
Anand et al. Journal of Inequalities and Applications        ( 2018)  2018:285 

https://doi.org/10.1186/s13660-018-1877-6

RESEARCH Open Access

Seminormed double sequence spaces of
four-dimensional matrix and Musielak–Orlicz
function
Renu Anand1, Charu Sharma1 and Kuldip Raj1*

*Correspondence:
kuldeepraj68@rediffmail.com
1School of Mathematics, Shri Mata
Vaishno Devi University, Katra, India

Abstract

In this paper we study seminormed double sequence spaces of a four-dimensional
matrix and Musielak–Orlicz function over n-normed spaces. We explore some
interesting inclusion relations, algebraic and topological properties of these spaces.

MSC: Double sequences; Orlicz function; Difference sequences; Seminormed spaces;
n-normed spaces

Keywords: 40A05; 40A99; 46A30

1 Introduction and preliminaries

Generalizations of single sequence spaces are double sequence spaces which were initially

given by Bromwich [2]. Later on, these spaces were investigated byHardy [13],Móricz and

Rhoades [24, 25], Tripathy [39, 40], Başarır and Sonalcan [1] and many other researchers.

Hardy [13] presented the idea of regular convergence for double sequences. Recently, Haz-

arika andEsi [14] studied generalized difference paranormed sequence spaces definedover

a seminormed sequence space using ideal convergence. A double sequence x = (xkl) is a

double infinite array of elements xkl for all k, l ∈ N. A double sequence has Pringsheim’s

limit L if, given ǫ > 0, there exists n ∈ N such that |xkl – L| < ǫ whenever k, l > n. We shall

write it as P-limk,l→∞ xkl = L, where k and l tend to infinity independent of each other.

Throughout this paper, the limit of a double sequence means a limit in the Pringsheim’s

sense.

Let w, l∞, c and c0 denote the spaces of all, bounded, convergent and null sequences,

respectively. Kızmaz [16] explored the concept of difference sequence spaces and studied

the difference sequence spaces l∞(�), c(�) and c0(�). This concept was further explored

by Et and Çolak [7] who introduced the spaces l∞(�m), c(�m) and c0(�
m). Let m be a

nonnegative integer. Then for Z = c, c0 and l∞, these sequence spaces are defined as

Z
(

�m
)

=
{

x = (xk) ∈ w :
(

�mxk
)

∈ Z
}

,
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where �mx = (�mxk) = (�m–1xk –�m–1xk+1) and �0xk = xk for all k ∈ N, which is equiva-

lent to the following binomial representation

�mxk =

m
∑

v=0

(–1)v

(

m

v

)

xk+v.

Taking m = 1, we obtain the spaces studied by Et and Çolak [7]. Similarly, the difference

operators can also be defined on double sequences as

�xk,l = (xk,l – xk,l+1) – (xk+1,l – xk+1,l+1)

= xk,l – xk,l+1 – xk+1,l + xk+1,l+1

and

�mxk,l = �m–1xk,l –�m–1xk,l+1 –�m–1xk+1,l +�m–1xk+1,l+1.

In [15], Kadak and Mohiuddine extended the notion of an almost convergence and its

statistical forms with respect to the difference operator involving the (p,q)-gamma func-

tion. They estimated the rate of almost convergence of approximating linear operators by

means of the modulus of continuity and derived some Voronovskaja type results by using

the generalized Meyer–König and Zeller operators. Mohiuddine et al. [21] defined and

studied statistical τ -convergence, statistical τ -Cauchy and S∗(τ )-convergence of double

sequences in a locally solid Riesz space. Quite recently, Mursaleen and Mohiuddine [28,

29] studied the notion of ideal convergence of double sequences in probabilistic normed

spaces and also gave the concept of statistically convergent and statistically Cauchy double

sequences in intuitionistic fuzzy normed spaces. For more details also see [22, 23, 30, 38].

In [33], Orlicz introduced functions, now called Orlicz functions, and constructed the

sequence space ℓM . An Orlicz function M : [0,∞) → [0,∞) is a continuous, nondecreas-

ing and convex function such thatM(0) = 0,M(x) > 0 for x > 0 andM(x) −→ ∞ as x−→ ∞.

The idea of an Orlicz function was used by Lindenstrauss and Tzafriri [18] to define the

following sequence space:

ℓM =

{

x = (xk) ∈ w :

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞ for some ρ > 0

}

,

which is known as an Orlicz sequence space. The space ℓM is a Banach space with the

norm

‖x‖ = inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

.

A sequence M = (Mk) of Orlicz functions is said to be a Musielak–Orlicz function (see

[19, 32]). AMusielak–Orlicz functionM = (Mk) is said to satisfy the�2-condition if there

exist constants a,K > 0 and a sequence c = (ck)
∞
k=1 ∈ l1+ (the positive cone of l1) such that

the inequality

Mk(2u) ≤ KMk(u) + ck
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holds for all k ∈ N and u ∈ R
+, whenever Mk(u) ≤ a. Recently, Esi [3, 4] introduced some

new generalized difference sequence spaces using a modulus function. In [5, 6], Esi et al.

constructed new spaces of statistically convergent generalized difference sequences via a

modulus function. They studied different properties of such sequences and obtained some

inclusion relations involving these new difference sequence spaces.

In the middle of 1960s, Gähler [8] developed a satisfactory theory of 2-normed spaces,

while that of n-normed spaces can be found in [20]. Since then in the early part of the last

century, many researchers studied this concept and acquired various results, see [9–11].

For more details about sequence spaces and n-normed spaces, see, for instance, [17, 26,

27, 31, 34–36, 41] and references therein.

Let A = (amnkl) be a four-dimensional infinite matrix of scalars. For allm,n ∈N, the sum

ymn =

∞,∞
∑

k,l=1,1

amnklxkl

is called the A-mean of the double sequence (xkl). A double sequence (xkl) is said to be

A-summable to the limit L if the A-mean exists for all m, n in the sense of Pringsheim’s

convergence:

P- lim
p,q→∞

p,q
∑

k,l=1,1

amnklxkl = ymn and P- lim
m,n→∞

ymn = L.

Theorem 1.1 (Robison [37] and Hamilton [12]) The four-dimensional matrix A is RH-

regular if and only if

(RH1) P- limm,n amnkl = for each k and l,

(RH2) P- limm,n

∑

k,l |amnkl| = 1,

(RH3) P- limm,n

∑

k |amnkl| = 0 for each l,

(RH4) P- limm,n

∑

l |amnkl| = 0 for each k,

(RH5)
∑

k,l |amnkl| < ∞ for all m,n ∈N.

Let Prs denote the class of all subsets of N×N not containing more than (r, s) elements

and let {φmn} denote a nondecreasing double sequence of positive real numbers such that

(m,n)φm+1,n+1 ≤ (m+ 1), (n+ 1)φm,n for all (m,n) ∈N×N. Let w′′(X) and l′′∞(X) denote the

spaces of all double and all double bounded sequences, respectively, with elements in X,

where (X,q) denotes a seminormed space. By θ = (θ , θ , θ , . . . ) we denote the zero sequence,

where θ is the zero element of X.

Let M = (Mkl) be a Musielak–Orlicz function, p = (pkl) a bounded double sequence

of positive real numbers, and u = (ukl) a double sequence of positive real numbers. Let

(X,‖·, . . . , ·‖) be an n-normed space and let A = (amnkl) be a nonnegative four-dimensional

bounded-regular matrix. Now we define the following classes of sequences:

l′′∞
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

=

{

x = (xkl) ∈ w′′(X) : sup
k,l≥1

∞,∞
∑

k,l=1,1

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞,

for some ̺ > 0

}
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and

m′′
[

M,A,�m,u,φ,p,q,‖·, . . . , ·‖
]

=

{

x = (xkl) ∈ w′′(X) : sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞, for some ̺ > 0

}

.

Throughout the paper, we shall use the following inequality: If 0 ≤ pkl ≤ suppkl = H ,

K = max(1, 2H–1) then

|akl + bkl|
pkl ≤ K

(

|akl|
pkl + |bkl|

pkl
)

(1.1)

for all k, l ∈ N and akl,bkl ∈C. Also |a|pkl ≤ max(1, |a|H ) for all a ∈C.

The main aim of this paper is to study some classes of seminormed double sequences of

a four-dimensional matrix by using a Musielak–Orlicz function. Some interesting topo-

logical properties and interrelations are also examined.

2 Main results

Theorem 2.1 LetM = (Mkl) be aMusielak–Orlicz function, p = (pkl) a double sequence of

positive real numbers, and u = (ukl) a double sequence of positive real numbers.Then the se-

quence spaces m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖] and l′′∞[M,A,�m,u,p,q,‖·, . . . , ·‖] are lin-

ear spaces over the complex field C.

Proof We shall prove the assertion for m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖] only. Let x = (xkl)

and y = (ykl) ∈ m′′[M,A,�m,u,p,q,‖·, . . . , ·‖] and α,β ∈ C. Then there exist positive real

numbers ̺1, ̺2 > 0 such that

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

<∞

and

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mykl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

<∞.

Define ̺3 = max(2|α|̺1, 2|β|̺2). Since ‖·, . . . , ·‖ is an n-norm on X and (Mkl) is a nonde-

creasing and convex function, by using inequality (1.1), we have

sup
r,s≥1,σ∈Pr,s

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
m(αxkl + βykl)

̺3

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≤ sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mαxkl

̺3

, z1, . . . , zn–1

∥

∥

∥

∥

)

+ qkl

(
∥

∥

∥

∥

ukl�
mβykl

̺3

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
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≤ K sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

1

2pkl
amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mαxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

+K sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

1

2pkl
amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mβykl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≤ K sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

+K sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mykl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞.

Thus, αx+βy ∈m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖]. Hence,m′′[M,A,�m,u,p,q,‖·, . . . , ·‖] is

a linear space. �

Theorem 2.2 LetM = (Mkl) be aMusielak–Orlicz function, p = (pkl) a bounded sequence

of positive real numbers, and u = (ukl) a sequence of positive real numbers. Then the space

m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖] is a seminormed space with the seminorm g defined by

g(x) = inf

{

(̺)
pkl
G > 0 :

(

sup
r,s≥1,σ∈Pr,s

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

}

,

where G = max{1, suppkl <∞}.

Proof Clearly, g(x) ≥ 0 for x = (xkl) ∈ m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖]. Since Mkl(0) = 0,

we get g(θ ) = 0. Let ̺1 > 0 and ̺2 > 0 be such that

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

and

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1.

Let ̺ = ̺1 + ̺2. Then we have

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
m(xkl + ykl)

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

=

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
m(xkl + ykl)

̺1 + ̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

{(

̺

̺1 + ̺2

)

amnklMkl

[

qkl

(∥

∥

∥

∥

ukl�
mxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl



Anand et al. Journal of Inequalities and Applications        ( 2018)  2018:285 Page 6 of 12

+

(

̺

̺1 + ̺2

)

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mykl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
})

1
G

≤

(

̺

̺1 + ̺2

)(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

+

(

̺

̺1 + ̺2

)(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mykl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1.

Since ̺′s are nonnegative, we have

g(x + y)

= inf

{

(̺)
pkl
G > 0 :

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

Mkl

[

qkl

(
∥

∥

∥

∥

ukl�
m(xkl + ykl)

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

}

≤ inf

{

(̺1)
pkl
G > 0 :

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

Mkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺1

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

}

+ inf

{

(̺2)
pkl
G > 0 :

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

Mkl

[

qkl

(
∥

∥

∥

∥

ukl�
mykl

̺2

, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

}

= g(x) + g(y).

Thus, g(x + y) ≤ g(x) + g(y).

Finally, we need to prove that the scalar multiplication is continuous. Let μ be any com-

plex number. By definition,

g(μx)

= inf

{

(̺)
pkl
G > 0 :

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

Mkl

[

qkl

(
∥

∥

∥

∥

μukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

}

= inf

{

(

|μ|a
)

pkl
G > 0 :

(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

Mkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

a
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1

}

= |μ| inf

{

(a)
pkl
G > 0 :
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(

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

Mkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

a
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
)

1
G

≤ 1,

where a =
̺

|μ|

}

= |μ|g(x).

Thus, the scalar multiplication is continuous. The proof is complete. �

Proposition 2.3 For any Musielak–Orlicz functionM = (Mkl), let p = (pkl) be a bounded

sequence of positive real numbers and u = (ukl) a sequence of positive real numbers. Then

the space l′′∞[M,A,�m,u,p,q,‖·, . . . , ·‖] is a seminormed space, with a seminorm given by

g(x) = inf

{

(̺)
pkl
G > 0 : sup

r,s≥1

∞,∞
∑

k,l=1,1

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≤ 1

}

.

Theorem 2.4 LetM = (Mkl) be a Musielak–Orlicz function. Then

m′′
[

M,A,�m,u,φ∗,p,q,‖·, . . . , ·‖
]

⊂m′′
[

M,A,�m,u,φ∗∗,p,q,‖·, . . . , ·‖
]

if and only if supr,s≥1
φ∗
rs

φ∗∗
rs

< ∞ for all r, s ∈N.

Proof Let x ∈m′′[M,A,�m,u,φ∗,p,q,‖·, . . . , ·‖] and S = supr,s≥1
φ∗
rs

φ∗∗
rs

< ∞. Then, we obtain

sup
r,s≥1,σ∈Prs

1

φ∗∗
rs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≤ sup
r,s≥1

φ∗
rs

φ∗∗
rs

sup
r,s≥1,σ∈Prs

1

φ∗
rs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

= S sup
r,s≥1,σ∈Prs

1

φ∗
rs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞.

Thus, x ∈m′′[M,A,�m,u,φ∗∗,p,q,‖·, . . . , ·‖].

Conversely, suppose that

m′′
[

M,A,�m,u,φ∗,p,q,‖·, . . . , ·‖
]

⊂m′′
[

M,A,�m,u,φ∗∗,p,q,‖·, . . . , ·‖
]

and x ∈m′′[M,A,�m,u,φ∗,p,q,‖·, . . . , ·‖]. Then there exists a ̺ > 0 such that

sup
r,s≥1,σ∈Prs

1

φ∗
rs

∑

k,l∈σ

amnklMkl

[

qkl

(∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ǫ
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for every ǫ > 0. Suppose that supr,s≥1
φ∗
rs

φ∗∗
rs

= ∞, then there exists a sequence of numbers

(ri, sj) such that limi,j→∞

φ∗
risj

φ∗∗
risj

= ∞. Hence, we have

sup
r,s≥1,σ∈Prs

1

φ∗∗
rs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≥ sup
i,j≥1

φ∗
risj

φ∗∗
risj

sup
r,s≥1,σ∈Prisj

1

φ∗
risj

∑

k,l∈σ

amnklMkl

[

qkl

(∣

∣

∣

∣

ukl�
mxkl

̺
, z1, . . . , zn–1

∣

∣

∣

∣

)]pkl

= ∞.

Therefore, x /∈ m′′[M,A,�m,u,φ∗∗,p,q,‖·, . . . , ·‖], which is a contradiction. This com-

pletes the proof. �

Theorem 2.5 LetM = (Mkl) be any Musielak–Orlicz function. Then

m′′
[

M,A,�m,u,φ∗,p,q,‖·, . . . , ·‖
]

=m′′
[

M,A,�m,u,φ∗∗,p,q,‖·, . . . , ·‖
]

if and only if supr,s≥1
φ∗
rs

φ∗∗
rs

< ∞ and supr,s≥1
φ∗∗
rs

φ∗
rs
<∞ for all r, s ∈N.

Proof We omit the details since the proof is easy. �

Theorem 2.6 For Musielak–Orlicz functions M′ = (M′
kl) and M′′ = (M′′

kl) which satisfy

the �2-condition, the following relations hold:

(i) m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖]⊂m′′[M′ ◦M′′,A,�m,u,φ,p,q,‖·, . . . , ·‖]

(ii) m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖]∩m′′[M′′,A,�m,u,φ,p,q,‖·, . . . , ·‖] ⊂

m′′[M′ +M′′,A,�m,u,φ,p,q,‖·, . . . , ·‖].

Proof (i) Let x = (xkl) ∈ m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖]. Then there exists a positive real

number ̺ > 0 such that

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

<∞.

Since M′ = (M′
kl) is a continuous function, we can find a real number δ, 0 ≤ t < δ, such

thatM′
kl(t) < ǫ. Let ykl =M′

kl[qkl(‖
ukl�

mxkl
̺

, z1, . . . , zn–1‖)]. Hence we can write

∑

k,l∈σ

amnklM
′′
kl[ykl]

pkl =

∞
∑

ykl≤δ

amnklM
′′
kl[ykl]

pkl +

∞
∑

ykl>δ

amnklM
′′
kl[ykl]

pkl ,

and thus

∞
∑

ykl≤δ

amnklM
′′
kl[ykl]

pkl ≤ max
{

1,M′′
kl(1)

H
}

∞
∑

ykl≤δ

amnkl[ykl]
pkl . (2.1)
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For ykl > δ, we use the fact that ykl <
ykl
δ
< 1 +

ykl
δ
. By using the definition ofM′′ = (M′′

kl), we

have

M′′
kl(ykl) <M′′

kl

(

1 +
ykl

δ

)

<
1

2
M′′

kl(2) +
1

2

(

2ykl

δ

)

.

SinceM′′ = (M′′
kl) satisfies the �2-condition and

ykl
δ
> 1, there exists a T > 0 such that

M′′
kl(ykl) <

1

2
T
ykl

δ
M′′

kl(2) +
1

2
T
ykl

δ
M′′

kl(2) = T
ykl

δ
M′′

kl(2).

Therefore, we have

∞
∑

ykl>δ

amnkl

[

M′′
kl(ykl)

]pkl ≤ max

{

1,

(

TM′′
kl(2)

δ

)H} ∞
∑

ykl>δ

amnkl[ykl]
pkl . (2.2)

Hence, by inequalities (2.1) and (2.2), we have

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnkl

(

M′
kl ◦M

′′
kl

)

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

= sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnkl

[

M′′
kl(ykl)

]pkl

≤ sup
r,s≥1,σ∈Prs

1

φrs

K
∑

ykl≤δ

amnkl(ykl)
pkl

+ sup
r,s≥1,σ∈Prs

1

φrs

G
∑

ykl>δ

amnkl(ykl)
pkl ,

where K = max{1,M′′
kl(1)

H} and G = max{1, (
TM′′

kl
(2)

δ
)H}.

Hence,m′′[M′,A,�m,u,φ,p,q,‖·, . . . , ·‖]⊂ m′′[M′ ◦M′′,A,�m,u,φ,p,q,‖·, . . . , ·‖].

(ii) Let

x = (xkl) ∈m′′
[

M,A,�m,u,φ,p,q,‖·, . . . , ·‖
]

∩m′′
[

M
′′,A,�m,u,φ,p,q,‖·, . . . , ·‖

]

.

Then

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklM
′
kl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

<∞ for some ̺ > 0

and

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklM
′′
kl

[

qkl

(∣

∣

∣

∣

ukl�
mxkl

̺
, z1, . . . , zn–1

∣

∣

∣

∣

)]pkl

< ∞ for some ̺ > 0.
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The result follows from the following inequality:

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnkl

(

M′
kl +M′′

kl

)

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

= sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklM
′
kl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

+ sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklM
′′
kl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≤ K sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklM
′
kl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

+K sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklM
′′
kl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞,

where K = max{1, 2H–1}. Therefore, x = (xkl) ∈m′′[M′ +M′′,A,�m,u,φ,p,q,‖·, . . . , ·‖]. �

Theorem 2.7 One has the following inclusions:

l′′1
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

⊂m′′
[

M,A,�m,u,φ,p,q,‖·, . . . , ·‖
]

⊂ l′′∞
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

,

where

l′′1
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

=

{

(xkl) ∈ w′′(x) : sup
k,l≥1

∞,∞
∑

k,l=1,1

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

<∞,

for some ̺ > 0

}

.

Proof Let x = (xkl) ∈ l′′1[M,A,�m,u,p,q,‖·, . . . , ·‖]. Then

sup
k,l≥1

∞,∞
∑

k,l=1,1

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞ for some ̺ > 0.

Since (φrs) is monotonically increasing, it follows that

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

≤
1

φ11

∑

k,l∈σ

amnklMkl

[

qkl

(∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl
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≤
1

φ11

∞,∞
∑

k,l=1,1

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞.

Thus, x = (xkl) ∈m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖], which implies

l′′1
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

⊂m′′
[

M,A,�m,u,φ,p,q,‖·, . . . , ·‖
]

.

Further, let x = (xkl) ∈m′′[M,A,�m,u,φ,p,q,‖·, . . . , ·‖]. Then

sup
r,s≥1,σ∈Prs

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

<∞ for some ̺ > 0


⇒ sup
k,l∈N×N

1

φrs

∑

k,l∈σ

amnklMkl

[

qkl

(
∥

∥

∥

∥

ukl�
mxkl

̺
, z1, . . . , zn–1

∥

∥

∥

∥

)]pkl

< ∞

for some ̺ > 0,

where the cardinality of σ is taken to be 1. And then also

x = (xkl) ∈ l′′∞
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

.

Therefore,

m′′
[

M,A,�m,u,φ,p,q,‖·, . . . , ·‖
]

⊂ l′′∞
[

M,A,�m,u,p,q,‖·, . . . , ·‖
]

. �
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