous
discussion and quantitative analysis of the same can be found in
Venkatramani et al.15

IV. RESULTS AND DISCUSSIONS

This section focuses on investigating the coupled interaction
between the pitch and the plunge modes as the dynamics tran-
sitions to aeroelastic flutter through a state of intermittency. The
governing equations of motions [Eqs. (3)–(6)] are solved using an
adaptive time step based Runge Kutta algorithm in MATLAB. A
stringent tolerance measure for the time step is imposed. With the
mean flow speed (Um) as a bifurcation parameter, the aeroelastic
responses (pitch and plunge motions) are systematically obtained.
First, the route to flutter via intermittency is shown by present-
ing the time histories of the responses. Next, the presence of
synchrony between the pitch and the plunge modes at different
dynamical states is identified through qualitative and quantitative
measures.

A. Intermittency route to aeroelastic flutter

In the absence of flow fluctuations, the aeroelastic response dies
down for U <Ucr. Here, Ucr is the critical speed [see Fig. 3(a)-I].
At U ≥Ucr, the responses transforms itself into LCOs via a Hopf
bifurcation;44 refer Fig. 3(a). Using the parameters provided in Lee
and Leblanc,44 the onset of flutter is identified to be Ucr = 6.2. How-
ever, the physical mechanism behind the dynamics observed in the
presence of fluctuating flows deserves a closer look. The transition
from a low amplitude responses to LCOs is found to occur through
a regime of intermittent oscillations [see Figs. 3(b)-II and 3(c)-II
for short and long time scale flow fluctuations, respectively], where
segments of periodic oscillations coexists with segments of compara-
tively lower amplitude aperiodic oscillations. This dynamical state is
characterized as intermittency.

In aeroelastic systems, the interplay between the relative time
scales of the input flow fluctuations with respect to the natural
time scales of the structural modes dictates the qualitative type of
intermittency.45 If the flow possesses predominantly long time scales,
then one encounters an “on-off” type intermittency in the preflutter
response.46 The response randomly alternates between large ampli-
tude periodic oscillations, called “on” state, amidst near rest states,
called “off” state [see Fig. 3(c)-II]. On the other hand, flows with
rapid fluctuations, i.e., with short time scales, give rise to “burst” type
intermittency. In this case, the response randomly alternates between
“bursts” of periodic oscillations, interspersed amidst aperiodic oscil-
lations [see Fig. 3(b)-II]. In both these cases, as themean flow speed is
increased close to the critical speed, the “bursts” or “on” states appear
more frequent with large amplitudes, eventually giving rise to sus-
tained LCOs [see Figs. 3(b)-III and 3(c)-III]. Note that the response
dynamics presented here are qualitatively similar to that presented in
the wind tunnel experiments by Venkatramani et al.20,41,47

1. Dynamics under short time scale flow fluctuations

The pitch and plunge responses obtainedwhen the airfoil is sub-
jected to short time scale flow fluctuations are presented in Fig. 4.
The noise intensity “σ ” is of the O(1). It is worth mentioning that
the purpose of presenting overlapping time series in Fig. 4 is to only
showcase the dynamical signature of the system. A noisy low ampli-
tude response is observed at a mean speed Um = 2.8, as shown in
Fig. 4(a). At a mean speed Um = 5.2, the responses comprise of spo-
radic burst of periodic oscillations amidst relatively low amplitude
aperiodic oscillations. This signature is characteristic of “burst” type
intermittency and is shown in Fig. 4(b). The bursts of periodic oscil-
lations increase with the mean flow speed Um and finally gives rise
to fully developed LCOs. The responses exhibiting large amplitude
LCOs at Um = 10.5 are shown in Fig. 4(c). It can be observed that
the amplitudes of the plunge responses (ǫ) are observed to vary with
time in relative comparison to the pitch responses (α). The addition
of a cubic hardening nonlinearity in the torsional mode (α), per-
haps, makes it less susceptible to the fluctuating nature of the flow
and explains the seemingly uniform nature of the response ampli-
tude. Additionally, the location of the nonlinear hardening stiffness
might explain the relatively lower amplitude of the pitch response (α)
in comparison to that observed in the plunge response (ǫ). However,
one notes that the pitch response has a higher amplitude as shown
in Fig. 4(a). An interplay between the noise parameters and the
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FIG. 3. A plot between the root mean square (RMS) of the pitch responses vs mean flow speed in (a) uniform flow conditions (in the absence of fluctuations Um ≡U),
(b) short time scale flow fluctuations, and (c) long time scale flow fluctuations. The responses display a Hopf bifurcation in (a). Any initial disturbance dies down at speeds
U<Ucr, and, at speeds higher than Ucr, LCOs are exhibited. The flutter regime is presaged by a regime of intermittent oscillations characterized as “burst” intermittency in
(b), and, “on-off” intermittency in (c). It can also be observed that the onset of flutter occurs at speeds Um > 5.2 in (b) and Um > 6.2 in (c), owing to the difference in the noise
intensities of the flow fluctuations. Similar dynamics are observed in the plunge responses and are not shown here for the sake of brevity.

cubic nonlinearity in the system could perhaps explain this particular
response. However, the present study is largely restricted on investi-
gating the presence of synchrony in the pitch and plunge motions
during the intermittency route to flutter. Hence, investigating the

FIG. 4. Time histories of the pitch and plunge responses at (a) Um = 2.8,
(b) Um = 5.2, and, (c) Um = 10.5 generated using short time scale fluctuations.

interplay between the noise parameters and the nonlineartiy of the
system requires separate attention, and, is not the main focus of this
study.

2. Dynamics under long time scale flow fluctuations

The pitch and plunge responses obtained when the airfoil is
subjected to predominantly long time scales are shown in Fig. 5. At
mean speeds Um < 6.2, a damped signature is observed in both the
pitch and plunge responses [refer to Fig. 5(a)]. A closer inspection
reveals very small amplitude noisy oscillations to exist, owing to the
fluctuating input wind. However, since the noisy oscillations posses
amplitudes in O(10−7), for all intents and purposes, the response
characteristics are referred to as damped oscillations. However, the
framework of synchronization theory demands the presence of self-
sustaining oscillations, and, consequently, the responses obtained at
Um < 6.2 are not taken into this study. Responses exhibiting inter-
mittency at a mean speed Um = 6.2 are shown in Fig. 5(b). A visual
inspection of the time responses shown in Fig. 5(b) suggests that the
intermittency is qualitatively different from that shown in Fig. 4(b).
Indeed, the response intermittently switches between “on” states of
periodic oscillations and “off” states of decaying oscillations result-
ing in an “on-off” intermittency. Further, upon increasing the mean
flow speed, it is observed that the “on” states become more prevalent
in terms of amplitude and frequency of occurrence and finally gives
rise to LCOs. Responses exhibiting large amplitude LCOs obtained
at Um = 10.5 are shown in Fig. 5(c).

Chaos 29, 043129 (2019); doi: 10.1063/1.5084719 29, 043129-6

Published under license by AIP Publishing.



Chaos ARTICLE scitation.org/journal/cha

FIG. 5. The representative time series of the pitch and plunge responses at
(a) Um = 2.8, (b) Um = 6.2, (c) Um = 10.5 using long time scale flow fluctuations.

So far, it was shown that in the presence of input flow fluctua-
tions, an intermittency route to flutter exists. Furthermore, based on
the scales of flow fluctuations, two different qualitative types of inter-
mittency exist in the preflutter regime. We now turn our attention to
investigate the instantaneous interactions between the pitch and the
plunge modes during the transition to flutter.

B. Synchronization of the pitch and plunge

oscillations

In this subsection, we proceed to investigate the synchroniza-
tion characteristics of these responses. To that end, the pitch and
plunge degrees of freedom are assumed to be two, coupled, noniden-
tical oscillators. It is to be noted that the term nonidentical is used to
signify the difference in the modal signature of the oscillations (for
the present study, the ratio of the uncoupled modal frequencies, ω
is taken as 0.2). First, the frequency content of the pitch and plunge
responses is computed by estimating the corresponding Fast Fourier
Transform (FFT). Then, the evolution of the relative phase between
the responses exhibiting different dynamics is observed, and, the cou-
pled interaction between themodes is explored to demarcate the type
of synchrony that is being exhibited.

1. Frequency domain analysis

The aeroelastic responses obtainedwhen subjected to short time
scale flow fluctuations are analyzed in the frequency domain by
computing the corresponding FFTs, and the same along with the
variation of their dominant frequencies are shown in Fig. 6. It is
well established that under uniform flows aeroelastic flutter mani-
fests when the pitch and the plunge frequencies coalesce at a critical
speed. In the present case, distinct frequency peaks can be observed
for the low amplitude, noisy response obtained at Um = 2.8 [see
Fig. 6(a)]. The fact that the frequency ratio of these distinct peaks

is close to 0.2 (here this ratio is approximately equal to 0.23) indi-
cates the minimal coupling between the pitch and plunge motion at
this flow speed. The responses exhibiting intermittency at a mean
speed, Um = 5.2 [see Fig. 6(b)] appear to have the same frequency
peak; however, a broader frequency band in comparison to Fig. 6(c)
is observed. The broadband frequency response characterizes the
aperiodic segment of the intermittent oscillations, and their cor-
responding response exhibiting “burst” intermittency is shown in
Fig. 4(b). At flow speeds Um ≥ 5.2, the dominant frequencies of the
pitch and plunge responses merge (see Fig. 6), marking the onset of
LCOs. Responses exhibiting LCOs, obtained at Um = 10.5, display a
single frequency peak as shown in Fig. 6(c), and, on comparison with
Fig. 6(b) appears to have a narrower bandwidth.

Similarly, the responses obtained using long time scale flowfluc-
tuations at various mean speeds are shown in the frequency domain
in Fig. 7. The responses exhibiting “on-off” intermittency at a mean
speed Um = 6.2 display a broadband response with multiple fre-
quency peaks [see Fig. 7(a)]. These peaks give rise to the “on” states
present in the response (refer Fig. 5(b). The responses exhibiting
LCOs display a single dominant frequency, as shown in Fig. 7(b).
The coalescence of the dominant frequencies of the pitch and plunge
responses against the mean flow speed (Um) is shown in Fig. 7 (mid-
dle). The modal frequencies are shown to coalesce after a mean
speed of Um = 6.2, marking the onset of LCOs, and the frequency
band is much narrower in comparison to the responses exhibiting
intermittency.

2. Identification of synchronization states from

relative phase dynamics

In the earlier part, the transition to flutter has been discussed
in terms of frequency coalescence. Distinct frequencies of the pitch
and plunge responses exist at very low flow speeds, and, a single peak
with a broader frequency band is present in the preflutter regime. On
increasing the flow speed, a single frequency peak with a narrower
bandwidth is exhibited at the onset of flutter. The instantaneous
interactions between the pitch and the plunge modes are investi-
gated by estimating the instantaneous phases of the signal using the
Hilbert transform based analytic signal approach as explained in
Sec. II. The evolution of the relative phase (△φ) between the pitch
and plunge responses is presented next for different dynamical states
corresponding to both short and long time scale fluctuations.

The relative phase between the responses obtained from short
time scale fluctuations is shown in Fig. 8. The low amplitude noisy
response obtained at Um = 2.8 [see Fig. 4(a)] has distinct pitch and
plunge frequency peaks, as shown in Fig. 6(a). The corresponding
relative phase (△φ) is observed to steadily decrease, as shown in
Fig. 8(a). This monotonous increase or decrease in the relative phase
is termed as “phase drift,” and, it denotes “asynchrony” between
the pitch and plunge responses.33 At a flow speed of Um = 5.2, the
responses were observed to exhibit “burst” intermittency [refer to
Fig. 4(b)], and a broad banded frequency response was also observed
[see Fig. 6(b)]. The corresponding phase difference fluctuates about
a mean value for a certain period of time, after which it “slips” to
a new mean value. In other words, the relative phase is bounded
intermittently [refer to Fig. 8(b)]. To further examine the presence
of synchronous and asynchronous states, the evolution of the relative
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FIG. 6. A plot of the dominant frequency
(f dom) of the pitch and plunge responses
against the mean flow speed (Um). The
coalescence of the dominant frequencies
as the flow speed is increased is shown.
Amplitude spectra of the pitch and plunge
responses obtained when the structure is
subjected to short time scale flow fluctua-
tions at mean flows speeds (a) Um = 2.8,
(b) Um = 5.2, (c) Um = 10.5. Distinct fre-
quency peaks are observed for (a) low
amplitude aperiodic fluctuations. A broad-
band frequency response with a single fre-
quency peak is observed for an intermit-
tent response (b). A single frequency peak
with a narrower bandwidth is observed for
responses exhibiting LCOs in (c).

phase is shown in Fig. 9(a), with the pitch and plunge responses in
the inset. The responses in Fig. 9(b) show a synchronous behavior,
where the amplitude peaks largely occur at the same time, and the
relative phase fluctuates about a constant. However, in Fig. 9(c), the

FIG. 7. A plot of the dominant frequencies (f dom) of the pitch and plunge
responses vs mean flow speed (Um). The coalescence of the dominant frequen-
cies as the flow speed is increased is shown (middle). Amplitude spectra of the
pitch and plunge responses obtained when the structure is subjected to long
time scale flow fluctuations at mean flows speeds (a) Um = 6.2, (b) Um = 10.5.
A broadband frequency response with multiple frequency peaks is observed for
an intermittent response shown in (a), A single frequency peak with a narrower
bandwidth is observed for responses exhibiting LCOs in (b).

amplitude of the aperiodic responses is relatively small and shows
no correlation with each other, thus it can be classified as an asyn-
chronous behavior, leading to the phase slip.32 The stage at which
the relative phase oscillates about a mean value denotes synchroniza-
tion of the responses. The slip denotes imperfection in the phase
locking of the responses, due to a phase jump in any one of the
responses (here the pitch response). This coexistence of synchronous

FIG. 8. The relative phase between the pitch and plunge responses obtained from
short time scale flow fluctuations at mean speeds (a) Um = 2.8 , (b) Um = 5.2,
(c) Um = 6.5, (d) Um = 10.5. A steady decrease in relative phase difference is
observed in (a). The the phase difference oscillates about a mean value for some
time period and then decreases to a new mean value in (b). Phase slips occur in
the integer multiple of 2π in between two consecutive synchronization regions.
The phase difference oscillates about a mean value in (c) and (d), denoting
synchrony.
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FIG. 9. (a) The evolution of the relative phase between the pitch and plunge
responses during intermittency. The pitch and plunge responses are shown in
the insets when (b) the phase difference fluctuates about a constant, and, (c) the
phase difference slips. The bursts of periodic responses was found to exhibit a
synchronous behavior, as shown in (b). The relatively low amplitude aperiodic
response was found to exhibit an asynchronous response, which corresponds to
the phase slip, as shown in (c).

and asynchronous states is referred to as intermittent phase synchro-
nization (IPS).32 The phase difference of the responses at a mean
flow speed of Um = 6.5 and 10.5 as shown in Figs. 8(c) and 8(d)
oscillates about a mean value of zero. It is also to be noted that the
responses exhibit LCOs at this mean speed. The bounded oscilla-
tions of the relative phase denote synchrony between the pitch and
plunge responses. We now turn our attention to the synchronization
behavior between pitch and plunge responses when long time scale
fluctuations are used.

The evolution of the relative phase between the responses
obtained from long time scale flowfluctuations is shown in Fig. 10. As
mentioned earlier, responses at speeds lower thanUm < 6.2 have been
neglected. In Fig. 10(a), the phase difference exhibiting IPS is shown.
The evolution of the corresponding pitch and plunge response time
histories is shown in the inset of Fig. 10(a). In the vicinity of τ = 6000,
the phase difference was found to initially decrease. On closer inspec-
tion, the responses were found to exhibit an “on” state in the same
time interval. It can be observed that the amplitude peaks of the pitch
and plunge responses remain largely uncorrelated at the beginning
of the “on” state, thus the decreasing phase difference denotes asyn-
chrony. However, toward the end of the “on” state, the amplitude
peaks occur at the same time, indicating a constant phase difference
which remains constant even at the “off” state, where the small ampli-
tude oscillations exist in a synchronous state. As discussed earlier,
this denotes the intermittent phase synchronization of the responses.
The phase difference is observed to oscillate about a mean value at
Um = 10.5 [see Fig. 10(b)], denoting synchronization between the
pitch and plunge responses.

Hence, it can be summarized that the transition to flutter is
through a regime of intermittent phase synchronization of the pitch
andplungemodes, and, at the onset of flutter, the pitch and the plunge
modes exist in a state of complete synchronization. Having looked
into the synchronization transition qualitatively, we now investigate
the presence of synchrony quantitatively by estimating the PLV at

FIG. 10. The relative phase between the pitch and plunge responses
obtained from long time scale flow fluctuations at mean speeds (a) Um = 6.2,
(b) Um = 10.5. The alternating nature of the phase difference observed, exhibits
a staircase like response in (a), corresponding to intermittent phase synchroniza-
tion of the responses. The same is explained with the help of the corresponding
pitch and plunge responses at τ = 6000 provided in the inset in (a). The phase
difference fluctuates about a mean value in (b) denoting synchronization between
the pitch and plunge responses.

different dynamics for both short time scale and long time scale flow
fluctuations.

A plot between the PLV and the mean flow speed (Um) of the
responses obtained from flow speeds with short time scale fluctua-
tions is shown in Fig. 11. In region 1, the PLV remains lower than
unity and is observed to increase with the mean flow speed. This
region corresponds to the preflutter regime, consisting of very low
amplitude noisy responses and intermittent oscillations, existing as
a combination of periodic and aperiodic oscillations. As the flow
speed is increased, the aperiodic bursts reduce and sustained large
amplitude periodic oscillations begin to manifest. This increases the
PLV value signifying that the periodic oscillations correspond to
“synchronous” states and the relatively lower amplitude aperiodic
oscillations correspond to “asynchronous” states. The manifestation
of limit cycle oscillations in region 2 further substantiates this claim,
as the PLV remains very close to 1. FFTs of the pitch and plunge
responses given in the inset [see Figs. 11(b)–11(d)] show the coa-
lescence of the frequency peaks as the mean flow speed increases.
Also, the relative movement of both the peaks emphasizes that, here,
the phase locking mechanism paves the way to synchronization. The
evolution of the relative phase is shown in Figs. 11(e)–11(g). The
phase difference shown in Fig. 11(f) denotes intermittent phase syn-
chronization, and in Fig. 11(g), complete phase synchronization is
displayed.

Next, the PLV of the responses obtained when the structure is
subjected to long time scale fluctuations is presented in Fig. 12. In
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FIG. 11. (a) A plot of PLV vs Um obtained for short time scale fluctuations. The red markers indicate the points on the plot at Um = 2.8, 5.2, and, 10.5. Amplitude spectra
of the pitch and plunge responses are presented in the inset at speeds (b) Um = 2.8, (c) Um = 4.2 and (d) Um = 10.5. The corresponding evolution of the relative phase
difference are shown in (e)–(g).

region 1, the PLV value is lesser than 1 and is found to increase with
the mean flow speed Um. At a mean speed Um = 6.2, the responses
exhibit intermittent phase synchronization [refer to Fig. 12(d)],
explaining the low PLV value. On further increasing the mean speed,
the “on” states become more prevalent, both in amplitude and fre-
quency of occurrence, thus explaining the increase in PLV value.
In region 2, the responses exhibit large amplitude LCOs that largely
remain in a synchronous state [refer to Fig. 12(e)].

From Figs. 11 and 12, the responses evolve from a state of
asynchrony (shown only for short time scale fluctuations) to phase
synchronization through a period of intermittent phase synchro-
nization, regardless of the time scale of the flow fluctuations that
the airfoil was being subjected to. Since phase synchronization
was found only in the regime of LCOs, it can be understood that
the synchronization of the pitch and plunge responses leads to
the dynamic instability, and, its gradual transition is through a

FIG. 12. (a) A plot of PLV vs Um obtained for long time scale flow fluctuations. The red markers indicate the points on the plot at Um = 6.2 and 10.5. Amplitude spectra of
the pitch and plunge responses are presented in the inset at speeds (b) Um = 6.2 and (c) Um = 10.5. The corresponding evolution of the relative phase difference are shown
in (d) and (e).
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regime of intermittent phase synchronization of the pitch and plunge
responses.

V. CONCLUDING REMARKS

This study dealt with investigating coupled interactions between
the pitch and the plunge modes for an aeroelastic system under
fluctuating flows. A pitch–plunge airfoil was investigated under fluc-
tuating flows and the observed dynamics were discussed under the
purview of synchronization. Themutual synchronization of the pitch
and plunge responses was shown as a possible mechanism for inter-
mittency route to flutter. The presence of synchrony was identified by
investigating the evolution of the relative phase between the pitch and
the plunge modes and by computing the PLV at different mean flow
speeds. It was found that amixture of synchronous and asynchronous
states existed in the preflutter regime, i.e., during intermittency.
At the onset of flutter, the responses were observed to show com-
plete phase synchronization. The above observations were exhibited
irrespective of the scales present in the input fluctuating flow.

Though the present study is the first of its kind to invoke the con-
cepts of synchronization theory to describe the intermittency route to
flutter, a number of other features could be considered to strengthen
the findings. For instance, examining our findings in light of other
nonlinearities is necessary. This in turn would involve ascertain-
ing the bifurcation and response characteristics as a first step before
examining the system under the framework of synchronization. Sim-
ilarly, the role of noise intensity in affecting the extent of synchrony
was not explored. Studies in the literature,16,18 however, present that
the intensity of noise can substantially alter the dynamics, which in
turn can influence the amount of phase synchronization. Further,
the interplay between noise intensity and the underlying time scales
can affect the laminarity length of intermittent responses.46,47 There-
fore, a symbiotic change in scales and fluctuation intensity possesses
the potential to alter the synchronization description presented here.
The authors believe that a systematic stochastic bifurcation study
must be employed to quantify the above and are interesting problems
to be taken up next.
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