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A B S T R A C T

Haze is an aggregation of very fine, widely dispersed, solid and/or liquid particles suspended in the atmosphere.
In this paper, we propose an end-to-end network for single image dehazing, which enhances the CycleGAN
model by introducing a transformer architecture within the generator, which is specific for haze removal.
The proposed model is trained in an unpaired fashion with clear and hazy images altogether and does not
require pairs of hazy and corresponding ground-truth clear images. Furthermore, the proposed model does
not depend on estimating the parameters of the atmospheric scattering model. Rather, it uses a K-estimation
module as the generator’s transformer for complete end-to-end modeling. The feature transformer introduced
in the proposed generator model transforms the encoded features into desired feature space and then feeds
them into the CycleGAN decoder to create a clear image. In the proposed model we further modified the cycle
consistency loss to include the SSIM loss along with pixel-wise mean loss to produce a new loss function specific
for the reconstruction task, which enhances the performance of the proposed model. The model performs well
even on the high-resolution images provided in the NTIRE 2019 challenge dataset for single image dehazing.
Further, we perform experiments on NYU-Depth and reside beta datasets. Results of our experiments show the
efficacy of the proposed approach compared to the state-of-the-art in removing the haze from the input image.
1. Introduction

Haze is an atmospheric phenomenon where dust, smoke and other
dry objects obscure the perspective of the sky and provide an atmo-
sphere of opalescent appearance, subdued colors. In general, outdoor
photography often suffers from haze due to bad weather conditions
which results in low-quality images. Haze and fog dramatically di-
minish the visibility of indoor pictures as well, where contrast gets
reduced and the original color of the objects get affected. Significant
haze in the images or videos can affect the performance of other
analysis tasks, such as object identification/tracking, event recognition
and many more. Image dehazing especially when no reference image
is available is gaining the interest of the computer vision and graphics
researcher community as this can act as an efficient pre-processing
step to improve the other tasks. A few sample hazy images and the
corresponding haze-free images from the NYU depth dataset [1] and
NTRIE 2019 dataset [2] are shown in Fig. 1.

The approaches for single image dehazing available in the litera-
ture can be categorized into two major classes: information-based and
learning-based approaches. Traditional approaches for image dehazing
are information-based, where several image features (priors) are used.
A few example of such priors include color attenuation [3], dark
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channel prior (DCP) [4] and color line [5]. These priors are applied to
recover the transmission map of the corresponding haze-free image and
obtain the haze-free image after smoothening the obtained map. Most
of the recent haze removal techniques are learning-based. The learning-
based haze removal techniques either aim to obtain the haze-free
transmission map for the input image by training a CNN architecture
with image patches [6] or propose an end-to-end framework for ob-
taining the haze-free image directly from the input hazy image [7].
The CNN-based methods focus mainly on estimating the transmission
map and/or atmospheric light to recover smooth images through the
atmospheric dispersion model. However, CNN based techniques require
a huge number of hazy images and the corresponding haze-free images
to train, which is difficult to get and computationally costly. Recently
Generative Adversarial Networks (GANs) are being used to dehaze
images [8–10].

GANs are deep neural networks that generate synthetic data (im-
ages) based on certain input information (noise/image), where the
images of the input and the out domains may be different. The GAN
based methods for single image dehazing require a hazy input image
and the ground truth haze-free image as input (as a paired infor-
mation) [9,10]. However, using a cycleGAN network eliminates the
vailable online 1 January 2021
047-3203/© 2021 Elsevier Inc. All rights reserved.

E-mail addresses: viswachaitanya.b16@iiits.in (B.S.N.V. Chaitanya), snehasis.m

https://doi.org/10.1016/j.jvcir.2020.103014
Received 8 April 2020; Received in revised form 27 November 2020; Accepted 30
ukherjee@snu.edu.in (S. Mukherjee).

December 2020

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:viswachaitanya.b16@iiits.in
mailto:snehasis.mukherjee@snu.edu.in
https://doi.org/10.1016/j.jvcir.2020.103014
https://doi.org/10.1016/j.jvcir.2020.103014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2020.103014&domain=pdf


Journal of Visual Communication and Image Representation 74 (2021) 103014B.S.N.V. Chaitanya and S. Mukherjee
Fig. 1. Two sample hazy images (left side) and the corresponding haze-free images
(right side) are shown. First row shows a sample image from NYU dataset and the
second row shows a sample image from NTIRE 2019 challenge dataset.

need for paired information [8]. The cycleGAN network proposes an
end-to-end model for haze removal based on cycleGAN’s architecture,
introducing perceptual loss into cycle consistency loss as the loss func-
tion [8]. The cycleGAN was the first attempt to provide a cycleGAN
architecture for haze removal and shown significant improvements
in performance compared to the state-of-the-art. Motivated by the
success of cycleGAN, the proposed model aims to build an end-to-end
dehazing network by introducing a lightweight CNN architecture into
the generator in the cycleGAN. We use the AOD-Net architecture as the
light-weight CNN for our generator models transformer [7] because of
its simplicity to be easily integrated with the proposed GAN architec-
ture and its state-of-the-art performance in image dehazing. In other
words, the AOD-Net is used in the proposed approach for two reasons.
First, the simple and shallow structure of the transformer architecture
of AOD-Net makes it easily deployable as a generator architecture in a
GAN network. Second, AOD-Net has shown its efficacy in single image
dehazing, providing the state-of-the-art results. Since the similarity
measure between the ground truth and restored images has a proven
record of reducing the error of the proposed model drastically [11],
we introduce SSIM loss as a loss function in our GAN architecture. We
propose a new loss function considering SSIM loss along with the cycle
consistency loss.

The paper has two major contributions.

• We propose a simple, shallow and efficient end-to-end cyclic GAN
architecture for single image dehazing.

• We introduce a loss function specific to the image dehazing
problem, to enhance the performance of the proposed model.

• We perform an extensive experiments on the potential loss func-
tions, suitable for image dehazing. So that the proposed loss
function helps to provide a dehazed image close to the ground
truth but at the same time, emphasize the perceptual factor,
rather than blindly believing on the ground truth.

Next we discuss the related works that have been done in single image
dehazing.

2. Related works

Single image dehazing is gaining significant attention of researchers
in computational imaging and vision [4,6,7,12]. Schechner et al. pro-
posed an instant polarization based model for image dehazing based
on the intuition that, the air-light scattered by the suspended particles
2

are partly polarized [13]. Similar approach was made in [14], where
the Markov random fields was applied to optimize the cost function
efficiently through multiple methods like graph-cuts and belief prop-
agation for single image dehazing. Fattal, in [5] developed a refined
model of clear image formation that involves a single picture, which in
relation to the transmission function accounts for the surface shading.
Unlike [14], Fattal [5] tried to distinguish uncorrelated fields, namely
the shading of objects and the attenuation of particles. Ancuti et al. [15]
applied a fusion-based approach that requires two tailored versions of
the hazy picture as inputs which are weighted by particular maps to
deliver precise haze-free outcomes.

The problem of image dehazing is formulated based on the classical
scattering model of the atmosphere:

𝐼(𝑥) = 𝐽 (𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥)), (1)

where 𝐼(𝑥) is the hazy image and 𝐽 (𝑥) is the radiance of the scene
(‘clear image’) to be recovered. Here 𝐴 refers to global atmospheric
light, 𝑡(𝑥) is the transmission matrix and 𝛽 is the scattering coefficient
of the medium and d(x) denotes pixel-wise Depth Map.

𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥), (2)

𝐽 (𝑥) = 1
𝑡(𝑥)

𝐼(𝑥) − 𝐴 1
𝑡(𝑥)

+ 𝐴. (3)

Various methods e.g. [3,4,16–18] have been proposed for image
dehazing using some additional information other than depth map
of the image. Xie et al. [16] proposed an image dehazing algorithm
using dark channel prior and Multi-Scale Retinex. In [3], a color
attenuation was estimated before removing haze. In [3], the depth
information of a hazy image is reconstructed using a linear model for
generating the color attenuation prior and learning the parameters of
this linear model by supervised model. Using this reconstructed depth
information, transmission is estimated and scene radiance is recovered
by means of classical scattering model of the atmosphere. In [4], the
dark channel prior (DCP) is used for haze removal. DCP is one of the
most effective image priors for haze removal, which is a type of outdoor
Haze-free image statistics. The idea of DCP is based on an observation
that there are pixels with very small intensities in at least one channel
of color in most of the local patches of haze free outdoor images.
Colores et al. [19] applied DCP and Radon transform for haze removal.
However, in cases of indoor images and images containing sky region,
the DCP based approaches fail [20].

Various visual priors other than DCP have been proposed to re-
move haze from images [5,21,22]. Fattal [5] proposed the color line
model for haze removal. Recently non-local total variation (NLTV)
regularization has been suggested in [21], concentrating on finding the
excessive information and depth structure in images that reduce noises
and artifacts after dehazing. Kumar et al. proposed a color correction
mechanism to generate the clear (smoothed) transmission map of the
image, from which, the haze free image is produced by atmospheric
scattering model [22]. Borkar et al. [12] proposed a combination of
the DCP and color line priors to obtain a haze-free transmission map.
Recently, effort has been made to clear the artifacts observed in the
images after haze removal, by Nearest Neighbor regularization on the
haze-free transmission map of the image [20]. Further in [20], adaptive
filters has been proposed to handle sky regions in the outdoor images.
A similar effort was made in [23] by applying an adaptive filter to
smoothen the atmospheric light at the sky region of the image.

After introduction of deep learning techniques, several methods
have been proposed for haze removal using deep networks [6,17,18].
In [17], Liu et al. used both domain knowledge and haze distribution
in the from of prior and data respectively to estimate scene radiance.
In [18], Yang et al. proposed a Disentangled end-to-end Dehazing
Network to generate realistic images without haze using only unpaired
supervision and multi-scale adversarial training. In [6], Cai et al.
suggested a trainable end-to-end scheme called DehazeNet for the
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assessment of medium transmission which is designed based on the
atmospheric scattering model.

Several attempts have been made to employ CNNs to recover 𝑡(𝑥)
from 𝐼(𝑥) (Eq. (1)) [7,24–27]. Then 𝐽 (𝑥) is estimated from (3) with
𝐴 (global atmospheric light) estimated using some empirical methods.
The CNN-based techniques focus on estimating either the transmission
map or the atmospheric light from the given image, from which after
applying a smoothening operation, clean images are recovered by
atmospheric scattering model shown in (3). In [24] an effective CNN
is proposed for image dehazing using three architectural variants to
investigate the dependence of dehazed image quality on parameter
count and model the design. In [28] a cardinal color fusion network is
suggested to remove single image haze. The first two versions of [24]
use a single encoder–decoder convolutional extractor and the third
uses an encoder–decoder pair to estimate the atmospheric coefficient
and transmission map. Every version of the above model finish with
a network of pyramid image refinement to make the final dehazed
image. A two stage network is used in [28] to dehaze image using
color fusion network. The first phase fuses color data in hazy images
and produces multi-channel depth maps, whereas in the second phase,
scene transmission map is estimated from the previous dark channels
using multi-channel multi-scale CNN to restore the scene. On the other
hand, the Ranking-CNN proposes to increase the CNN structure so
that attributes of hazy images in the statistics and structures can be
captured simultaneously. In [25], a U-Net like encoder–decoder pro-
found network was suggested via progressive feature fusions to directly
learn extremely nonlinear transformation function from observed hazy
picture to the ground-truth. In [26], the CNN is used as a quality
benchmark, proposing a technique comparing different output patches
with the initial hazy version and then selecting the best one to unravel
a clear image patch. Recently, AOD-NET [7] (All-in-One Dehazing
Network) proposed a full end-to-end dehazing CNN model based on re-
formulation (1), generating 𝐽 (𝑥) straight from 𝐼(𝑥) without any other
intermediate steps like transmission map or atmospheric light.

The architecture of AOD-Net consists of two components [7]: a
K-estimation module with five convolutional layers all together to
estimate 𝐾(𝑥) by 𝐼(𝑥) and a clear image generation module to estimate
𝐽 (𝑥) by 𝐾(𝑥) and 𝐼(𝑥) using the following equations:

𝐽 (𝑥) = 𝐾(𝑥)𝐼(𝑥) −𝐾(𝑥), (4)

𝐾(𝑥) =
1

𝑡(𝑥) (𝐼(𝑥) − 𝐴) + 𝐴

𝐼(𝑥) − 1
. (5)

The end-to-end learning procedure makes AOD-NET simple and easy
to fit in any other architectures. Densely Connected Pyramid Dehazing
Network (DCPDN) [29] and Gated Context Aggregation Network [30]
are few other techniques for image dehazing. In [30], image is dehazed
using an end-to-end gated context aggregation network instead of using
traditional low-level image priors as the restore constraints, whereas
in [29], transmission map and atmospheric light are learnt collectively
using an end-to-end network. In [31], multi-scale convolution networks
(MSCNN) was proposed using prior-atmospheric illumination.

Although significant efforts have been made for dehazing, the vali-
dation of the dehazing processes remains a less-visited problem, due to
the lack of sufficient number of real hazy pairs and the corresponding
haze-free images. Several datasets have been created to resolve this is-
sue, such as RESIDE (REalistic Single-Image DEhazing) [32], composed
of both synthetic and real-world hazy pictures; I-HAZE [33], comprising
of 35 picture pairs of hazy and matching hazy-free (ground-truth)
indoor pictures; O -HAZE [34], comprising of 45 distinct outdoor scenes
representing the same visual material collected in haze-free pictures;
Dense-Haze [35], a dataset characterized by thick and homogeneous
hazy scenes, including 33 pairs of true hazy and matching hazy-free
pictures of different outdoor scenes; a dataset of 1449 RGBD pictures
is implemented in [36], capturing 464 different indoor scenes with
comprehensive annotations.
3

The Generative adversarial Networks (GANs) are deep architectures
gaining attention of researchers of different areas related to machine
learning [37] having potential to learn to imitate any data distribution.
Efforts have been made to apply GANs for single image dehazing [38,
39]. Zhang et al. proposed a multi-task technique in [38], consisting of
three modules which are map assessment through GANs, hazy feature
extraction and picture dehazing. All modules were trained together us-
ing a loss function combining the perception loss and Euclidean loss of
pixels. Enhanced Pix2pix Dehazing Network (EPDN), produces a haze-
free picture without depending on the physical scattering model [40].
The EPDN architecture is integrated in a GAN, followed by a well-
designed enhancer. Efforts have been made to apply conditional GAN
(cGAN) [41] for haze removal. In [9], the clear image is estimated by a
trainable, end-to-end cGAN architecture. In [10], a GAN is trained using
a gradient penalty to implement the Lipschitz restriction, to know how
the probabilities of the clear images are distributed based upon haze
affect images.

As combined information from different domains are difficult to
locate in most cases, cycleGAN’s provides unsupervised capacity for
training. CycleGAN was implemented using Cycle-Consistent Adversar-
ial Networks in [42] for Unpaired Image-to-Image Translation. This is
helpful in applications such as image dehazing where paired images
are difficult to get, during training. Disentangled Dehazing Network
(DDN) was implemented in [8] to estimate scene radiance, map trans-
mission, and global light atmosphere through the combined use of
three generators. These techniques involve parameters estimation of the
atmospheric scattering model in the training stage which is different
from the proposed technique.

Motivated by the success of cycleGAN for haze removal, we propose
an improved cycleGAN architecture with an encoder–decoder (ED) ar-
chitecture as generator. We fit the AOD-NET architecture [7] within the
ED architecture in order to generate a clear image using an end-to-end
system. Next we discuss the proposed method in detail.

3. Proposed method

We propose an improved CycleGAN architecture for end-to-end de-
hazing of image, with two major modifications. First, we substitute the
CycleGAN feature transformer portion with the AOD-NET architecture.
Second, we apply a loss function specific to the dehazing problem. In
this section we start with an overview of the AOD-Net architecture, fol-
lowed by a description of the proposed cycleGAN architecture. Finally
we discuss the proposed loss function.

3.1. AOD-NET architecture

We use AOD-NET [7] as a feature transformer in the generator of
the CycleGAN architecture [42]. The AOD-NET comprises of a module
of estimation 𝐾 which has 5 layers of convolution to estimate 𝐾(𝑥) and
many element wise multiplication layers and addition layers to retrieve
the clear picture. The K-estimation module comprises of five layers of
convolution, which has a ‘‘concat1’’ layer combining the characteristics
from the ‘‘conv1’’ and ‘‘conv2’’ layers. Likewise, ‘‘concat2’’ layer brings
together the characteristics from ‘‘conv2’’ and ‘‘conv3’’ layers. Simi-
larly, ‘‘concat3’’ combines the characteristics from ‘‘conv1’’, ‘‘conv2’’,
‘‘conv3’’ and ‘‘conv4’’ layers. The need for using K-estimate module is
for complete end-to-end modeling for restoring the clean image.

In the proposed method we make a slight modification on the
traditional AOD-NET architecture in order to make the proposed model
symmetric so that it can be fit into the symmetric architecture of the
generator model in the CycleGAN. The modifications are only related
to the feature dimensions so as to comply with the input–output feature
sizes of the CycleGAN generator. The modified AOD-NET architecture
is shown in Fig. 2.

The major reason for using AOD-NET is that it can be seamlessly
integrated with other profound models (such as the generator of Cy-
cleGAN), forming a pipeline that conducts high-level functions on hazy
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Fig. 2. A diagram of the modified AOD-NET architecture.
Fig. 3. Architecture of the proposed Generator model of the CycleGAN proposed in this paper.
pictures with an implicit method of dehazing. Moreover, the AOD-NET
architecture [7] shows a proven record of ability of extracting image
features related to haze. AOD-NET is effective in generalizing well in
dehazing an outdoor image.

3.2. Proposed CycleGAN architecture

The proposed CycleGAN architecture follows [8] due to the impres-
sive results produced by the architecture in single image dehazing.
However, we include a feature transformer following the AOD-NET
architecture between the encoder and the decoder architectures in the
generator model of [8]. The generator of the proposed network consists
of an encoder, a transformer and a decoder. The encoder is used to
obtain the latent features from the hazy image. A feature transformer
is used to transform the latent feature of the given image obtained from
the encoder, into a different feature space ideally to obtain the latent
features of the corresponding haze-free image. Finally a decoder is used
to generate the clear image from the transformed features obtained
from the transformer part of the generator.

Fig. 3 shows the generator architecture used in the proposed Cy-
cleGAN model. We use 3 convolution layers for the encoder part and
2 de-convolution layers for the decoder part. The weights of the conv
layers in the AOD-Net are initialized with the pretrained weights, which
were obtained by training the AOD-Net using the hyper-parameters
setup as in [7].

We use the AOD-NET architecture as a feature transformer inside
the generator to transform the features obtained from the encoder part
of the proposed CycleGAN architecture, to a desired feature space and
feed into the decoder of the generator architecture of the CycleGAN, to
generate a proposal for the dehazed image.
4

The proposed dehazing architecture, as shown in Fig. 4, consists of
two generators A and B, and two discriminators DA and DB. The Cy-
cleDehaze architecture in [8] benefits from the use of cycle-consistency
losses in addition to the adversarial losses in favor of clearing/adding
the haze. As a result, the architecture is compelled to maintain input
image textural data and produce distinctive haze-free outputs. Cyclic
consistency loss enables us to train a model that does not specifically
need paired clear and hazy instances of images. However, we add
the SSIM loss to the combined loss function in order to enhance the
similarity between the ground truth and the haze-free images. The
proposed loss function is discussed next.

3.3. Proposed loss function

The objective function (loss function) of the proposed CycleGAN ar-
chitecture is based upon the loss function proposed in CycleDehaze [8],
which is a combination of adversarial loss and cycle consistency loss.
The adversarial loss, (i.e., least squares loss) for the generator A,
𝐴𝐿(𝐴,𝐷𝑦, 𝑋), is given as follows.

𝐴𝐿(𝐴,𝐷𝑦, 𝑋) = ( 1
𝑚
)

𝑚
∑

𝑖=0
[1 −𝐷𝑦(𝐴(𝑥𝑖))]2, (6)

where 𝐴(𝑥𝑖) is the generated image from generator A and 𝐷𝑦 distin-
guishes ground truth 𝑦 from 𝐴(𝑥𝑖) where 𝑥𝑖 is an image from domain
𝑋. Similarly, the adversarial loss for the generator B, 𝐴𝐿(𝐵,𝐷𝑥, 𝑌 ), is
given as follows.

𝐴𝐿(𝐵,𝐷𝑥, 𝑌 ) = ( 1 )
𝑚
∑

[1 −𝐷𝑥(𝐵(𝑦𝑖))]2, (7)

𝑚 𝑖=0
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Fig. 4. Overall architecture of the proposed CycleGAN architecture for single image dehazing.
where 𝐵(𝑦𝑖) is the generated image from generator B and 𝐷𝑥 distin-
guishes ground truth 𝑥 from 𝐵(𝑦𝑖) where 𝑦𝑖 is an image from domain
𝑌 . Hence, the overall adversarial loss (𝐴𝐿) is given as,

𝐴𝐿 = 𝐴𝐿(𝐴,𝐷𝑦, 𝑋) + 𝐴𝐿(𝐵,𝐷𝑥, 𝑌 ). (8)

The Cycle Consistency loss, which is the pixel-wise mean error
(𝑃𝑀𝐸) uses an assumption to demonstrate how close we are to re-
turning to the original model when we convert a sample from Domain
𝑋 to 𝑌 by using the function 𝐴 on an image and then map it back to
𝑋 by using the inverse function 𝐵. In the same way, the loss caused
when the samples are translated from 𝑌 to 𝑋 and again back to 𝑌 is
estimated by 𝑃𝑀𝐸 as follows, which is the pixel-wise error between
original and recreated images.

𝑃𝑀𝐸(𝐴,𝐵,𝑋, 𝑌 ) = ( 1
𝑚
)

𝑚
∑

𝑖=0
([𝐵(𝐴(𝑥𝑖)) − 𝑥𝑖]

+[𝐴(𝐵(𝑦𝑖)) − 𝑦𝑖]),

(9)

where 𝑚 is the batch size. Hence, the loss function used in [8] becomes,

𝐿 = 𝐴𝐿 + 𝜆 ∗ 𝑃𝑀𝐸, (10)

where 𝜆 controls the impact of loss of cyclic consistency. Hence, the
update for the generators A and B are as follows:

𝐴 ∗, 𝐵 ∗= 𝑎𝑟𝑔min
𝐴,𝐵

max
𝐷𝑥 ,𝐷𝑦

𝐿(𝐴,𝐵,𝐷𝑥, 𝐷𝑦). (11)

We attempt to optimize this loss function by using the generators A or
B respectively to try to produce clear/hazy images.

Along with the above shown cyclic consistency loss function, an
additional SSIM loss function was also considered in the proposed work,
to improve the similarity index of the generated clear images. This SSIM
loss along with the pixel-wise loss helps in better recovery of objects
which were in clutter or a bit darker background. The SSIM loss is
introduced to make the generated images more visually appealing. The
SSIM loss function is defined as follows:

𝑆𝑆𝐼𝑀(𝐴,𝐵,𝑋, 𝑌 ) = ( 1
𝑚
)

𝑚
∑

𝑖=0
(1 − 𝑠𝑠𝑖𝑚(𝐵(𝐴(𝑥𝑖)), 𝑥𝑖)

+(1 − 𝑠𝑠𝑖𝑚(𝐴(𝐵(𝑦𝑖)), 𝑦𝑖))),

(12)

where the 𝑠𝑠𝑖𝑚(𝐼1, 𝐼2) between two images 𝐼1 and 𝐼2 is calculated by
using a Gaussian filter with standard deviation 𝜎. Means and standard
5

deviations at each pixel of both the images are calculated using this
filter and finally the ssim at a pixel i is computed by using the following
equation

𝑠𝑠𝑖𝑚(𝐼1, 𝐼2, 𝑖) =
2𝜇𝐼1𝜇𝐼2 + 𝐶1

𝜇2
𝐼1

+ 𝜇2
𝐼2

+ 𝐶1

2𝜎𝐼1𝜎𝐼2 + 𝐶1

𝜎2𝐼1 + 𝜎2𝐼2 + 𝐶1
, (13)

where 𝜇 is the mean and 𝜎 is the standard deviation of the images at
pixel i over the 11 × 11 Gaussian filter. The constants C1 and C2 are
used to prevent the loss value from going to ∞. The considered values
of C1 and C2 are 0.0001 and 0.0004 respectively and a value of 10
was used for 𝜆 to control the effect of cyclic consistency loss and the
adversarial loss.

Finally, the loss function for the proposed model can be written as
follows

𝐿𝑓𝑖𝑛𝑎𝑙 = 𝐴𝐿 + 𝜆((1 − 𝜆1)𝑃𝑀𝐸 + 𝜆1𝑆𝑆𝐼𝑀). (14)

PME in the above equation represents the pixel-wise mean error and
now the second part in the above equation is the newly considered
cyclic consistency loss. Here 𝜆1 is used to balance the overall effect
of the pixel-wise mean loss and the SSIM loss in cyclic consistency
loss. After doing some experiments by using different values of 𝜆1, the
best value was found out to be 0.84, adding more weight-age to the
ssim loss and as a result, it puts more emphasis on learning weights
which can restore the minute structures from the hazy images more
predominantly. Next, we describe the implementation details for the
proposed method.

3.4. Implementation details

We train the proposed model using the TensorFlow framework on
a NVIDIA TITAN X GPU. Each of the experimental models was trained
for 100 epochs with a batch size of 1, which took an average of three
days to complete training for each considered model. Adam Optimizer
with a learning rate of 0.0001 was used for training. GAN training
was unstable when it was used to produce images of large sizes, which
constrained us to set the picture sizes to a fixed resolution of 256 × 256.

The proposed generator incorporates the advantages of the AOD-
NET architecture and uses it to transform the features from one space to
another and to produce high visual quality clear images. We randomly
cropped the images to 256 × 256 size during training and while testing,
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the images were downsampled to the size of 256 × 256. The model was
rained using a batch size of 1 so that more robust characteristics can
e captured from each image by the generator in a much better way.

Our motivation was to replace the original cycle GAN’s transformer
ith the model proposed by the authors of AOD-Net, which is a
ethod for single image dehazing. The hyperparameters of AOD-Net
ere already trained over the popular image dehazing dataset. We
xperimented with the proposed method after the fine tuning, but the
esults were not improved. Hence we did not consider tuning the hy-
erparameters in AOD-Net after combining with the GAN’s generator.
ext, we show our model’s quantitative comparison with the state of

he art models and qualitative results on a few well-known hazy images
rom the real world.

. Experiments and results

In this section, we provide the results of various experiments carried
ut on the proposed model. We apply the PSNR and SSIM [43] metrics
or quantitative measurement of the proposed model compared to the
tate-of-the-art. First, we provide a brief description of all the datasets
sed in this study to validate the proposed method. Next, we discuss
he results obtained by the proposed method on different datasets,
ollowed by the result of applying the proposed method on some real
azy images for qualitative comparison with the state-of-the-art.

.1. Datasets and experiments

Following the recent deep learning-based methods for single image
ehazing, we use the NYU-Depth V2 dataset [36] and the RESIDE-
dataset [32] for conducting our experiments. The NYU-Depth V2

ataset contains up of 1449 pairs of scenes, each comprising of a clear
cene and the corresponding hazy image after applying synthetic haze
n it.

The reside-𝛽 dataset [32] consists of two parts, namely Outdoor
raining Set (OTS) and Real-world Task Driven Testing Set (RTTS). The
TS part contains around 70,000 hazy images obtained from 2061 real-
orld outdoor clear images by applying haze of different intensities. A

maller version of this dataset is also available which is called as Reside-
tandard which has Synthetic Objective Testing Set (SOTS) containing
00 hazy images. This set was used to get the quantitative performance
f all the competing methods.

The above two datasets are first used to train the proposed model
ithout SSIM loss function and then were used to train the model with
SIM loss function separately, and the results are compared. Next, we
resent the results obtained by the proposed method compared to the
tate-of-the-art, when applied to the two datasets.

.2. Results on NYU-depth dataset

We experiment with the proposed modified CycleGAN model with
he two different loss functions: first without including the SSIM loss
nd second, including the SSIM loss. The results are shown in Table 1
ompared to the state-of-the-art. The average PSNR and SSIM values are
aken as the measures for analyzing the performance of the competing
ethods.

Table 1 shows that, the proposed haze-specific generator network
i.e., inclusion of the AOD-NET architecture inside the generator net-
ork) has improved the performance compared to the general Cycle-
AN network. Also, the use of perceptual loss and cycle consistency loss
elped improve the performance over general CycleGAN architecture
CycleDehaze). Moreover, inclusion of the SSIM loss have enhanced the
erformance of the proposed model, both in terms of PSNR and SSIM
easures. This demonstrates that using AOD-NET as a transformer and

lso using ssim loss function along with adversarial and cyclic consis-
ency loss functions have actually helped us achieve better outcomes
6

han just using the normal CycleGAN.
Table 1
Average PSNR and SSIM values obtained by the state of the art models and the proposed
models when applied on the NYU depth V2 dataset [36].

Model PSNR SSIM

Cycle-GAN [42] 13.38 0.59
Cycle-Dehaze [8] 15.41 0.66
DehazeNet [6] 18.96 0.775
MSCNN [31] 19.11 0.8295
Deep DCP [44] 19.25 0.832
AOD-NET [7] 19.69 0.8478
GMAN [45] 20.53 0.8081
Proposed model without ssim loss 22.84 0.9114
Proposed model with ssim loss 21.31 0.8846
*Proposed model (with PSNR loss) 6.92 0.33
*Proposed model (with PSNR and SSIM loss) 6.65 0.29

Table 2
Average PSNR and SSIM values obtained by the state of the art models and the proposed
models when applied on the Reside-𝛽 dataset [32].

Model PSNR SSIM

DehazeNet [6] 21.14 0.8472
MSCNN [31] 17.57 0.8102
AOD-NET [7] 19.06 0.8504
Proposed model (with normal loss function) 21.78 0.7988
Proposed model (with SSIM loss included) 20.05 0.83070

Table 3
The PSNR and SSIM values obtained by the proposed model for different values of 𝜆1
to penalize PME and SSIM loss, in the proposed loss function, when applied on the
NYU depth V2 dataset.
𝜆1 PSNR SSIM

0.25 22.00 0.8186
0.40 22.26 0.8217
0.50 22.49 0.8271
0.75 22.42 0.8330
0.80 22.56 0.8331
0.84 22.77 0.8301
0.90 22.01 0.8175

4.3. Results on reside-𝛽 dataset

The next experiment conducted was to train the proposed modi-
fied CycleGAN models on Reside-𝛽 dataset. This section contains the
quantitative results obtained by the competing methods, when reside-
𝛽 dataset was used for training and testing. The average PSNR and
SSIM values of the proposed models when tested on Reside-𝛽 dataset
compared to the other image dehazing models are shown in Table 2.

Table 2 depicts that, the GAN based model has reduced the per-
formance of the dehazing model in general, typically when applied
on outdoor images (as most of the images in the Reside-𝛽 dataset are
outdoor images). Another point can be noted from Table 2. The PSNR
values obtained from the GAN based models shows better results com-
pared to the other deep network models, whereas, the SSIM values for
the GAN based models reduces compared to the other deep networks.
However, the use of SSIM loss in the proposed model still improved the
performance and made it comparable with the state-of-the-art.

Table 1 shows the results of the proposed method compared to
the state-of-the-art, when applied on the NYU depth v2 dataset, which
consists mainly of indoor images with complicated texture. Whereas,
Table 2 shows the results related to the Reside-beta dataset, which
mostly consists of outdoor images with varying depth and light. The
proposed method, due to the SSIM loss, works better for outdoor images
where color variation is more. The SSIM loss helps the result image
to come closer to the ground truth RGB values. Hence, works better
for Reside-𝛽 dataset. However, the proposed method shows comparable
results on indoor images as well. The PSNR metric emphasizes on
the texture information, especially for indoor images. Whereas, SSIM



Journal of Visual Communication and Image Representation 74 (2021) 103014B.S.N.V. Chaitanya and S. Mukherjee
Fig. 5. Graphical representation of the varying trends in PSNR and SSIM results of the
reconstructed images as the values of 𝜆1 is varied.

Fig. 6. Results of the proposed method when tested on two sample images taken from
the NYU depth V2 dataset. (a) the hazy images and (b) the clear image dehazed by
the proposed method. The proposed model, due to the inclusion of SSIM loss, provides
more closer results to the ground truth, by preserving the minute texture information
(especially in the second image).

emphasizes on color information. Since Table 2 is based on the Reside-
𝛽 dataset, where outdoors scenes are available, the proposed SSIM loss
based method provides a higher SSIM value, but a lower PSNR value.

4.4. Experiments on the 𝜆1 value

We perform further experiments on the proposed model to find
a suitable value for 𝜆1 in Eq. (14); the hyper-parameter used for
penalizing PME and SSIM loss functions in the cyclic consistency loss
considered in this paper. For determining the best suitable value for
𝜆1, each of the models with respective to a 𝜆1 value, were trained for
50 epochs each. The efficacy of the proposed model in terms of PSNR
and SSIM values obtained on the NYU Depth V2 dataset, for different
values of 𝜆1 are shown in Table 3. A graphical depiction of the same
can be seen in Fig. 5.

Table 3 and Fig. 5 depict that, the efficacy of the proposed method
achieves its best for a 𝜆 value within the range of 0.75 to 0.84.
7

1

Fig. 7. Results of the proposed method when tested on two sample images taken from
the Reside-𝛽 dataset. (a) the hazy images and (b) the clear image dehazed by the
proposed method. The proposed model, due to the inclusion of SSIM loss, provides
more closer results to the ground truth, by preserving the minute texture information
(houses in the first image and background trees in the second image).

Fig. 8. Results of the proposed method when tested on few popular real world hazy
images. (a) hazy image (b) generated clear image by the proposed model without ssim
loss (c) generated clear image by the proposed model with ssim loss.

This means, the proposed SSIM loss plays more significant role as an
objective function, compared to the PME.

4.5. Additional experiments with loss functions

We further experiment with different potential loss functions to
make sure that, the proposed model provides result images close to
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Fig. 9. Qualitative results comparing the proposed models performance when different loss function were considered.
Fig. 10. Qualitative results comparing the proposed method with the state-of-the-arts.
the ground truth, without loosing its perceptual quality by blindly
relying on the ground truth. To achieve this goal, we train the proposed
model with two more different combinations of loss functions. First, the
SSIM loss is replaced by inverse of PSNR values of the reconstructed
images, in the proposed loss function. The second experiment was to
consider both the SSIM loss and inverse of PSNR, along with the PME
in the cyclic consistency loss term of the generator’s training loss.
The quantitative results for the two additional experiments are shown
in Table 1 with the asterisk (*) mark. The results are comparatively
inferior than the proposed loss function. The qualitative results for the
considered variations on loss functions are shown in Fig. 9, which again
establish the efficacy of the proposed loss function.
8

4.6. Qualitative results

In order to experiment on the robustness of the proposed model,
we apply the proposed image dehazing model on two kinds of im-
ages: indoor hazy images containing minute texture information (NYU
Depth V2 dataset) and outdoor images containing textured background
(Reside-𝛽 dataset). By analyzing the performance of the proposed
method on these two datasets, we observed that the proposed method is
robust for both indoor and outdoor hazy images and is able to preserve
the minute texture information present in the images while dehazing
them.
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Fig. 6 demonstrates the qualitative results obtained by the proposed
model when tested on two sample images of the NYU Depth V2 dataset.
We can observe, especially in the second image of Fig. 6, that the
proposed method is able to preserve the minute texture information
present in the image, while dehazing it. Fig. 7 shows the qualitative
results obtained from the proposed method when tested on two sample
images of the Reside-𝛽 dataset. Clearly, the proposed model is able to
reserve the minute information in both the images of Fig. 7 (houses
n the first image and background trees in the second image).

Fig. 8 shows a qualitative comparison between the results of the
roposed model with SSIM loss and without SSIM loss. We can observe
n Fig. 8 that, the use of SSIM loss to the proposed model help in
reserving the minute texture information of the image, and make
t more closure to realistic haze-free images. Moreover, the proposed
SIM loss can provide much better color to the objects in the image
e.g., trees in the first image). It can be observed from Fig. 8(b) and
c) that the proposed model has clearly distinguished between what is
og and what is scattered sunlight and also removed only the portion of
og that is noticeable to us while effectively regenerating the sunlight in
he picture. As AOD-NET was able to generalize well in distinguishing
og and white light, embedding the same AOD-Net architecture in the
enerator of the proposed model has boosted the ordinary cycleGAN
rchitecture to successfully generalize well in distinguishing between
og and white light.

In addition to being able to remove haze, the proposed model
lso focuses on adding haze to pictures due to the cyclic mechanism
nherent in the architecture, which can produce much realistic haze-
ree image. Therefore, the technique learns what is haze in the specified
icture irrespective of the issue of dehazing the picture. Since the
hickening of haze in some parts of the pictures is very high, in such
ases, our model cannot estimate the actual color of the ground truth
mage.

Few attempts have been made to address the above problem of
ifferent haze levels in the image. The most recent of such methods,
iao et al. [46] have proposed a haze layer-based dehazing algorithm
hich involves predicting a residual image as an intermediate result
hich is used to get the final dehazed image. The algorithm was able

o get over the problem of not being able to estimate the color in
ases of dense haze by being able to predict the different layers of haze
hat might be present in the input image. But due to the usage of an
ntermediate layer, the algorithm proposed in [46] may result in loss
f textural information in low light parts of the image, which was also
ne of the problems with AOD-Net. The proposed model has gotten over
his issue by using the improved loss function.

We believe that PSNR and SSIM cannot be considered as very good
etrics for measuring the effectiveness of a dehazing algorithm, as

hey both can provide a measure of dispersion of the result image
rom the ground truth image. However, none of them can measure the
erceptual quality of the result image. To overcome this aspect, the
roposed loss function combines the benefit of the closeness measure
f the result image from ground truth, as well as, the perceptual quality
f the result image, which is measured by the perceptual loss term. The
ualitative results shown in Fig. 8 of the revised manuscript, on real
ife images, where paired ground truth images are not available. We
an observe that, the proposed loss function could preserve the original
olor of the image, even better compared to the loss function without
SIM loss.

Finally, we show the qualitative outcomes of the proposed models
hich were trained on NYU depth V2 dataset and compared the results
ith the state-of-the-art methods including AOD-Net [7], MSCNN [31],
ycle-Dehaze [8] and CycleGAN [42] in Fig. 10. Clearly, the pro-
osed model along with the SSIM loss, outperforms the state-of-the-art
9

echniques preserving the color and texture of the images.
5. Conclusions

We have proposed an end-to-end cycleGAN network for single
image dehazing to produce haze free images from the input hazy
images without estimating atmospheric scattering model parameters.
In addition, our network offers unpaired training of hazy and ground-
based pictures. We have enhanced the standard CycleGAN network
by incorporating a haze-specific transformer network into the GAN
generator to maintain the visual quality of the produced transparent
pictures. Second, we proposed a loss function specific to the problem of
single image dehazing, by adding weighted SSIM loss to the traditional
loss functions for the dehazing problem. Our experiments show that,
inclusion of the haze-specific transformer network in the generator of
the CycleGAN architecture enhance the performance of dehazing the
image. Moreover, introduction of SSIM loss to the loss function of the
network boost the performance of the proposed model preserving the
minute textures of the image. Observing the ability of SSIM loss to help
in producing images closer to the ground truth, in future the SSIM loss
can also be used in some other applications such as image de-noising,
de-raining or image to image translation.
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