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1 Introduction

The standard model (SM) of elementary particles has been completed by the discovery of

the last puzzle piece, i.e., the Higgs boson in 2012 [1, 2]. Before discovering the Higgs boson,

the non-vanishing neutrino masses reported in 1996 have demanded that the SM must be

extended to its neutrino sector with right-handed neutrinos. Recently, the neutrino flavor

structures have been steadily revealed from the viewpoints of neutrino oscillations [3, 4]

and cosmological behaviors of neutrinos [5]. The precise theoretical investigation in the

neutrino flavor structure can be one of the main pillars in the modern particle physics.

In contrast to the other SM three-generation fermions, i.e., quarks and charged leptons,

several experiments have shown that the neutrinos have tiny masses around eV scale. This

experimental result implicitly tells that there may be a particular mechanism only in the

neutrino sector. One of the mechanisms which can explain the tiny neutrino masses is the

(type I) seesaw mechanism [6–10] by means of the right-handed neutrino Majorana mass

term. Only by adding the heavy Majorana mass term at some high scale in addition to the

Dirac mass term, the effective neutrino masses can be small enough for the experimental

results, even if the Dirac mass term appears around the electroweak (EW) scale. Although

the seesaw mechanism is quite simple and beneficial in many scenarios, there is still an

ambiguous point in the detailed structures of the Dirac and Majorana mass matrices. In

usual bottom-up approaches where one assumes some extensions to the SM, it is generically

difficult to theoretically determine the concrete entries and values in the mass matrices.

Then, in order to control the matrix entries, one pursuits the models with the continuous

flavor symmetry [11], the discrete flavor symmetry [12] and the extra dimension(s) [13],

for instance.
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As well as the matrix entries in the neutrino sector, to understand an origin of the

three-generation structure behind the SM fermions is still a challenging issue. Among re-

cent topics, an interesting attempt to reveal the generation structure is to add magnetic

fluxes on compactified extra dimensions. In particular, the magnetic fluxes turned on the

torus provide multiple massless wavefunctions after the Kaluza-Klein (KK) decomposition

of fields [14, 15]. The same happens in the extensions to toroidal orbifolds [16–18] in par-

ticular those with discrete Wilson line phases [19–23]. Since such multiple massless modes

belong to the same representation of fields, the multiplicity of massless modes should be

identified as the generation structure in the SM. Many model constructions by means

of the mechanism have been done especially in the past five years, for example, super-

symmetric models [24, 25], non-supersymmetric models [26], systematic searches of three-

generation models [27–29], three-generation models with broken supersymmetry [30], quark

and charged lepton mass matrices from bulk overlap integrals [25, 26] and brane-localized

Yukawa couplings [30–32], mass spectra in the presence of brane-localized mass terms [33]

and cosmological inflation model [34], applications to volume moduli stabilization [35, 36].

It is noted that we face difficulties in generating the neutrino Majorana mass term

in the previous model buildings based on extra dimensional fluxes [24].1 In this paper,

the brane-localized mass term(s) on a toroidal orbifold T 2/Z2 analyzed in [33] is applied

to the type I seesaw scenario. Then, the Majorana mass matrix is analytically given by

the localized neutrino masses and concrete values are determined by the values of zero-

mode wavefunctions evaluated at orbifold fixed points. In addition, the Dirac mass matrix

originates from the Yukawa couplings which are analytically calculated by overlap integrals

of zero-mode wavefunctions. Thus, the seesaw mechanism in terms of brane-localized

neutrino masses at fixed points of T 2/Z2 with extra dimensional fluxes is a simple and

typical scenario.

This paper is organized as follows. In section 2, we briefly review several ingredients

for the seesaw mechanism in the orbifold T 2/Z2 on flux background. In section 3, five

patterns of neutrino mass matrices realized on such an orbifold are numerically analyzed

and compared with observed values by recent neutrino oscillation experiments. We make

conclusion in section 4.

2 Review of T 2/Z2 orbifold with fluxes

In this section, we briefly review the six-dimensional (6D) compactification on the orbifold

T 2/Z2 with fluxes, and show the KK mass spectra and wavefunctions as well as (three-

point) Yukawa coupling constants. In seesaw scenarios, such Yukawa couplings between

neutrinos and the Higgs boson provide the Dirac mass matrix after the Higgs boson develops

its vacuum expectation value (VEV). On another hand, the Majorana mass term for the

seesaw originates from the existence of brane-localized term(s) at orbifold fixed points of

T 2/Z2. This section is mainly based on [15, 17, 33, 41].

1If the flux compactification is derived from superstring theory, the Majorana mass term can be induced

by D-brane instanton effects [37–40].
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2.1 Flux background and Yukawa couplings

We consider the 6D gauge theory compactified on M4 × T 2/Z2. Here, M4 is the four-

dimensional (4D) Minkowski spacetime and we choose T 2/Z2 to be extra dimensions of

our model.

We first start in a two-dimensional torus T 2. We define two oblique coordinates y5 and

y6 as coordinates of T 2 and such coordinates are often conveniently expressed by the com-

plex coordinate z = (y5+ τy6)/(2πR), with a complex structure modulus τ ∈ C (Im τ > 0)

and a radius R, where a schematic picture is depicted in figure 1. Notice that the radius

R is associated with a compactification scale MC ∼ 1/R. The toroidal orbifold T 2/Z2 is

obtained by the identifications in the two-dimensional extra dimensions under the toroidal

periodicities and the Z2 rotation,

z ∼ z + 1 ∼ z + τ ∼ −z. (2.1)

In accordance with the above identifications, there appear four fixed points on T 2/Z2, i.e.,

at z = 0, 1/2, τ/2 and (1 + τ)/2, as described in figure 1.

Kinetic terms of 6D Weyl fermions and scalars are given as

Lkin =

∫

d4x

∫

T 2

d2z
{

iΨ̄ΓMDMΨ+ (DMΦ)†(DMΦ)
}

. (2.2)

In eq. (2.2), M runs over 0, 1, 2, 3, 5, 6, ΓM denotes the gamma matrices describing the

Clifford algebra in six dimensions, and DM = ∂M − iqAM denotes a covariant derivative

under a U(1) gauge symmetry. In the following, we discuss the toroidal case at the first

step and, then extend it to the toroidal orbifold case. In the six-dimensional action, we

assume that the vector potential Am (m = 5, 6) possesses classical non-trivial background

b =
∫

T 2 F of the field strength F = (ib/2Imτ)dz ∧ dz̄:

A(b)(z) =
b

2Im τ
Im (z̄dz). (2.3)

The consistency condition provides the quantization condition of fluxes:

qb

2π
=M ∈ Z. (2.4)

It should be mentioned that there is a controversial point about the Dirac charge quanti-

zation condition (2.4). As naturally expected, several papers [14, 16, 21] claim that a flux

density of bulk constant flux is twice as that on the original torus. On the other hand,

some of research groups [17, 19] have investigated it in the framework of conformal field

theory and have reported different quantization conditions, i.e., the same one as the origi-

nal torus. One of their claims is that eq. (2.3) behaves as an appropriate U(1) connection

on the orbifold even with the original charge quantization (2.4). Throughout this paper,

we follow the latter condition.

We perform the KK decomposition of six-dimensional fields. The six-dimensional Weyl

fermions and scalars are decomposed as

Ψ(xµ, z) =
∑

n

χn(x
µ)⊗ ψn(z), (2.5)

Φ(xµ, z) =
∑

n

ϕn(x
µ)⊗ φn(z). (2.6)
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Figure 1. The fundamental domain of the orbifold T 2/Z2 is shown. The shaded region is a

fundamental region and the black dots represent the four fixed points of the orbifold. This figure

is drawn for a generic complex structure τ ∈ C, where an angle between y5 and y6 is given as

cos θ ≡ Re τ/|τ |.

The fermion wave functions in the extra two directions are determined as eigenstates of

the Dirac operator in extra dimensional directions,

iΓmDmψn(z) = mnψn(z), (2.7)

where m = 5, 6 and mn (n = 0, 1, 2 · · · ) denote the KK mass spectrum. Hence, zero-mode

equations for n = 0 (m0 = 0) are given in terms of D ≡ D5 + τD6 as

Dψ+(z) = 0, D† ψ−(z) = 0, (2.8)

where the two-dimensional spinor is decomposed into ψ0 = (ψ+, ψ−)
T with the two-

dimensional internal chiralities. In several appropriate boundary conditions associated

with necessary gauge transformations, we describe zero-mode wave functions analytically

in terms of the Jacobi theta function [15],

ψj
+(z) ≡ Θj,M (z)

= NM eiπMzIm z/Im τ · ϑ
[

j/M

0

]

(Mz,Mτ) (j = 0, 1, 2, · · · ,M − 1), (2.9)

for M > 0. Here, NM = (2M/A2)1/4 is a normalization constant [15], where A represents

the area of the torus and NM has mass dimension +1. If the flux number M is posi-

tive (negative), there is no normalizable solution in ψ− (ψ+). Notice that eq. (2.9) tells

that eq. (2.8) has |M |-independent solutions. Hence we can identify this degeneracy of

zero-modes with a family structure for particles in the four-dimensional effective theory.

Therefore, if we introduce a non-zero magnetic flux, a chiral structure of the Weyl spinor

appears in the four-dimensional effective theory. The form of the KK masses is obtained as

m2
n =

4πM

A n. (2.10)

– 4 –
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M 0 1 2 3 4 5 6 7 8 · · · 2k 2k + 1

η = +1 1 1 2 2 3 3 4 4 5 · · · k + 1 k + 1

η = −1 0 0 0 1 1 2 2 3 3 · · · k − 1 k

Table 1. The relation between flux numbers and the numbers of zero-mode wave functions.

Also, we similarly compute a scalar wave function as the same as the fermionic one in

eq. (2.9). There is no massless (zero-)mode in the scalar field. In other words, the lowest

KK mass is non-vanishing, where the KK mass spectrum for scalars is given as

m2
n =

4πM

A

(

n+
1

2

)

. (2.11)

Next, we move to Z2 eigenstates of zero-modes under the twisted Z2 projection, i.e.,

z ∼ −z. The eigenstates of zero-modes on T 2/Z2 are expressed as linear combinations of

those in T 2 shown in eq. (2.9) [16, 17],

Θj,M
T 2/Z2,η

(z) =
1√
2

(

Θj,M (z) + ηΘj,M (−z)
)

=
1√
2

(

Θj,M (z) + ηΘM−j,M (z)
)

, (2.12)

where η denotes a Z2 parity so as to be the Z2 even (odd) as η = +1 (−1).2 As calculated

in [17, 19], the relation between flux numbers and the numbers of zero-mode wave functions

are obtained as table 1.

Using the above analytic form of zero-mode eigenstates on T 2/Z2, we can also analyti-

cally calculate Yukawa couplings as an overlap integral of three zero-modes. First, we show

the form of Yukawa couplings on T 2, and then extend them to those of T 2/Z2. Among

only zero-modes, effective Yukawa couplings after dimensional reduction can be computed

from the six-dimensional Lagrangian,

LYukawa =

∫

T 2

d2z
{

−gΨ1Ψ2Φ+ h.c.
}

⊃ −
(

g

∫

T 2

d2zΘi,M1(z)Θj,M2(z)
(

Θk,M3(z)
)∗
)

χi
1χ

j
2ϕ

k + h.c., (2.13)

where we suppose |M3| ≥ |M1|, |M2|. It is noted that the coefficient g has mass dimension

−1. Hence, Yukawa couplings can be expressed as

Y ijk = g

∫

T 2

d2zΘi,M1(z)Θj,M2(z)
(

Θk,M3(z)
)∗
. (2.14)

As calculated in [15], it is straightforward to perform an integration in Yukawa couplings

and we finally obtain

Y ijk = g
N|M1|N|M2|

N|M3|

|M3|−1
∑

m=0

ϑ

[

M2i−M1j+M1M2m
M1M2M3

0

]

(0, τM1M2M3)× δi+j+M1m,k+M3l, (2.15)

where the overall coupling is a dimensionless factor.

2In addition to the 1/
√
2 factor, we should reshape the normalization factor as (2M/A2)1/4/

√

1 + δj,M/2

(from (2M/A2)1/4) when we take the range T 2 in the d2z integration [33].
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Now, we extend this formula of Yukawa couplings to those of T 2/Z2. In this case,

Yukawa couplings can be expressed as

Y ijk
T 2/Z2

= g

∫

T 2

d2zΘi,M1

T 2/Z2,η1
(z)Θi,M2

T 2/Z2,η2
(z)
(

Θi,M3

T 2/Z2,η3
(z)
)∗
. (2.16)

Using eqs. (2.12) and (2.14), Yukawa couplings on T 2/Z2 are described as

Y ijk
T 2/Z2

=
1

2
√
2

(

Y ijk + η1Y
(M1−i)jk + η2Y

i(M2−j)k + η3Y
ij(M3−k)

+ η1η2Y
(M1−i)(M2−j)k + η2η3Y

i(M2−j)(M3−k) + η1η3Y
(M1−i)j(M3−k)

+η1η2η3Y
(M1−i)(M2−j)(M3−k)

)

. (2.17)

The concrete entries in Yukawa couplings are analytically written in the appendices

of [28, 41] for arbitrary configurations of fluxes and (discrete) Wilson lines. A selection

rule is found that Yukawa interaction terms in the Lagrangian must be invariant under the

Z2 parity transformation. Thus, we have to only consider the four patterns for η1, η2, and η3
as (η1, η2, η3) = (+1,+1,+1), (+1,−1,−1), (−1,+1,−1), (−1,−1,+1).

2.2 Brane-localized Majorana mass terms

In this paper, we focus on the Majorana mass terms localized at the orbifold fixed points

in [33],

Lbrane = −1

2

∫

T 2

d2z
4
∑

k=1

hk(ΨR)CΨR δ
2(z − zk) + h.c., (2.18)

where hk (k = 1, 2, 3, 4) are constants with mass dimension −1. Here, we assume that only

the component with the 4D right-hand chirality (R ) of the 6D Weyl spinor Ψ contributes

to the terms.3 In addition, the 4D Weyl field ΨR carries a U(1) charge (or flux). Unless

the U(1) symmetry generating family structures is broken, the above localized Majorana

mass term cannot be written down. Constructing a concrete model by introducing a scalar

field for spontaneous breaking of the U(1) (or embedding our setup into more fundamental

theories) is beyond the interest of our paper on the observed neutrino profiles.4 For the

moment, we assume an appropriate U(1) breaking mechanism. In the final section, we will

comment on how to treat the U(1) symmetry in details. The superscript C denotes the 4D

charge conjugation and zk (k = 1, 2, 3, 4) denote the Z2 fixed points, i.e.,

z1 = 0, z2 = 1/2, z3 = τ/2, z4 = (1 + τ)/2 . (2.19)

3As explicitly discussed in [42], one 6D Weyl spinor is not sufficient for constructing 6D Majorana-type

mass terms. See also [43, 44].
4Note that in a supergravity extension of our model an axion appears [21] which can be used to make

the mass term (2.18) invariant under the U(1) symmetry [32].
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The effective Majorana mass matrix in the low energy effective Lagrangian can be

computed as

Lbrane = −1

2

4
∑

k=1

hk

(∫

T 2

d2zΘi,M
T 2/Z2,η

(z)Θj,M
T 2/Z2,η

(z)δ2(z − zk)

)

(χi
R)

Cχj
R + h.c.

= −1

2

(

4
∑

k=1

hkΘ
i,M
T 2/Z2,η

(zk)Θ
j,M
T 2/Z2,η

(zk)

)

(χi
R)

Cχj
R + h.c., (2.20)

where we can analytically obtain the effective Majorana mass matrix as

(MR)ij =
4
∑

k=1

hkΘ
i,M
T 2/Z2,η

(zk)Θ
j,M
T 2/Z2,η

(zk). (2.21)

The implicit factor hk(NM )2, which has mass dimension +1, provides a typical scale of Ma-

jorana masses. When hk/
√
A ∼ O(1), this scale is close to the compactification scale MC .

Before the end of this section, we comment on the structures of the effective Majo-

rana mass matrix. For several cases, we reach the formula for wave functions on the Z2

fixed points,

Θj,M (−zk) = (−1)Mδk,4Θj,M (zk). (2.22)

Following this formula and eq. (2.12), we find

Θj,M
T 2/Z2,+1

(zk) =
√
2Θj,M (zk), (2.23)

Θj,M
T 2/Z2,−1

(zk) = 0, (2.24)

where M is an even number or k 6= 4. In the case that M is an odd number and k = 4,

we obtain

Θj,M
T 2/Z2,+1

(zk) = 0, (2.25)

Θj,M
T 2/Z2,−1

(zk) =
√
2Θj,M (zk). (2.26)

The above properties are closely related to the rank of the Majorana mass matrix.

Eqs. (2.22)–(2.26) imply that if η = −1 almost all values of wave functions on the Z2

fixed points are vanishing and the highest rank of this case is one. Thereby, we will focus

on the case η = +1.

3 Seesaw scenario in magnetic compactifications

3.1 The models

In this section, we consider the type I seesaw mechanism under the brane-localized forms

for right-handed neutrino Majorana mass terms. In our setup, the Dirac mass matrix drives

from bulk Yukawa couplings among the leptons and the Higgs doublet. This is a definitive

– 7 –
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η1 η2 η3 M1 M2 M3

Case I +1 +1 +1 −1 −4 +5

Case II +1 +1 +1 −1 +5 −4

Case III −1 −1 +1 −3 +7 −4

Case IV −1 −1 +1 −4 +8 −4

Case V −1 −1 +1 −3 +8 −5

Table 2. The five patterns of allowed model setups. Higgs field H carries a flux number and

Z2 parity (M1, η1). Similarly, left- and right-handed lepton L and N carry (M2, η2) and (M3, η3),

respectively.

difference from the model buildings in [31, 32] where the Yukawa couplings are also intro-

duced to the fixed points. A six-dimensional Lagrangian of our scenario is summarized as

LN = −gL̄NH − 1

2

4
∑

i=1

hi (NR)CNR δ
2(z − zi) + h.c., (3.1)

where L,N and H are a six-dimensional left-handed lepton doublet, right-handed neutrino

singlet and Higgs doublet, respectively. Same-sign 6D chiralities are arranged for L and N

to realize zero-mode left-handed neutrinos (νL) from L and right-handed (νR) ones from

N with three generations (see table 2).5

In general, it is possible to consider multiple Higgs fields. However, it is plausible that

the models with multiple Higgs doublets are quite uneasy because they likely suffer from fla-

vor changing neutral current(s), as well as the models have many parameters like the Higgs

VEVs unless we concretely analyze the multiple Higgs potential. Therefore, we focus on the

case that the number of parameters is minimum, i.e., the generation of Higgs field is one.

In addition, we consider the three generation of left- and right-handed neutrinos, where

the definite number of the right-handed neutrinos has not been fixed yet. According to the

previous section, brane-localized fermions must be Z2 even (η = +1) and gauge invariance

of Yukawa couplings demands |M1|+ |M2| = |M3| for Case I and |M1|+ |M3| = |M2| for the
other cases, where M1,M2, and M3 denote the flux numbers for the Higgs doublet H, the

left-handed lepton doublet L and the right-handed neutrino N , respectively. It is necessary

to note that we need to interchange M2 ↔M3 in using Yukawa couplings (2.17) except for

Case I. This is because |M3| is assumed to be the maximal flux in the notation of (2.17).

Thus, flux configurations satisfying these conditions appear just in five patterns, as shown

in table 2, where η1, η2, and η3 denote the Z2 parities for the Higgs doublet, the left-handed

lepton doublet, and the right-handed neutrino, respectively.

It should be noted about the Higgs VEV which causes the electroweak symmetry

breaking. To be naive, eq. (2.11) implies that there is no massless mode in the scalar

spectrum. A possible way to realize the EW scale would be to tune parameters in the

Higgs potential. Another route for deriving a massless scalar in magnetized setups is to

5Possible 6D anomalies can be compensated by introducing additional 6D chiral matters without zero

mode (see e.g., [45]). Another possibility would be to embed our phenomenological setup to a ten-

dimensional super Yang-Mills theory.
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consider embeddings into more higher dimensional setup with a larger gauge group, for

example, ten-dimensional super Yang-Mills theory, where the scalar originates from a KK-

decomposed higher-dimensional gauge boson [24].6 Throughout our this paper, we assume

that the Higgs massless mode causes the EW breaking appropriately.7

After the Higgs boson develops its VEV v = 174 GeV, we analytically express the

Dirac neutrino mass matrix,

(mD)ij = Y ij
T 2/Z2

v. (3.2)

Using this Dirac mass matrix and the right-handed Majorana mass matrix in eq. (2.21),

the total neutrino mass matrix in the seesaw scenario is written as

(

νL νcR

)

(

0 mD

mT
D MR

)(

νcL
νR

)

, (3.3)

where the indices for representing the three generations are suppressed. After all, we

consider MR ≫ mD in an ordinary manner of the seesaw, and then the effective left-

handed neutrino Majorana mass matrix can be described as

mLL ≃ −mDM
−1
R mT

D. (3.4)

Here, we should mention that additional contributions may occur through the seesaw

mechanism as exchanges of KK neutrinos in the Majorana mass terms if the seesaw scale

MR is close to the compactification scaleMC . In this paper, we simply assume the relation

MR ≪MC , which is realized by the condition hk/
√
A ≪ O(1) to ignore such contributions,

for simplicity (refer to the sentences around eq. (2.21)).

3.2 Numerical analyses

In the following, we will analyze the relations between model parameters and several ex-

perimental data. In our setup, there are apparently seven real model parameters, i.e., the

complex structure modulus τ ∈ C, the overall Yukawa coupling g, and localized masses on

fixed points hk (k = 1, 2, 3, 4). For scanning such model parameters, we try to fit the three

lepton mixing angles θij (ij = 12, 23, 13), the CP violating phase δCP, and the ratio of two

mass squared differences of the observed neutrino states r. In our models, these experimen-

tal values are independent of an overall factor of the mass matrix (3.4). Therefore, except

for the configurations of magnetic fluxes and Z2 parities, effective degrees of freedom for

describing mixing structures and mass differences in our models are complex structure mod-

ulus τ ∈ C and the ratio of brane-localized mass parameters ρk′ ≡ hk′/h1 ∈ R (k′ = 2, 3, 4),

if we set h1 6= 0 and g 6= 0 and assume that a sub-eV typical neutrino scale is generated by

a suitable relationship between h1 and g (through the type I seesaw mechanism). In the

following analyses, we set h1 6= 0 and g 6= 0.

6See [46] for related discussions. Quantum corrections in such setups are discussed in [47, 48].
7When the 6D setup in this paper can be derived from some classes of superstring theory, in fact there

are promising mechanisms that cause the EW breaking around 102 GeV [37, 40, 49].
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It is convenient to show a numerical sample of matrix patterns in the Dirac and Ma-

jorana mass matrices. For τ = i and ρ2 = ρ3 = 1 in Case I, they are given as

mD ∝







1.12 0.13 7× 10−5

0.03 0.96 0.27

3× 10−7 0.0056 0.85






v, (3.5)

MR ∝







6.33 0.043 0.88

0.043 3.98 1.34

0.887 1.34 4.70






MC . (3.6)

In this parameter pattern, it is found that diagonal elements are dominant and all elements

are real. Since the two of three neutrinos have a large mixing in the right-handed Majorana

mass matrix, it can be promising in explaining the observed neutrino large mixings. For

another value of τ = 1 + i, we obtain

mD ∝







1.12 −0.104 + 0.076i −5× 10−5 − 4× 10−5i

−0.022− 0.022i 0.95 + 0.15i 0.043 + 0.27i

−3× 10−7 0.0045 − 0.0033i 0.69 + 0.50i






v, (3.7)

MR ∝







6.32 + 0.0049i 0.025 − 0.035i −0.67 + 0.30i

0.025 − 0.035i 0.76 + 3.54i 0.024 + 1.32i

−0.67 + 0.30i 0.024 + 1.32i 4.42 + 1.35i






MC . (3.8)

It is easy to find that absolute value of each entry is almost the same as that before.

However, complex phases appear in several elements. Hence, non-zero value of Re τ may

fit a CP violating phase, as shown in the quark sector [50].

Now, we analyze the left-handed Majorana matrix shown in the previous subsection.

From eq. (3.4), we will derive the lepton mixing angles, the CP violating phase, and the ratio

for mass squared differences of neutrino masses by numerical calculations. Then, we will

search parameter regions for reproducing neutrino experimental data [51] as systematically

as possible.8 The lepton mixing matrix, called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix UPMNS, is conventionally written as

UPMNS =







c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13













eiα 0 0

0 eiβ 0

0 0 1






,

where sij and cij (sij , cij > 0) denote sin θij and cos θij , δCP denotes the CP violating

phase and α and β are the Majorana phases. In our numerical calculations, we target the

8Here, we assume that the charged lepton sector does not disturb patterns of neutrino mass matrix

mLL. It is quite reasonably justified in what follows. In the charged lepton sector as well as quark sectors,

the mass matrix has relatively small off diagonal entries in contrast to diagonal entries to reproduce the

hierarchical mass differences as shown in e.g., subsection 4.1 of [28]. This means that contributions from

the charged lepton mass matrix may be estimated to be typically small. For the reason, we evaluate the

lepton mixing angles only from the neutrino sector.
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3σ-favored ranges of the lepton mixing angles and mass squared differences of neutrino

masses which were derived through the global fit in [51],

0.271< sin2 θ12< 0.345, 0.385< sin2 θ23< 0.635, 0.01934< sin2 θ13< 0.02392, (3.9)

7.03<
∆m2

21

10−5 eV2 < 8.09, 2.407<
∆m2

3ℓ (=∆m2
31)

10−3 eV2 < 2.643, (3.10)

with ∆m2
ij = m2

i −m2
j and the normal mass hierarchy (NH) being assumed. The mass ratio

r is defined as ∆m2
21/|∆m2

3ℓ|. The mass difference ∆m2
3ℓ is defined as ∆m2

3ℓ ≡ ∆m2
31 (> 0)

for NH and ∆m2
3ℓ ≡ ∆m2

32 (< 0) for the inverted hierarchy (IH) [51]. In addition to these

observables, a promising 1σ range of the CP violating phase has been recently measured

by many neutrino experiments and an experimental values [51] for NH is known as9

202◦ < δCP < 312◦. (3.11)

We note that similar analyses made by different groups have been also reported

recently [52, 53].

In this paper, we will analyze only the NH case since our model cannot reproduce

all of observed data, especially mass squared differences in the IH case (see figure 2).

As discussed in [41], there are just five patterns for the configurations of magnetic fluxes

which can generate appropriate Dirac mass matrices with three-generation leptons (see

table 2). Thus, we will numerically search parameter regions to reproduce the experimental

data (3.9) and (3.10); and also (3.11) (if possible) for all five patterns.

In Case I and Case V, the flux for the right-handed neutrino is an odd integer, then a

brane-mass parameter h4 do not affect computations as we discussed in the previous section.

In other words, even if the brane-mass parameter is non-zero, the Majorana mass is not

changed in the fourth fixed point (k = 4). Therefore, free parameters for this pattern are

τ , ρ2 and ρ3. On the other hand, in the other cases, the flux for the right-handed neutrino

is an even integer, and then a brane-mass parameter h4 affects computations. Therefore,

free parameters for these patterns are τ , ρ2, ρ3 and ρ4. In these conditions, we set inputs of

free parameters as shown in table 4 and the results are shown in table 3. These results are

in the 3σ-favored region of all experimentally observed data [51]. In the next subsection,

we will show some details of numerical analyses.

3.3 Detailed analyses of each case

At first, we look whether the NH or IH case is preferred in our seesaw texture originating

from the magnetized extra dimension with orbifolding. In figure 2, we show the distribu-

tions of the ratio defined as log10(∆m
2
21/|∆m2

3ℓ|) in Case I, where NH and IH are assumed

in the left and right panels, respectively. Here, we impose no cut for the three mixing

angles within the 3σ ranges [51]. We immediately recognize that IH is highly disfavored

since the corresponding range calculated from the global fit result in [51] is located far away

from the peak of the obtained distribution. We found that the other cases have similar

properties to Case I, where we can conclude that the IH case is disfavored in any case.

Thereby hereafter, we only focus on the NH case in the five cases.

9The 3σ favored ranges of δCP and r in the NH case reported in ref. [51] are as follows: 0◦ ≤ δCP ≤ 360◦,

−1.57 ≤ log
10

r ≤ −1.49, where the latter is evaluated from eq. (3.10).
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Case I Case II Case III Case IV Case V Central value [51]

sin2 θ12 0.306 0.291 0.345 0.284 0.337 0.306

sin2 θ23 0.512 0.520 0.490 0.453 0.480 0.441

sin2 θ13 0.0194 0.0237 0.0238 0.0224 0.0211 0.02166

δCP 84.8◦ 350◦ 325◦ 27.2◦ 289◦ 261◦

log10

(

∆m2
21

|∆m2

3ℓ|

)

= log10 r −1.52 −1.53 −1.52 −1.56 −1.51 −1.53

Table 3. The results for the mixing angles, CP phases, and mass squared differences.

Case I Case II Case III Case IV Case V

Re τ 1.748 −2.246 1.114 0.2800 2.652

Im τ 0.04900 1.432 0.9880 1.059 0.8210

ρ2 −0.59 0.38 0.34 0.32 0.90

ρ3 0.21 0.35 −0.40 0.60 −0.69

ρ4 0 −0.23 0.88 −0.28 0

Table 4. Input parameters (τ, ρ2, ρ3, ρ4) for generating the configurations in table 3. Note that ρ4
is ineffective in Case I and Case V and then we set zero for ρ4 in these cases.
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Figure 2. Distributions of the ratio log10(∆m
2
21/|∆m2

3ℓ
|) under the assumptions of NH (left panel)

and IH (right panel) in Case I. Here, we impose no cut for the three mixing angles within the 3σ

ranges. In the panels, the regions between the two vertical dashed black lines are 3σ-favored for

log10(∆m
2
21/|∆m2

3ℓ
|) [51]. Here we take 105 points for each plot.

Next, we impose the 3σ conditions on the three mixing angles on the randomly gener-

ated configurations from the scattered parameters within the designated ranges as

Re τ ∈ [−π, π], Im τ ∈ (0, π], ρ2,3,4 ∈ [−1,−0.1] ∪ [0.1, 1], (3.12)

where 106 points are taken into account in each case individually. The correlations between

log10(∆m
2
21/|∆m2

3ℓ|) and δCP are described in figure 3, where a few points (in each case) are

3σ acceptable also in the two values even though we take the severest result of such global

fits among the one reported recently [52]. Also, we explicitly provide a sample in every case,

summarized in table 3, where they are generated when we adopt the parameters shown

in table 4. It is noted that the first four/two digits of τ/ρ2,3,4 looks sensitive to results

in general.
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Figure 3. log10(∆m
2
21/|∆m2

3ℓ
|)–δCP distributions among the parameter points where the three

mixing angles are within the 3σ regions. The pale blue regions show the 3σ-favored region of δCP

in a recent global fit [52]. It is noted that no region of δCP is 3σ-disfavored in the results of the

recent global fits [51, 53]. In each plot, the region between the two horizontal dashed black lines

are 3σ-favored for log10(∆m
2
21/|∆m2

3ℓ
|) [51].

In the rest of this section, we make a comment on a possible correlation between Re τ

and δCP. As shown in figure 3, we obtained only the ∼ 15 number of candidates for

allowed parameter points in total. This is due to the fact that the mass matrices stemming

from (2.17) and (2.21) contain the Jacobi theta function that is defined in terms of an

infinite summation over integers. Evaluating values of the function takes considerable time.

For this technical difficulty, we might ought to conclude that it is very difficult to extract

strong predictions in the distributions of the realized CP phase concretely with keeping the

current accuracy in the realized values of experimental measurements. However, we can get

a clue for qualitative understanding for the CP phase through the following speculation.

In the light of a previous study [50], one finds that the real part of the complex structure

modulus generates non-zero physical values of the CP phase. In mass matrices stemming
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from flux compactification in quarks, we also observed considerable correlations between

the value of Re τ and the resulting (quark) CP violation phase. From these observations,

we can make a suggestion that an observed region of neutrino CP phase at a confidence

level may restrict an allowed range of Re τ . This point would lead to putting a constraint on

types of possible mechanisms for moduli stabilization. It would be possible to reach strong

predictions for the CP phase by combining our setups and appropriate moduli stabilizations

in a future project. Nevertheless, being different from the quark case without brane-local

term discussed in [50], the existence of the brane-local Majorana mass terms may lead

to more complex pattens in the distributions of the realized CP angle, even though the

coefficients of the mass terms are real as we assumed. Thereby, an exhaustive calculation

with a very considerable calculation cost would be required for unveiling possible hidden

patterns of the CP angle in the current system and we do not explore the detail of it in

this manuscript.

4 Conclusion

In this paper, we have explored a new avenue to a natural explanation of the observed

tiny neutrino masses with a dynamical realization of the three-generation structure in the

neutrino sector. Under the magnetized background, matters have multiply-degenerated

zero modes and the whole intergenerational structures (before diagonalization of mass

matrices) are dynamically determined. In this sense, we can conclude that our scenario is

favored in the concept of minimality, where no degree of freedom remains to deform part

of an intergenerational structure by hand freely.

Another good feature in our story is that only one Higgs doublet is enough for repro-

ducing measured configurations of neutrinos, being different from the case of the quarks

which have been discussed in various previous works. On magnetized T 2/Z2 orbifolds,

four fixed points are observed, where we can write down Majorana-type mass terms of an

SU(2)L singlet neutrino field, with different coefficients. Our numerical calculations have

clarified that to find acceptable parameter configurations (where the three mixing angles

and the mass ratio are within the 3σ ranges) is not exceedingly tough. As shown in figure 3,

after a 106-time random scan, a few valid cases are excavated in all of the five reasonable

configurations in the magnetic fluxes and Z2 parities (as summarized in table 2).

Due to the complexity of the theta function and Z2 orbifolding, physical CP-violating

phase is realized [50, 54, 55]. When the Dirac CP phase in the Pontecorvo-Maki-Nakagawa-

Sakata matrix is measured much more precisely, we may clarify what type of the fluxes

and Z2 parities is more favorable. Allowing complex coefficients in the brane-localized

Majorana-type mass terms may lead to a successful leptogenesis scenario [56], where details

of such a possibility can be discussed in a separated publication in future.

Before closing this section, we comment on the U(1) gauge symmetry and its breaking

that we have used to obtain the family structure in leptons. Since we focus only on the

neutrino sector in this paper, we cannot decide whether such U(1) symmetry is anomaly free

or not in principle. The fate of the U(1) symmetry would highly depend on philosophies in

model embeddings. For example, multiple U(1) symmetries are used in [24], and it is well
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known that multiple U(1) symmetries appear even in the intersecting D-brane scenario [38]

(and references therein). Even if the U(1) is anomalous, there are possibilities to cancel

it via the Green-Schwartz mechanism [57] in the case that the present scenario is realized

by a more fundamental theory, e.g., the superstring theory. Another clue for breaking

the U(1) gauge symmetry is to add a scalar field for a spontaneous breakdown. In other

words, the U(1) breaking can be concluded after the total ultraviolet-completed setups are

identified. Although we do not identify the total setups, the results we obtained can be

typical patterns of neutrino mixings in flux compactification of toroidal orbifolds.
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