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1. Introduction and summary

It is well known that a plane-wave S-matrix is ill-defined when taken literally because its matrix
element is proportional to the energy–momentum delta function, which always gives either zero or
infinity when squared to compute a probability. On the other hand, we may define an S-matrix in the
Gaussian wave-packet basis without such an infinity [1,2].

It has been claimed that the Gaussian formalism gives a deviation from Fermi’s golden rule [3,4],
in which the probability is suppressed only by a power of the deviation from energy–momentum
conservation rather than the conventional exponential suppression;1 see also Refs. [6–8].

In Ref. [2], a scalar decay � → φφ was computed in the Gaussian formalism, and the previously
claimed power-law deviation from Fermi’s golden rule was identified to come from the configuration
in which the decay interaction is placed near a time boundary. As we will see, this configuration is
realized, even if the in-/out-states are at a distance. To examine the in-boundary effect for 1 → 2 in
more detail, it is desirable to take into account the production process of the decaying �.

In this paper we compute a tree-level s-channel scalar scattering φφ → � → φφ in the Gauss-
ian formalism. We find that wave-packet effects, including shifts of the pole and the width of the
propagator of �, persist even when we do not take into account the time boundary effect proposed
earlier. An interpretation of the result is that a heavy scalar decay � → φφ, taking into account
the production of �, does not exhibit the in-state 1 → 2 time boundary effect unless we take into
account the in-state 2 → 2 time boundary.

1 One might find relevance to the use of the crystal ball function; see, e.g., Appendix F in Ref. [5].
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The paper is organized as follows: In Sect. 2 we present the basic setup of the Gaussian formalism,
and compute the Gaussian S-matrix for the s-channel 2 → 2 scattering: φφ → � → φφ. In Sect. 3
we discuss the possible time boundary effects. In Sect. 4, we focus on the bulk contribution and
show that wave effects exist even when we neglect the boundary contributions. In Sect. 5 we present
several plane-wave limits of the obtained result. In Sect. 6 we present a summary and discussion. In
Appendix A, we compare with the φφ → φφ scattering in φ4 theory.

2. Gaussian S-matrix

Here, we first review the Gaussian formalism, and obtain the S-matrix for the s-channel 2 → 2 scalar
scattering: φφ → � → φφ.

2.1. Gaussian basis

We review the Gaussian formalism, following Ref. [2], to clarify the notation in this paper. A free
scalar field operator ϕ̂ at x = (x0, x

)
(in the interaction picture) can be expanded by the plane basis:

ϕ̂(x) =
∫

d3p√
2p0 (2π)3/2

[
eip·xâϕ(p)+ h.c.

]∣∣∣∣∣
p0=Eϕ(p)

=
∫

d3p√
2p0

[〈ϕ; x ϕ; p〉 âϕ(p)+ h.c.
]∣∣∣∣∣

p0=Eϕ(p)

, (1)

where ϕ = φ,� labels the particle species; âϕ(p) and â†
ϕ(p) are the annihilation and creation

operators, respectively, with[
âϕ(p) , â†

ϕ′
(
p′)] = δϕϕ′δ3(p − p′) , others = 0; (2)

and

Eϕ(p) :=
√

m2
ϕ + p2, (3)

|ϕ; p〉 := â†
ϕ(p) |0〉 , (4)〈

ϕ; x ϕ′; p
〉

:= δϕϕ′
eip·x

(2π)3/2
, (5)

|ϕ; x〉 := e+iĤfreet |ϕ; x〉 , (6)

with Ĥfree being the free Hamiltonian:

Ĥfree |ϕ; p〉 = Eϕ(p) |ϕ; p〉 . (7)

Here and hereafter, we use t, T and x0, X 0 interchangeably: t = x0 and T = X 0. Note that |ϕ; x〉
and |ϕ; p〉 are independent of time and hence can be regarded as either a Heisenberg-picture state
or a Schrödinger-picture eigenbasis (of the total Hamiltonian), while |ϕ; x〉 is an interaction-picture
basis at time x0 as seen from its time evolution by the free Hamiltonian.

We define a Gaussian wave-packet state |ϕ, σ ; �〉 by〈
ϕ′, x ϕ, σ ; �

〉
:= 1

(πσ)3/4
eiP·(x−X )e− 1

2σ (x−X )2δϕϕ′ , (8)
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where � := (X , P) gives the center of the wave packet in the phase space. Note that〈
ϕ′, p ϕ, σ ; �

〉 = δϕϕ′
(σ
π

)3/4
e−ip·X e− σ

2 (p−P)2 , (9)

〈
ϕ, σ ; � ϕ′, σ ′; �′〉 = ( σI

σA

)3/4

e
− 1

4σA
(X−X ′)2

e− σI
4 (P−P′)2

e
i

2σI
(σP+σ ′P′)·(X−X ′)

δϕϕ′ , (10)

where

σA := σ + σ ′

2
, σI :=

(
σ−1 + σ ′−1

2

)−1

= 2σσ ′

σ + σ ′ (11)

are the average and the inverse of the average of the inverse, respectively. In particular,〈
ϕ, σ ; � ϕ, σ ; �′〉 = e− 1

4σ (X−X ′)2
e− σ

4 (P−P′)2
e

i
2(P+P′)·(X−X ′). (12)

The state |ϕ, σ ; �〉 is time independent and hence can be regarded as either a Heisenberg state or
a Schrödinger basis. We also define the interaction basis at time X 0:

|ϕ, σ ;�〉 := eiĤfreeX 0 |ϕ, σ ; �〉 , (13)

where � := (X , P) = (
X 0, X , P

) = (
X 0, �

)
. As we will see later, we will treat |ϕ, σ ;�〉 as a

time-independent Heisenberg state (or equivalently a time-independent Schrödinger basis).
We define a creation operator of the Gaussian basis by

Â†
ϕ,σ (�) |0〉 := |ϕ, σ ;�〉 , (14)

which results in Âϕ,σ (�) |0〉 = 0 and[
Âϕ,σ (�) , Â†

ϕ′,σ ′
(
�′)] = 〈ϕ, σ ,� ϕ′, σ ′;�′〉 , others = 0. (15)

We may also expand ϕ̂ by the creation and annihilation operators of the free Gaussian wave packets:

ϕ̂(x) =
∫

d3X d3P

(2π)3

[
fϕ,σ ;X ,P(x) Âϕ,σ (X , P)+ h.c.

]
, (16)

where X = (X 0, X
)

is the center of the wave packet; P is the central momentum of the wave packet;
σ and X 0 are fixed (and can differ) for each field participating in the scattering; and the coefficient
function becomes

fϕ,σ ;X ,P(x) :=
∫

d3p√
2Eϕ(p)

〈ϕ; x ϕ; p〉 〈ϕ; p ϕ, σ ;�〉

=
(σ
π

)3/4
∫

d3p√
2p0 (2π)3/2

eip·(x−X )− σ
2 (p−P)2

∣∣∣∣∣
p0=Eϕ(p)

. (17)

We also write

d6� := d3X d3P

(2π)3
(18)

so that

ϕ̂(x) =
∫

d6�
[
fϕ,σ ;�(x) Âϕ,σ (�)+ h.c.

]
. (19)
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By, e.g., sandwiching between 〈p| and
∣∣p′〉, we can show the completeness of the Gaussian basis in

the one-particle subspace: ∫
d6� |ϕ, σ ;�〉 〈ϕ, σ ;�| = 1̂. (20)

in other words, the Gaussian basis can expand any one-particle wave function ψ(x) = 〈x ψ〉 as

〈x ψ〉 =
∫

d6� 〈x �〉 〈� ψ〉 , (21)

where we used the shorthand notation |�〉 = |ϕ, σ ; �〉 etc., and 〈x �〉 is given in Eq. (8). We have
also used |�〉 〈�| = |�〉 〈�| from Eq. (13). Note the following relation:

〈0| Âϕ,σ (�) Â†
ϕ′,σ ′

(
�′) |0〉 = 〈ϕ, σ ;� ϕ, σ ′;�′〉 δϕϕ′ , (22)〈

ϕ, σ ;� ϕ, σ ;�′〉∣∣
X 0=X ′0 = e− 1

4σ (X−X ′)2
e− σ

4 (P−P′)2
e

i
2(P+P′)·(X−X ′). (23)

In the large-σ expansion, we get

fϕ,σ ;X ,P(x) →
(σ
π

)3/4
(

2π

σ

)3/2 1√
2P0 (2π)3/2

eiP·(x−X )−(x−��ϕ(x0))
2

2σ

∣∣∣∣∣
P0=Eϕ(P)

, (24)

where

��
ϕ

(
x0) := X�

ϕ + V ϕ(P) x0

= X + V ϕ(P)
(
x0 − X 0) , (25)

in which

X�
ϕ := X − V ϕ(P)X 0, V ϕ(P) := P

Eϕ(P)
. (26)

2.2. In- and out-states

We consider the s-channel scalar scattering φφ → � → φφ. Since both the in- and out-states are
of φ, we omit the label φ hereafter.

Generically, one particle in the in- and out-states can be asymptotic to an arbitrary free wave
function 
(x) = 〈x 
〉, which can be expanded by the Gaussian basis as

|
〉 =
∫

d6� |�〉 〈� 
〉 . (27)

Therefore, without loss of generality, we may assume that the asymptotic free states are Gaussian,
and we will do so hereafter.

We prepare the in and out Heisenberg states |in; σ1,�1; σ2,�2〉 and |out; σ3,�3; σ4,�4〉,
respectively, by

e−iĤ t |in; σ1,�1; σ2,�2〉 → e−iĤfreet |σ1,�1; σ2,�2〉 (t → Tin),

e−iĤ t |out; σ3,�3; σ4,�4〉 → e−iĤfreet |σ3,�3; σ4,�4〉 (t → Tout), (28)

where we have defined the free states

|σ1,�1; σ2,�2〉 := Â†
σ1
(�1) Â†

σ2
(�2) |0〉 , (29)
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etc., and take

Tin � max
(
X 0

1 , X 0
2

)
, Tout � min

(
X 0

3 , X 0
4

)
. (30)

See Sect. 3 for further discussion.

2.3. Gaussian two-point function

In this subsection we omit the labels ϕ and σ as they are all equal, except for the mass mϕ . In the
later application, ϕ will be the intermediate heavy scalar �.

We want to put the expansion in Eq. (19) into the time-ordered two-point function:

〈0| T ϕ̂(x) ϕ̂
(
x′) |0〉 = θ

(
x0 − x′0) 〈0| ϕ̂(x) ϕ̂(x′) |0〉 + θ

(
x′0 − x0) 〈0| ϕ̂(x′) ϕ̂(x) |0〉 . (31)

Now we can check that

〈0| ϕ̂(x) ϕ̂(x′) |0〉 =
∫

d6�

∫
d6�′ f�(x) f ∗

�′
(
x′) 〈0| Â(�) Â†(�′) |0〉

=
∫

d3p√
2E(p)

∫
d3p′√
2E(p′)

∫
d6�

∫
d6�′

× 〈x p〉 〈p �〉 〈� �′〉 〈�′ p′〉 〈p′ x′〉
=
∫

d3p

2E(p)
〈x p〉 〈p x′〉 = ∫

d3p

2E(p) (2π)3
eip·(x−x′)

∣∣∣∣
p0=E(p)

. (32)

Putting this into the two-point function of Eq. (31),

〈0| T ϕ̂(x) ϕ̂
(
x′) |0〉 =

∫
d3p

2E(p) (2π)3

(
θ
(
x0 − x′0) eip·(x−x′) + θ

(
x′0 − x0) eip·(x′−x)

)∣∣∣∣
p0=E(p)

.

(33)

We have recovered the ordinary plane-wave propagator as we should, since we integrate over the
complete set.2 As usual, using

θ
(
x0) = − 1

2π i

∫ ∞

−∞
dω

e−iωx0

ω + iε
, (34)

with ε being an arbitrary positive infinitesimal, we may rewrite it into a more familiar form:

〈0| T ϕ̂(x) ϕ̂
(
x′) |0〉 =

∫
d3p eip·(x−x′)

2E(p) (2π)3

×
(

−
∫ ∞

−∞
dω

2π i

e−i(ω+E(p))
(
x0−x′0)

ω + iε
−
∫ ∞

−∞
dω

2π i

e−i(ω−E(p))
(
x0−x′0)

−ω + iε

)

= i

(2π)4

∫
d3p

2E(p)

∫ ∞

−∞
dp0 eip·(x−x′)

×
(

1

p0 − E(p)+ iε
+ 1

−p0 − E(p)+ iε

)

2 See Ref. [9] for an early work by Feynman containing consideration with waves.
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= i

(2π)4

∫
d3p

∫ ∞

−∞
dp0 eip·(x−x′) −1(

p2 + m2
ϕ − iε

)− (p0
)2

= −i
∫

d4p

(2π)4
eip·(x−x′)

p2 + m2
ϕ − iε

= −i�F
(
x − x′) . (35)

2.4. Gaussian S-matrix

Now we compute the probability amplitude under the assumption in Eq. (28):

S = 〈out; σ3,�3; σ4;�4 in; σ1,�1; σ2,�2〉
= 〈σ3,�3; σ4,�4| eiĤfreeToute−iĤTouteiĤTine−iĤfreeTin |σ1,�1; σ2,�2〉

= 〈σ3,�3; σ4,�4| T exp
(

−i
∫ Tout

Tin

dt Ĥ I
int(t)

)
|σ1,�1; σ2,�2〉

=: 〈σ3,�3; σ4,�4| Ŝ |σ1,�1; σ2,�2〉 , (36)

where Ĥ I
int(t) = eiĤfreet

(
Ĥ − Ĥfree

)
e−iĤfreet is the interaction Hamiltonian in the interaction picture.

In the plane-wave S-matrix, one subtracts the first term in the Dyson series of Eq. (36), writes
Ŝ = 1̂ + iT̂ , and concentrates on the transition amplitude from T̂ . In the Gaussian formalism, we do
not need such regularization of dropping the first term 1̂ because the inner product of the free states
would remain finite even for identical momenta.3 When we integrate over the final state momenta
P3 and P4, the contribution from 1̂ would automatically drop out even if we take the plane-wave
limit after all the computations. Hereafter, we omit the trivial term 〈σ3,�3; σ4,�4 σ1,�1; σ2,�2〉
from S when we call it the “transition amplitude.”

In this paper we consider the following simplest interaction Hamiltonian:

Ĥ I
int(t) = κ

2

∫
d3x φ̂2(x) �̂(x) , (37)

where φ̂ and �̂ are given in Eq. (1). The tree-level transition amplitude is given by

S = (−iκ)2

8

∫ Tout

Tin

dt
∫

d3x
∫ Tout

Tin

dt′
∫

d3x′

× 〈0| Tx,x′ Âσ3(�3) Âσ4(�4) φ̂(x) φ̂(x) �̂(x) φ̂
(
x′) φ̂(x′) �̂(x′) Â†

σ1
(�1) Â†

σ2
(�2) |0〉 , (38)

where Tx,x′ is the time ordering with respect to x and x′ only. Hereafter, we concentrate on the
s-channel process because it is dominant in the near on-shell process of interest here.

For example, part of the s-channel process is

S ⊃ (−iκ)2

8

∫ Tout

Tin

dt
∫

d3x
∫ Tout

Tin

dt′
∫

d3x′

× 〈0| Tx,x′Âσ3(�3) Âσ4(�4) φ̂(x) φ̂(x) �̂(x) φ̂
(
x′) φ̂(x′) �̂(x′) Â†

σ1
(�1) Â†

σ2
(�2) |0〉 . (39)

3 Recall Eq. (23) for an explicit formula for particular equal-time packets.
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The Wick contraction with the external line gives, for example,

Âσ3(�3) φ̂(x) =
∫

d6�f ∗
σ ;�(x)

[
Âσ3(�3) , Â†

σ (�)
]

=
∫

d6�

∫
d3p√

2Eφ(p)
〈σ ;� φ, p〉 〈φ, p φ, x〉 〈σ3;�3 φ, σ ;�〉

=
∫

d3p√
2Eφ(p)

〈σ3;�3 φ, p〉 〈φ, p φ, x〉

= f ∗
σ3;�3

(x) , (40)

where the propagator of� becomes the same as the plane-wave one, as we have seen in the previous
subsection. Then, the contribution of Eq. (39) becomes

S ⊃ (−iκ)2

8

∫ Tout

Tin

dt
∫

d3x
∫ Tout

Tin

dt′
∫

d3x′

× fσ1;�1

(
x′) fσ2;�2

(
x′) f ∗

σ3;�3
(x) f ∗

σ4;�4
(x) 〈0| T �̂(x) �̂

(
x′) |0〉 . (41)

In total there will be factor of 8 from the other Wick contractions. To summarize,

S = (−iκ)2 (−i)
∫

d4p

(2π)4
1

p2 + M 2 − iε

×
∫ Tout

Tin

dt
∫

d3x f ∗
σ3;�3

(x) f ∗
σ4;�4

(x) eip·x

×
∫ Tout

Tin

dt′
∫

d3x′ fσ1;�1

(
x′) fσ2;�2

(
x′) e−ip·x′

, (42)

where t := x0 and t′ := x′0 are the production and decay times of �, and M := m� is the heavy
scalar mass. This is the starting equation for our computation.

Hereafter, we consider the leading approximation in the plane-wave limit, Eq. (24):

fφ,σ1;�1(x) fφ,σ2;�2(x) →
(

1

πσ1

)3/4 ( 1

πσ2

)3/4 1√
2E1

√
2E2

× e
iP1·(x−X1)− (x−�1(t))

2

2σ1 e
iP2·(x−X2)− (x−�2(t))

2

2σ2 ,

f ∗
φ,σ3;�3

(x) f ∗
φ,σ4;�4

(x) →
(

1

πσ3

)3/4 ( 1

πσ4

)3/4 1√
2E3

√
2E4

× e
−iP3·(x−X3)− (x−�3(t))

2

2σ3 e
−iP4·(x−X4)− (x−�4(t))

2

2σ4 , (43)

where, for a = 1, . . . , 4,

�a(t) := Xa + V at, (44)

in which Xa is the center of the wave packet at a reference time t = 0 and V a is its central velocity:

Xa := X a − V aTa, (45)
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V a := Pa

Ea
= Pa√

m2 + P2
a

, (46)

with m := mφ .
We perform the Gaussian integral over the positions of interaction to get

S = iκ2

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)
(2πσin)

3/2 (2πσout)
3/2
∫

d4p

(2π)4
1

p2 + M 2 − iε

×
∫ Tout

Tin

dt exp
{

− σout

2
(p − Pout)

2 − 1

2ςout
(t − Tout)

2 − Rout

2
− it

(
p0 − Eout

)
+ iV out · (p − Pout) t + iXout · (p − Pout)

}
×
∫ Tout

Tin

dt′ exp
{

− σin

2
(p − Pin)

2 − 1

2ςin

(
t′ − Tin

)2 − Rin

2
+ it′

(
p0 − Ein

)
− iV in · (p − Pin) t′ − iXin · (p − Pin)

}
, (47)

where we have dropped a phase factor that cancels out in the square |S|2 and have defined the
following:

◦ energies and momenta for the in- and out-states:

Ein := E1 + E2, Pin := P1 + P2, (48)

Eout := E3 + E4, Pout := P3 + P4; (49)

◦ the averaged space-like width squared of the in- and out-states, respectively:

σin :=
(

1

σ1
+ 1

σ2

)−1

, σout :=
(

1

σ3
+ 1

σ4

)−1

; (50)

◦ for any three-vector Q,

Qin := σin

(
Q1

σ1
+ Q2

σ2

)
, Q

2
in := Qin · Qin, Q2

in := σin

(
Q2

1

σ1
+ Q2

2

σ2

)
, (51)

Qout := σout

(
Q3

σ3
+ Q4

σ4

)
, Q

2
out := Qout · Qout, Q2

out := σout

(
Q2

3

σ3
+ Q2

4

σ4

)
, (52)

and

�Q2
in := Q2

in − Q
2
in, �Q2

out := Q2
out − Q

2
out; (53)

◦ the time-like width squared of the overlap of the in- and out-states:

ςin = σin

�V 2
in

, ςout = σout

�V 2
out

; (54)

◦ the interaction time for the in- and out-states:

Tin := V in · Xin − X · V in

�V 2
in

, Tout := V out · Xout − X · V out

�V 2
out

; (55)
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◦ the overlap exponent for the in- and out-states:

Rin := �X2
in

σin
− T2

in

ςin
, Rout := �X2

out

σout
− T2

out

ςout
. (56)

We can show the non-negativity of Rin and Rout as in Sect. 3.1 of Ref. [2]; our case corresponds
to the σ0 → ∞ limit in their Appendix C.1.

We see from Eq. (47) that a configuration that has largeRin orRout of initial and final-state phase space
(�1, . . . , �4) and of the internal momentum p gives an exponentially suppressed wave-function
overlap, and the corresponding amplitude is also suppressed exponentially.

2.5. Separation of bulk and time boundaries

After integrating over t and t′, we get

S = iκ2

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)
(2πσin)

3/2 (2πσout)
3/2
∫

d4p

(2π)4
1

p2 + M 2 − iε

×√2πςin Gin(Tin(p))
√

2πςout Gout(Tout(p))

× e−Rout
2 e− ςout

2

(
p0−Eout−V out·p

)2−iTout
(
p0−Eout−V out·p

)
e− σout

2 (p−Pout)
2+iXout·(p−Pout)

× e−Rin
2 e− ςin

2

(
p0−Ein−V in·p

)2+iTin
(
p0−Ein−V in·p

)
e− σin

2 (p−Pin)
2−iXin·(p−Pin), (57)

where

Ein := Ein − V in · Pin, (58)

Eout := Eout − V out · Pout; (59)

we have defined the window functions as in Ref. [2],

Gin(T ) :=
∫ Tout

Tin

dt′√
2πςin

e
− 1

2ςin
(t′−T )2

, Gout(T ) :=
∫ Tout

Tin

dt√
2πςout

e− 1
2ςout

(t−T )2 ; (60)

and

Tin(p) := Tin + iςin
[(

p0 − Ein
)− V in · (p − Pin)

]
= Tin + iςin

(
p0 − Ein − V in · p

)
,

Tout(p) := Tout − iςout
[(

p0 − Eout
)− V out · (p − Pout)

]
= Tout − iςout

(
p0 − Eout − V out · p

)
. (61)

Physically, the complex variable Tin (Tout), or especially its real part �Tin = Tin (�Tout = Tout),
corresponds to an “interaction time” at which the interaction occurs between the initial (final) φφ
and the internal �.

In terms of the Gauss error function

erf (z) := 2√
π

∫ z

0
e−x2

dx, (62)

9/28

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/10/103B04/5894551 by guest on 15 M

ay 2021



PTEP 2020, 103B04 K. Ishikawa et al.

the above two functions are represented as follows:

Gin-int(T ) = 1

2

[
erf
(T − Tin√

2ςin

)
− erf

(T − Tout√
2ςin

)]
,

Gout-int(T ) = 1

2

[
erf
(T − Tin√

2ςout

)
− erf

(T − Tout√
2ςout

)]
. (63)

For convenience, we distinguish the bulk effects from the in and out boundary ones as

Gin-int(T ) := Gbulk
in-int(T )+ Gin-bdry

in-int (T )+ Gout-bdry
in-int (T ),

Gout-int(T ) := Gbulk
out-int(T )+ Gin-bdry

out-int (T )+ Gout-bdry
out-int (T ), (64)

where for the interaction between the initial φφ state and the intermediate �,

Gbulk
in-int(T ) := 1

2

[
sgn
(T − Tin√

2ςin

)
− sgn

(T − Tout√
2ςin

)]
,

Gin-bdry
in-int (T ) := 1

2

[
erf
(T − Tin√

2ςin

)
− sgn

(T − Tin√
2ςin

)]
,

Gout-bdry
in-int (T ) := 1

2

[
sgn
(T − Tout√

2ςin

)
− erf

(T − Tout√
2ςin

)]
, (65)

and for the interaction between the final φφ state and the intermediate �,

Gbulk
out-int(T ) := 1

2

[
sgn
(T − Tin√

2ςout

)
− sgn

(T − Tout√
2ςout

)]
,

Gin-bdry
out-int (T ) := 1

2

[
erf
(T − Tin√

2ςout

)
− sgn

(T − Tin√
2ςout

)]
,

Gout-bdry
out-int (T ) := 1

2

[
sgn
(T − Tout√

2ςout

)
− erf

(T − Tout√
2ςout

)]
. (66)

Here, the following sign function for a complex variable has been defined:

sgn(z) :=

⎧⎪⎪⎨⎪⎪⎩
+1 for �z > 0 or (�z = 0 and �z > 0) ,

−1 for �z < 0 or (�z = 0 and �z < 0) ,

0 for z = 0.

(67)

More explicitly,

Gbulk
in-int(T ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 (Tin < �T < Tout) ,

0 (�T < Tin or Tout < �T ) ,

θ
(
+�T
ςin

)
(�T = Tin) ,

θ
(
−�T
ςin

)
(�T = Tout) ,

Gbulk
out-int(T ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 (Tin < �T < Tout) ,

0 (�T < Tin or Tout < �T ) ,

θ
(
+ �T
ςout

)
(�T = Tin) ,

θ
(
− �T
ςout

)
(�T = Tout) ,

(68)

10/28

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/10/103B04/5894551 by guest on 15 M

ay 2021



PTEP 2020, 103B04 K. Ishikawa et al.

Fig. 1. Schematic diagram in position space. Each of the blue and red lines denotes the trajectory of the center
of the wave packet for the in- and out-states φ, respectively. The thick dashed line denotes the trajectory of the
internal particle�, while the black dots at its ends indicate that the interactions occur in a finite range with the
spatial and time-like widths ∼√

σin and
√
ςin (∼√

σout and
√
ςout) around the point �(Tin)in at time Tin (the

point �(Tout)out at time Tout), respectively. The circles are a reminder that each packet is given with a finite
width, namely with the widths ∼√

σ1 and
√
σ2 (∼√

σ3 and
√
σ4) at times T1 and T2 (T3 and T4) for the initial

(final) wave packets. In the perturbation theory, we consider the time evolution of the in-state from Tin to Tout

in the interaction picture, which are chosen near T1, T2 and T3, T4, respectively, and the S-matrix element is
taken with the out-state at Tout. The left figure shows an s-channel scattering without a backward propagation
in the sense of the old-fashioned perturbation theory. The right figure explains that there always exists a final-
state configuration that realizes, e.g., T1 � Tout no matter how large we take the cluster decomposition limit:
|�1(Tin)− �2(Tin)| ∼ |X 1 − X 2| → ∞.

where we define the step function for a real variable as

θ(x) = 1 + sgn(x)
2

=

⎧⎪⎪⎨⎪⎪⎩
1 (x > 0) ,
1
2 (x = 0) ,

0 (x < 0) .

(69)

Detailed discussion of the boundary terms can be found in Ref. [2].
Under the above classification of the in and out window functions, we divide the probability

amplitude S into two parts:

S = Sbulk + Sboundary, (70)

where Sbulk contains the pure bulk contributions from Gbulk
in-int(Tin) and Gbulk

out-int(Tout), while every term
of Sboundary includes at least one boundary window function.

3. Interpretation of boundary effect

We present and clarify two different interpretations of the result in Eq. (57). We consider a finite time
interval Tout − Tin. Without loss of generality, we focus on the initial time boundary at Tin unless
otherwise stated. First, we stress that when we integrate over the final-state phase space �3 and �4

with varying interaction time Tout (= �Tout) according to Eq. (55), there always exists a final-state
configuration that gives a significant in-boundary effect at Tin, no matter what initial configuration
we take, even a cluster decomposition limit |�1(Tin)− �2(Tin)| → ∞ and/or take Tin → −∞; see
Fig. 1.
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To illustrate the qualitative behavior, let us tentatively focus on the expressions in the following
limit [2]:4

|T − Tin| � √
2ςout, (71)

which results in5

Gout-int(T ) → Gbulk
out-int(T )− 1√

π
e− (T −Tin)

2

2ςout

√
2ςout

T − Tin
. (72)

Note that the illustrative limit in Eq. (71) implies that near the boundary, (�Tout − Tin)
2 � 2ςout,

the deviation from “energy conservation” is large:(
p0 − Eout − V out · p

)2 = (�Tout)
2 � 2ςout. (73)

From Eq. (72), we see that the boundary effect may become significant when T is near the in
boundary, namely when (�T − Tin)

2 � 2ςout with (�T ) � 2ςout as stated above:

Gout-int(T ) → − 1√
π

e
(�T )2
2ςout

√
2ςout

i �T . (74)

Note that the apparent exponential growth for the energy non-conserving limit (�T )2 � 2ςout is
cancelled out by the existing energy conservation factor coming from

e− ςout
2

(
p0−Eout−V out·p

)2 = e− (�Tout)
2

2ςout . (75)

That is, the exponential suppression factor for a deviation from energy conservation, e−(�Tout)
2/2ςout ,

is cancelled and replaced by the power suppression factor 1/�T in the boundary effect. Recall that
the boundary contribution from the configuration (�Tout − Tin)

2 � 2ςout arises even if X 3 and X 4

are at a distance.6

The existence of the boundary effect crucially depends on the relation in Eq. (28). The key
question is the following: Can we well approximate the real physical setup in an experiment,
namely the Schrödinger-picture in-state e−iĤ t |in; �1�2〉, by the “free Schrödinger-picture” state
e−iĤfreet |�1�2〉, evolving in a virtual free world without any interaction, at t = Tin when interactions
are not negligible?7 If not, what state should we prepare for e−iĤ t |in; �1�2〉 at t = Tin? Here, we
introduce two different constructions, “free” and “dressed,” which answer “yes” and “no” to the first
question, respectively.

4 Hereafter, we sometimes use T for Tout just for presentation. More precisely, we should rather write Tout-int

and Tin-bdry, but this would be too cumbersome.
5 In Eq. (72), we cannot take the |Tout−Tin|√

2ςout
→ 0 limit because of the assumption in Eq. (71). When correctly

taken, this limit is finite; see Ref. [2].
6 Suppose we consider the probability from the amplitude in Eq. (57), P = |S|2, for the special case T1 =

T2 = Tin and T3 = T4 = Tout: P(Tin�1�2 → Tout�3�4). It satisfies P(Tin�1�2 → Tout�3�4) → 0 in the
limits Tout → Tin and

∣∣X i − X j

∣∣→ ∞ for all i = 1, 2 and j = 3, 4. We also have P(Tin�1�2 → Tin�1�2) = 1.
Here, P(Tin�1�2 → Tout�3�4) represents a transition probability for not only short-distance interactions but
also long-distance ones such as the Coulomb potential; see also the discussion below Eq. (36).

7 In this section we omit the trivial dependence on σ1, σ2, etc.
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3.1. Quantum mechanics basics

For the discussion below, let us recall the basics of quantum mechanics and spell out our notation.
We identify the Schrödinger, Heisenberg, and interaction pictures at an arbitrary reference time tr:
For an arbitrary operator Ô in the Schrödinger picture, we relate them by8

ÔI(t) = eiĤfree (t−tr)Ôe−iĤfree (t−tr), (76)

ÔH(t) = eiĤ (t−tr)Ôe−iĤ (t−tr), (77)

and for a time-independent state |
〉 in the Heisenberg picture by

|
; t〉I = eiĤfree (t−tr)e−iĤ (t−tr) |
〉
=
(

T e−i
∫ t

tr
Ĥ I

int(t
′−tr) dt′

)
|
〉 , (78)

|
; t〉S = e−iĤ (t−tr) |
〉 , (79)

where we have used

Û (t1, t2) := eiĤfree (t1−tr)e−iĤ (t1−t2)e−iĤfree (t2−tr)

= T e−i
∫ t1−tr

t2−tr Ĥ I
int(t

′) dt′ = T e−i
∫ t1

t2
Ĥ I

int(t
′−tr) dt′ . (80)

If an eigenbasis |�〉 exist in the Schrödinger picture, Ô |�〉 = o |�〉, the corresponding operators in
the interaction and Heisenberg pictures have the following eigenbases, respectively:

|�; t〉IB = eiĤfree (t−tr) |�〉 , (81)

|�; t〉HB = eiĤ (t−tr) |�〉 . (82)

The time dependence of these eigenbases is different from that of the states in Eqs. (78) and (79).
Typically in our computation, Ô stands for Ĥfree.

3.2. “Free” construction

So far, we have chosen an arbitrary initial (final) time Tin (Tout) anywhere near T1 (T3) and/or T2 (T4).
In the “free” construction we identify the in and out Schrödinger-picture states at times Tin and Tout,
respectively, with a “free Schrödinger picture” state that evolves in a virtual free world governed by
the free Hamiltonian no matter how significant interactions are at these times:

|in; �1�2; t = Tin〉S = |�1�2; t = Tin〉free
S ,

|out; �3�4; t = Tout〉S = |�3�4; t = Tout〉free
S , (83)

where we have defined the “free Schrödinger” state that evolves in the virtual free world:

|
; t〉free
S := e−iĤfree (t−tr) |
〉 . (84)

8 Recall that in the interaction picture, we separate an expectation value as(
〈
| eiĤ (t−tr)e−iĤfree (t−tr)

) (
eiĤfree (t−tr)Ôe−iĤfree (t−tr)

) (
eiĤfree (t−tr)e−iĤ (t−tr) |
〉

)
.
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In other words, the in- and out-states are given in the Heisenberg picture as

|in; �1�2〉 = eiĤ (Tin−tr)e−iĤfree (Tin−tr) |�1�2〉 ,

|out; �3�4〉 = eiĤ (Tout−tr)e−iĤfree (Tout−tr) |�3�4〉 ; (85)

in the Schrödinger picture as

|in; �1�2; t〉S = e−iĤ (t−tr)
(

eiĤ (Tin−tr)e−iĤfree (Tin−tr) |�1�2〉
)

= e−iĤ (t−Tin)e−iĤfree (Tin−tr) |�1�2〉 ,

|out; �3�4; t〉S = e−iĤ (t−tr)
(

eiĤ (Tout−tr)e−iĤfree (Tout−tr) |�3�4〉
)

= e−iĤ (t−Tout)e−iĤfree (Tout−tr) |�3�4〉 ; (86)

and in the interaction picture as

|in; �1�2; t〉I = eiĤfree (t−tr)e−iĤ (t−tr)
(

eiĤ (Tin−tr)e−iĤfree (Tin−tr) |�1�2〉
)

= eiĤfree (t−tr)e−iĤ (t−Tin)e−iĤfree (Tin−tr) |�1�2〉

= T e
−i
∫ t

Tin
Ĥ I

int(t
′−tr) dt′ |�1�2〉 ,

|out; �3�4; t〉I = eiĤfree (t−tr)e−iĤ (t−tr)
(

eiĤ (Tout−tr)e−iĤfree (Tout−tr) |�3�4〉
)

= eiĤfree (t−tr)e−iĤ (t−Tout)e−iĤfree (Tout−tr) |�3�4〉
= T e−i

∫ t
Tout

Ĥ I
int(t

′−tr) dt′ |�3�4〉 . (87)

One can trivially check the following:

|in; �1�2〉 = |in; �1�2; tr〉S = |in; �1�2; tr〉I ,

|out; �3�4〉 = |out; �3�4; tr〉S = |out; �3�4; tr〉I . (88)

We also see that, in the Schrödinger picture, the Heisenberg-picture relation in Eq. (85) reads

|in; �1�2; Tin〉S = e−iĤfree (Tin−tr) |�1�2〉 ,

|out; �3�4; Tout〉S = e−iĤfree (Tout−tr) |�3�4〉 , (89)

and in the interaction picture,

|in; �1�2; Tin〉I = |�1�2〉 ,

|out; �3�4; Tout〉I = |�3�4〉 . (90)

The “free” construction puts more emphasis on the interaction picture, in which the identification
in Eq. (90) appears most natural. We can also rewrite the probability amplitude as an inner product
of the interaction-picture states at an arbitrary time t:

S = I〈out; �3�4; t in; �1�2; t〉I
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= 〈�3�4| T ei
∫ t

Tout
Ĥ I

int(t
′−tr) dt′e

−i
∫ t

Tin
Ĥ I

int(t
′−tr) dt′ |�1�2〉

= 〈�3�4| T e
−i
∫ Tout

Tin
Ĥ I

int(t
′−tr) dt′ |�1�2〉 , (91)

which becomes Eq. (36) when we set the arbitrary reference time tr = 0 as before.9 Note that the t
dependence drops out of the expression, and hence the probability does not depend on t.

We may say that the boundary effects remain even if the interaction is taken into account in the
following sense [4] (see also Ref. [10]): Suppose that we transform the free states by a unitary
operator V̂ (κ) with V̂ †(κ) V̂ (κ) = 1̂ in Eq. (91):

˜|�1�2〉 = V̂ (κ) |�1�2〉 , (92)

˜|�3�4〉 = V̂ (κ) |�3�4〉 . (93)

Then the S-matrix becomes

S̃ = ˜〈�3�4|Û (Tout, Tin) ˜|�1�2〉
= 〈�3�4| V̂ †(κ) Û (Tout, Tin) V̂ (κ) |�1�2〉 . (94)

If V̂ is expanded as V̂ = 1̂ + O(κ), we see from Û (Tout, Tin) = 1̂ + O
(
κ2
)

that[
V̂ (κ) , Û (Tout, Tin)

]
= O

(
κ3) , (95)

and hence

V̂ †(κ) Û (Tout, Tin) V̂ (κ) = Û (Tout, Tin)+ O
(
κ3) . (96)

Accordingly, the order-κ2 contribution of the transition amplitudes are invariant under the unitary
change of the free states.

3.3. “Dressed” construction

To repeat, we have chosen an arbitrary initial time Tin anywhere near T1 and/or T2. One might think
it strange to identify the initial state as in Eq. (83) for a wave-packet configuration (�1, . . . , �4)

that gives a significant overlap of the final-state wave packets at Tout � Tin so that interactions are
not negligible at Tin, as in the right panel of Fig. 1. In particular, the boundary interaction in Eq. (72)
crucially depends on the arbitrarily chosen Tin: For a given fixed initial and final state configuration
(�1, . . . , �4), the boundary contribution drops off exponentially as we shift the arbitrarily chosen
Tin backwards in time.

The boundary effect is a consequence of the abovementioned identification of the Heisenberg state
|in; �1�2〉 and |out; �3�4〉 at Tin and Tout, respectively. What if we identify different states at Tin

and Tout? Suppose that we take into account the interactions from T ′
in (< Tin) to Tin and from T ′

out

(> Tout) to Tout (backward in time as Tout < T ′
out) in addition to the “free” construction above:

|in; �1�2〉′ = eiĤ (Tin−tr)e−iĤfree (Tin−tr) T e
−i
∫ Tin

T ′
in

Ĥint(t′−tr) dt′ |�1�2〉 ,

9 Or else, we may rewrite

S =
(
〈�3�4| e−iĤfreetr

)(
T e

−i
∫ Tout
Tin

Ĥ I
int(t

′) dt′
)(

eiĤfreetr |�1�2〉
)

,

and redefine all the free states eiĤfreetr |�〉, each being an Ĥfree eigenstate, to be |�〉.
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|out; �3�4〉′ = eiĤ (Tout−tr)e−iĤfree (Tout−tr) T e
−i
∫ Tout

T ′
out

Ĥint(t′−tr) dt′ |�3�4〉 , (97)

where we have replaced |�1�2〉 and |�3�4〉 in the “free” construction of Eq. (85) by

|�1�2〉 → T e
−i
∫ Tin

T ′
in

Ĥint(t′−tr) dt′ |�1�2〉 ,

|�3�4〉 → T e
−i
∫ Tout

T ′
out

Ĥint(t′−tr) dt′ |�3�4〉 . (98)

We note that the free basis |�1�2〉 and the state T e
−i
∫ Tin

T ′
in

Ĥint(t′−tr) dt′ |�1�2〉 are different from each
other; the same note applies for the out ones. Note also that we can rewrite the Heisenberg-picture
states in Eq. (97) as

|in; �1�2〉′ = eiĤ (Tin−tr)e−iĤfree (Tin−tr)

×
(

eiĤfree (Tin−tr)e−iĤ (Tin−tr)eiĤ(T ′
in−tr)e−iĤfree(T ′

in−tr)
)

|�1�2〉

= eiĤ(T ′
in−tr)e−iĤfree(T ′

in−tr) |�1�2〉 ,

|out; �3�4〉′ = eiĤ (Tout−tr)e−iĤfree (Tout−tr)

×
(

eiĤfree (Tout−tr)e−iĤ (Tout−tr)eiĤ(t′out−tr)e−iĤfree(T ′
out−tr)

)
|�1�2〉

= eiĤ(T ′
out−tr)e−iĤfree(T ′

out−tr) |�3�4〉 . (99)

In the Schrödinger picture, these are equivalent to

|in; �1�2; t〉′S = e−iĤ (t−tr)
(

eiĤ(T ′
in−tr)e−iĤfree(T ′

in−tr) |�1�2〉
)

= e−iĤ (t−T ′
in)e−iĤfree (T ′

in−tr) |�1�2〉 ,

|out; �3�4; t〉′S = e−iĤ (t−tr)
(

eiĤ(T ′
out−tr)e−iĤfree(T ′

out−tr) |�3�4〉
)

= e−iĤ (t−T ′
out)e−iĤfree (T ′

out−tr) |�3�4〉 , (100)

and in the interaction picture,

|in; �1�2; t〉′I = eiĤfree (t−tr)e−iĤ (t−tr)
(

eiĤ(T ′
in−tr)e−iĤfree(T ′

in−tr) |�1�2〉
)

= eiĤfree (t−tr)e−iĤ (t−T ′
in)e−iĤfree(T ′

in−tr) |�1�2〉

= T e
−i
∫ t

T ′
in

Ĥ I
int(t

′−tr) dt′ |�1�2〉 , (101)

|out; �3�3; t〉′I = eiĤfree (t−tr)e−iĤ (t−tr)
(

eiĤ(T ′
out−tr)e−iĤfree(T ′

in−tr) |�3�4〉
)

= eiĤfree (t−tr)e−iĤ (t−T ′
out)e−iĤfree(T ′

out−tr) |�3�4〉

= T e
−i
∫ t

T ′
out

Ĥ I
int(t

′−tr) dt′ |�3�4〉 . (102)

Just as in the free construction of Eq. (91), we may write the S-matrix as an inner product of the
interaction-picture state at an arbitrary time t:

S ′ = ′
I〈out; �3�4; t in; �1�2; t〉′I
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= 〈�3�4| T e
−i
∫ T ′

out
T ′

in
Ĥint(t′−tr) dt′ |�1�2〉 , (103)

from which the t dependence drops out. Hereafter, we come back to the choice tr = 0. We note that
S ′ and S are physically different.

If we could take the limits T ′
in → −∞ and T ′

out → ∞, we would be able to write10

S ′ → 〈�3�4| T e−i
∫∞
−∞ Ĥint(t′) dt′ |�1�2〉 . (104)

However, the limits

T ′
in → −∞, T ′

out → ∞, (105)

do not commute with the final-state integral of infinite volume over �3 and �4, as we will see below.

3.4. Comparison of the two constructions

The in-boundary effect for the fixed configuration (�1, . . . , �4) disappears from S ′, which includes
the interaction from the time T ′

in (or sufficiently earlier time than Tin−√
2ςout for the given final-state

configuration) to Tin in Eq. (98). In the original S in the “free” construction, interactions at t < Tin

do not appear. If we start from S ′ for the configuration (�1, . . . , �4), we recover the boundary effect
of S by sharply switching off interactions at t < Tin.

Here, in S ′, although the free wave packets in |�1�2〉 are given experimentally at T1 and T2,
we identify |�1�2〉 with the Heisenberg state at the much earlier time T ′

in, not at somewhere Tin

near them. Namely, the Schrödinger-picture state e−iĤ t |in; �1�2〉′ at t → T ′
in is identified with the

“free Schrödinger-picture” state e−iĤfreet |�1�2〉 that is time-evolved backward t → T ′
in in a virtual

free world governed by Ĥfree, even for the case where interactions are not negligible for t < Tin. In
|in; �1�2〉′, interactions are put at times much earlier than Tin at which the supposedly free in-state
is to be defined.

For the particular in- and out-state configuration (�1, . . . , �4)with (Tout − Tin)
2 � 2ςout, we may

always choose T ′
in � Tin −√

2ςout, and the in-boundary effect for this configuration drops out of S ′,
but there always exists another configuration (�3, �4) that has the in-boundary effect at Tout � T ′

in
according to Eq. (55). Therefore, the probability summed over (�3, �4) has the in-boundary effect
for any fixed T ′

in.
Let us rephrase the above discussion in a slightly different way. As we move T ′

in backwards, the
bulk region expands, and the effective in-boundary at T ′

in goes back in time. For a given T ′
in, the

in-boundary contribution arises from the out-state that has an overlap of out wave packets at T ′
in.

Therefore, the T ′
in → −∞ limit is not uniform because the region of the in-boundary effect in �3�4

moves along with T ′
in. For these out-states for given T ′

in, the boundary effect persists. If such an
out-state is not included, the boundary effect disappears.

To summarize so far, for any configuration of �3 and �4, there always exists a T ′
in that removes

the boundary effect, while for any T ′
in, there always exists a configuration of �3 and �4 that yields

an in-boundary effect. Therefore, it is subject to debate whether or not the limit in Eq. (105) can be
taken to remove all the time boundary effects.

10 The “dressed” construction corresponds to the ordinary plane-wave computation of taking the T →
∞ (1 − iε) limit in e−i

∫ T−T Ĥ I
int(t

′)dt′ with a positive infinitesimal ε, and further switching off the interactions by
hand by the replacement Ĥ I

int(t) → e−ε|t|Ĥ I
int(t) in the S-matrix.
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The expression for the boundary effect in the second term in Eq. (72) vanishes exponentially in the
limit Tin → −∞. In the “dressed” construction, this is natural because this limit corresponds to taking
into account all the interactions from −∞, for the fixed initial and final-state configurations. In the
“free” construction, we emphasize the fact that no matter how much we take the limit Tin → −∞,
there always exists a final-state configuration with (�Tout − Tin)

2 � 2ςout for a given Tin. The
difference of the two constructions is the order of procedures: taking the limit Tin → ∞ first vs
integrating over the infinite volume of (�3, �4) first.

So far, both constructions have pros and cons, subject to one’s theoretical prejudice. Ultimately,
experiment should determine which (or what else) is right. Currently, an experiment is ongoing [11]
based on the “free” construction [12]. In this paper we will leave the choice of constructions open,
and concentrate on the wave effect that persists even when we only take into account the bulk effects.
See Sect. 4.2 for a related discussion on the in-boundary effect for 1 → 2 decay of � → φφ.

4. Bulk amplitude

Hereafter, we focus on the bulk contribution and do not take the boundary contributions into account.
We will perform the integration of the virtual momentum p of � in the saddle-point approximation.
Note that so far the Gaussian integral over the position of interaction x and x′ is exact, up to the
time-boundary effects for t = x0 and t′ = x′0.

4.1. Bulk amplitude after integral over internal momentum

Neglecting the time-boundary contribution, the probability amplitude in Eq. (57) becomes

S = iκ2

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)
(2πσin)

3/2 (2πσout)
3/2
√

2πςin
√

2πςout

∫
d4p

(2π)4
1

p2 + M 2 − iε

× exp
{

− σout

2
(p − Pout)

2 − Rout

2
+ iXout · (p − Pout)− iTout

(
p0 − Eout − V out · p

)
− ςout

2

(
p0 − Eout − V out · p

)2 }
× exp

{
− σin

2
(p − Pin)

2 − Rin

2
− iXin · (p − Pin)+ iTin

(
p0 − Ein − V in · p

)
− ςin

2

(
p0 − Ein − V in · p

)2 }
. (106)

We can square-complete the four p0-dependent terms in the above exponent as

− ς+
2

(
p0 −�(p)+ i

δT

ς+

)2

− ς

2

(
ωout(p)− ωin(p)

)2 − (δT)2

2ς+

+ iς

(
Tin

ςin
+ Tout

ςout

)
(ωout(p)− ωin(p)) , (107)

where we have defined

ς+ := ςin + ςout,

ς :=
(

1

ςin
+ 1

ςout

)−1

,

18/28

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/10/103B04/5894551 by guest on 15 M

ay 2021



PTEP 2020, 103B04 K. Ishikawa et al.

δT := Tout − Tin,

ωin(p) := Ein + V in · p,

ωout(p) := Eout + V out · p, (108)

and the typical “average energy” for the 2 → 2 process

�(p) := ςinωin(p)+ ςoutωout(p)

ςin + ςout
. (109)

By the saddle-point approximation, we get

S = iκ2

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)
(2πσin)

3/2 (2πσout)
3/2
√

2πς

×
∫

d3p

(2π)3
1

−
(
�(p)− i δT

ς+

)2 + p2 + M 2 − iε

× exp
{

− σout

2
(p − Pout)

2 − Rout

2
+ iXout · (p − Pout)− σin

2
(p − Pin)

2

− Rin

2
− iXin · (p − Pin)

}
× exp

{
− ς

2

(
ωout(p)− ωin(p)

)2 − i�(p) δT − (δT)2

2ς+
+ i (ωout(p)Tout − ωin(p)Tin)

}
.

(110)

Here, the p dependence of the exponent eF̃ is of the form

F̃ = −σ+
2

p2 − ς

2

(
δV · p

)2 + w · p + C, (111)

where

σ+ := σin + σout, (112)

δV := V out − V in, (113)

w := σ+P − ς δE δV + i
(
δX + Tς δV

)
, (114)

C := −σin

2
P2

in − σout

2
P2

out − Rin + Rout

2
− ς

2
(δE)2 − (δT)2

2ς+

+ i
[
Xin · Pin − Xout · Pout + TςδE

]
, (115)

in which11

δT := Tout − Tin, (116)

δX := Xout − Xin, (117)

11 Here, we let δ denote the difference between the in and out quantities in 2 → 2 scattering, rather than
the difference between the in and out ones in 1 → 2 decay in Ref. [2].
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δE := Eout − Ein, (118)

and we have defined the “average momentum” for the 2 → 2 process

P := σinPin + σoutPout

σin + σout
(119)

and the “interaction time” for the 2 → 2 process

Tς := ς

(
Tin

ςin
+ Tout

ςout

)
. (120)

Note that the last term in Eq. (115) (in its second line) can be dropped since it is a pure imaginary
constant.

The saddle point ∂F̃
∂pi

= 0 is at12

p∗i = wi

σ+
− ς

(
δV
)

i

(
δV · w

)
σ+
(
σ+ + ς

(
δV
)2) , (121)

that is,

p∗ =
⎛⎝P −

ς δE δV − i
(
δX + Tς δV

)
σ+

⎞⎠− ς
(
δV
)2

σ+ + ς
(
δV
)2
⎛⎝P −

ς δE δV − i
(
δX + Tς δV

)
σ+

⎞⎠
‖

,

(122)

where

Q‖ =
(
δV · Q

)(
δV
)2 δV . (123)

Now we can rewrite F̃ without any approximation as

F̃ = −1

2

(
p − p∗

)
i

(
σ+δij + ς

(
δV
)

i

(
δV
)

j

) (
p − p∗

)
j + F̃∗, (124)

where

F̃∗ = 1

2σ+

(
w2 − ς

(
δV · w

)2
σ+ + ς

(
δV
)2
)

+ C. (125)

Let us separate two terms corresponding to the momentum and energy conservation from F̃∗:

F̃∗ = F∗ − σ

2
(δP)2 − ςσ+

2
(
σ+ + ς

(
δV
)2) (δE − V σ · δP)2 , (126)

where the phase factor part that is irrelevant for |S|2 has been dropped and we have defined

σ :=
(

1

σin
+ 1

σout

)−1

=
(

4∑
a=1

1

σa

)−1

, (127)

12 We have examined the saddle point only looking at the exponential factor. Around the pole of the
propagator, one might need to include its logarithm in the exponent.
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δE := Eout − Ein, (128)

δP := Pout − Pin, (129)

F∗ := −Rin + Rout

2
− (δT)2

2ς+

− ς

2
(
σ+ + ς

(
δV
)2)

⎛⎜⎝
(
δV
)2 (

δX
)2 −

(
δV · δX

)2

σ+
+
(
δX + TςδV

)2

ς

⎞⎟⎠ , (130)

and the “average velocity” for the 2 → 2 process

V σ := σ

(
V in

σin
+ V out

σout

)
, (131)

and have used the identity

δE + δV · P = δE − V σ · δP. (132)

We see from the first term in the parentheses in Eq. (130) that the suppression is weaker when the

“impact parameter” δX is parallel to the “momentum transfer” δV . This combination
(
δV
)2 (

δX
)2−(

δV · δX
)2

is always non-negative due to the Cauchy–Schwarz inequality. Also, from the second
term, the suppression is weaker when the difference of the average position of in- and out-states is

close at the “2 → 2 interaction time” Tς , namely when
∣∣∣δX + TςδV

∣∣∣ is small.
For integrating over p, the Gaussian factor is√√√√ (2π)3

σ 2+
(
σ+ + ς

(
δV
)2) . (133)

Finally, we get the differential amplitude for a fixed configuration of initial and final states
(�1, . . . , �4):

S = iM
(

4∏
A=1

1√
2EA

(
1

πσA

)3/4
)

× (2π)4
[( σ

2π

)3/2
e− σ

2 (δP)
2
]⎡⎣( 1

2π

ςσ+
σ+ + ς

(
δV
)2
)1/2

e
− 1

2
ςσ+

σ++ς(δV)2 (δE−V σ ·δP)2
⎤⎦ , (134)

where we have defined the dimensionless amplitude M, cf. Eq. (A.10):

M := κ2eF∗

−
((
�
(
p∗
))2 −

(
δT
ς+

)2
)

+ i2�
(
p∗
)
δT
ς+ + p2∗ + M 2 − iε

= κ2

−
((
�
(
p∗
))2 −

(
δT
ς+

)2
)

+ i2�
(
p∗
)
δT
ς+ + p2∗ + M 2 − iε

× exp
{

− Rin + Rout

2
− (δT)2

2ς+
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− ς

2
(
σ+ + ς

(
δV
)2)

⎛⎜⎝
(
δV
)2 (

δX
)2 −

(
δV · δX

)2

σ+
+
(
δX + TςδV

)2

ς

⎞⎟⎠}.

(135)

Several comments are in order.

◦ All the terms in F∗ are negative or zero, and hence F∗ gives always a suppression factor.
◦ In the amplitude in Eq. (134), the plane-wave limit σ → ∞ gives a delta function for the

momentum conservation:( σ
2π

)3/2
e− σ

2 (δP)
2 → δ3(δP) = δ3(Pout − Pin

)
. (136)

◦ Likewise, the limit ςσ+
σ++ς(δV )2 → ∞ gives a delta function for the energy conservation:

(
1

2π

ςσ+
σ+ + ς

(
δV
)2
)1/2

e
− 1

2
ςσ+

σ++ς(δV)2 (δE−V σ ·δP)2
→ δ(δE − V σ · δP) . (137)

◦ In the squared amplitude |S|2, the factor e−σ(δP)2 gives the momentum conservation in the limit
σ → ∞: (σ

π

)3/2
e−σ(δP)2 → δ3(Pout − Pin

)
. (138)

We note that the infinity δ3(0) from
[
δ3
(
δP
)]2

that appears in the plane-wave computation,
using the right-hand side in Eq. (136), is tamed in the current wave-packet one: the would-be
delta function squared becomes another would-be delta function again.

◦ Likewise, the factor

exp

(
− ςσ+
σ+ + ς

(
δV
)2 (δE − V σ · δP)2

)

in |S|2 gives the energy conservation in the limit ςσ+
σ++ς(δV )2 → ∞:

√
1

π

ςσ+
σ+ + ς

(
δV
)2 e

− ςσ+
σ++ς(δV)2 (δE−V σ ·δP)2

→ δ
(
Eout − Ein − V σ · (Pout − Pin)

)
. (139)

Note that the energy conservation is deformed by the wave-packet effect V σ · δP, which goes
to zero in the momentum-conserving limit: δP → 0.

◦ It is remarkable that the wave effect persists even without the time-boundary effect. Namely,
the real and imaginary parts of the pole of the propagator are shifted as in Eq. (135). Even
when p∗ � Pin and �

(
p∗
) � Ein, the pole position of the propagator is shifted such that the

mass-squared M 2 and decay width� are shifted by (δT/ς+)2 and −2EinδT/ς+M , respectively.

4.2. In-boundary effect for decay

Here, we discuss how our result for the 2 → 2 scattering φφ → � → φφ can be applied to the
1 → 2 decay process � → φφ. In Sect. 3 we presented two different constructions regarding the
boundary effect. For the 1 → 2 decay� → φφ [2], the key question for its in-boundary effect is how

22/28

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/10/103B04/5894551 by guest on 15 M

ay 2021



PTEP 2020, 103B04 K. Ishikawa et al.

we can better take into account the production process of�. Which approximates an experimentally
prepared state of � better at an initial time T decay

in ? Is it the Heisenberg state

|in; �〉 = eiĤT decay
in e−iĤfreeT decay

in |�〉 (140)

in the free construction, or

|in; �〉′ = eiĤT decay
in e−iĤfreeT decay

in T e−i
∫ T

decay
in

T ′ H I
int(t

′) dt′ |�〉 (T ′ → −∞) (141)

in the dressed construction?13

In our result for the 2 → 2 s-channel scattering of φφ → � → φφ, the interaction time Tin would
correspond to T decay

in for the � → φφ decay. We note here that the in-boundary effect of the decay
becomes significant when the decay-interaction point around Tout is near the center of the in-state
wave packet at T decay

in � Tin, namely when

(δT)2 = (Tout − Tin)
2 � 2ςout. (142)

Therefore, one might deduce that the limit δT → 0, which necessarily arises when we integrate over
the final-state phase space �3 and �4, corresponds to the in-boundary for the 1 → 2 decay. By
taking δT → 0 in Eq. (135), we obtain

M → κ2

−(�(p∗
))2 + p2∗ + M 2 − iε

× exp
{

− ς

2
(
σ+ + ς

(
δV
)2)

⎛⎜⎝
(
δV
)2 (

δX
)2 −

(
δV · δX

)2

σ+
+
(
δX + TςδV

)2

ς

⎞⎟⎠}.

(143)

We see that there is no 1 → 2 in-boundary effect in the 2 → 2 bulk amplitude. If the in-boundary
effect of 1 → 2 decay exists, it can only emerge from the in-boundary effect of 2 → 2 scattering.

5. Various limits

Here, we take several limits where σin and/or σout goes to infinity.

5.1. Plane-wave limit for the initial state

First, we take the plane-wave limit for the initial state σin → ∞ for fixed σout:

σ = σout

1 + σout
σin

→ σout, (144)

ς = ςout

1 + ςout
ςin

→ ςout, (145)

ςσ+
σ+ + ς

(
δV
)2 = σ

σin
σ+�V 2

out + σout
σ+ �V 2

in + σ
σ+
(
δV
)2 → ςout, (146)

ς

σ+
→ 0, (147)

13 See the discussion in Sects. 3.3 and 3.4 for subtleties on taking the T ′ → −∞ limit.
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where, since σ and ςσ+
σ++ς(δV )2 stay finite, both momentum and energy conservation is violated. The

above-limited values lead to

P = Pin + σout
σin

Pout

1 + σout
σin

→ Pin, (148)

p∗ → P = Pin, (149)

�
(
p∗
) = ωin

(
p∗
)+ ςout

ςin
ωout

(
p∗
)

1 + ςout
ςin

→ ωin
(
p∗
) = ωin(Pin) = Ein, (150)

Rin → 0, (151)

F∗ → −Rout

2
, (152)

V σ → V out, (153)

where we used the result of Eq. (148) in the last steps of Eqs. (149) and (150). From the above
information, we get the limit of the propagator:

1

−
((
�
(
p∗
))2 −

(
δT
ς+

)2
)

+ i2�
(
p∗
)
δT
ς+ + p2∗ + M 2 − iε

→ 1

−E2
in + P2

in + M 2 − iε
. (154)

To summarize,

S → i

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)

κ2

−E2
in + P2

in + M 2 − iε
e−Rout

2

× (2π)4
[(σout

2π

)3/2
e− σout

2 (δP)2
] [(ςout

2π

)1/2
e− ςout

2

(
δE−V out·δP

)2]
. (155)

We see that momentum conservation is broken by ∼√
σout, and energy conservation by ∼√

ςout,
along with the shift −V out · δP in the plane-wave limit for the initial state.

5.2. Plane-wave limit for the final state

Similarly, we may take the plane-wave limit for the final state σout → ∞ for fixed σin:

σ → σin, (156)

ς → ςin, (157)

ςσ+
σ+ + ς

(
δV
)2 → ςin, (158)

ς

σ+
→ 0, (159)

P → Pout, (160)

p∗ → Pout, (161)

�
(
p∗
)→ ωout(Pout) = Eout, (162)

Rout → 0, (163)
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F∗ → −Rin

2
, (164)

V σ → V in. (165)

The limit of the propagator becomes

1

−
((
�
(
p∗
))2 −

(
δT
ς+

)2
)

+ i2�
(
p∗
)
δT
ς+ + p2∗ + M 2 − iε

→ 1

−E2
out + P2

out + M 2 − iε
. (166)

To summarize,

S → i

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)

κ2

−E2
out + P2

out + M 2 − iε
e−Rin

2

× (2π)4
[(σin

2π

)3/2
e− σin

2 (δP)
2
] [(ςin

2π

)1/2
e− ςin

2

(
δE−V in·δP

)2]
. (167)

We see that momentum conservation is broken by ∼√
σin, and energy conservation by ∼√

ςin, along
with the shift −V in · δP in the plane-wave limit for final state.

5.3. Plane-wave limit for both

Finally, we take the double-scaling limit σin, σout → ∞ for fixed σout/σin:

σ = σout

1 + σout
σin

→ ∞, (168)

ς = ςout

1 + ςout
ςin

→ ∞, (169)

ςσ+
σ+ + ς

(
δV
)2 = σ

σin
σ+�V 2

out + σout
σ+ �V 2

in + σ
σ+
(
δV
)2 → ∞, (170)

ς

σ+
→ σout/σin(

1 + σout
σin

) (
�V 2

out +�V 2
in
σout
σin

) . (171)

The limits in Eqs. (168) and (170) lead to the momentum- and energy-conserving delta functions
δ3(Pout − Pin) and δ(Eout − Ein) as in Eqs. (136) and (137), respectively. Then, we obtain

δE ≈ −δV · P , (172)

P = Pin + σout
σin

Pout

1 + σout
σin

≈ Pin ≈ Pout, (173)

p∗ →
(

P − ς δE δV
σ+

)
−

ς
σ+
(
δV
)2

1 + ς
σ+
(
δV
)2
(

P − ς δE δV
σ+

)
‖

≈ P , (174)

�
(
p∗
) =

[
Ein − V in · (Pin − p∗

)]+ ςout
ςin

[
Eout − V out · (Pout − p∗

)]
1 + ςout

ςin
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≈ Ein + ςout
ςin

Eout

1 + ςout
ςin

≈ E(P) ≈ Ein ≈ Eout, (175)

F∗ → 0, (176)

where ≈ denotes that we have used the energy and momentum conservation from the abovementioned
delta functions. Based on the above information, we derive the plane-wave limit of the propagator:

1

−
((
�
(
p∗
))2 −

(
δT
ς+

)2
)

+ i2�
(
p∗
)
δT
ς+ + p2∗ + M 2 − iε

→ 1

− (�(p∗
))2 + p2∗ + M 2 − iε

≈ 1

−(E(P))2 + P2 + M 2 − iε
. (177)

We see that the propagator is reduced to the plane-wave form. To summarize,

S → i

(
4∏

A=1

1√
2EA

(
1

πσA

)3/4
)

κ2

−(E(P))2 + P2 + M 2 − iε
(2π)4 δ4(Pout − Pin) , (178)

where δ4(Pout − Pin) = δ(Eout − Ein) δ
3(Pout − Pin).

6. Discussion

We have computed the Gaussian S-matrix for the s-channel 2 → 2 scalar scattering:φφ → � → φφ.
We have found that the wave effects persist even without the time-boundary effect.

As future work, it would be interesting to study the integrated probability after performing the
final-state integral over the positions X 3 and X 4:∫

d3X 3 d3X 4 |S|2 . (179)

Then we may read off how the ordinary plane-wave differential cross section arises, and see the
derivation from it due to the wave effects. It would also be interesting to study the factorization in
the limit

(
E2

in − P2
in

)→ M 2.
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Appendix A. Comparison with φ4 theory

Let us consider an interaction Hamiltonian

Ĥint(t) = λ

4!
∫

d3x φ̂4(x) . (A.1)
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The the tree-level probability amplitude becomes

S = −iλ
∫ Tout

Tin

dt
∫

d3x f ∗
σ3;�3

(x) f ∗
σ4;�4

(x) fσ1;�1(x) fσ2;�2(x) . (A.2)

In the leading plane-wave approximation, we get

S → −iλ

(
4∏

A=1

(
1

πσA

)3/4 1√
2EA

)∫ Tout

Tin

dt
∫

d3x

× e
iP1·(x−X1)− (x−�1(t))

2

2σ1 e
iP2·(x−X2)− (x−�2(t))

2

2σ2 e
−iP3·(x−X3)− (x−�3(t))

2

2σ3 e
−iP4·(x−X4)− (x−�4(t))

2

2σ4

= −iλ
∫ Tout

Tin

dt

(
4∏

A=1

(
1

πσA

)3/4 1√
2EA

eiαAEA(t−TA)

)

×
∫

d3x e

∑4
A=1

(
− (x−�A(t))

2

2σA
−iαAPA·(x−X A)

)

= −iλ
∫ Tout

Tin

dt

(
4∏

A=1

(
1

πσA

)3/4 1√
2EA

eiαAEA(t−TA)

)

×
∫

d3x e− 1
2σ (x−�(t))2−i ασP·(x−X ), (A.3)

where α1 = α2 = −1, α3 = α4 = 1, and σ :=
(∑4

A=1
1
σA

)−1
. The exponent becomes

exponent = − 1

2σ

(
x − �(t)+ iσ δP

)2 − 1

2σ

(
(�(t))2 − (�(t))2)

− σ

2
(δP)2 − i �(t) · δP + i δE t + i [· · · ] , (A.4)

where +i [· · · ] denotes irrelevant imaginary constant terms which disappear in |S|2, and we have
used ασE = σ δE and ασP = σ δP. Now,

�(�(t))2 = (�(t))2 − (�(t))2
= (X + V t)2 −

(
X + V t

)2

= X2 − X
2 +

(
V 2 − V

2
)

t2 − 2
(
X · V − X · V

)
t

= �X2 +�V 2 t2 − 2
(
X · V − X · V

)
t. (A.5)

After integrating over x, the exponent becomes

exponent = −�X2

2σ
− �V 2

2σ

(
t − X · V − X · V

�V 2

)2

+ �V 2

2σ

(
X · V − X · V

�V 2

)2

− σ

2
(δP)2 − i X + V t · δP + i δE t + i [· · · ]

= −�V 2

2σ

(
t − X · V − X · V − iσ

(
δE − V · δP)

�V 2

)2
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− 1

2

⎛⎝�X2

σ
− �V 2

σ

(
X · V − X · V

�V 2

)2
⎞⎠

− σ
(
δE − V · δP)2

2�V 2 − σ

2
(δP)2 + i [· · · ] . (A.6)

In the last expression, the second term corresponds to the overlap exponent −R/2, with R =
�X2

σ
− T2

ς
being non-negative (see Sect. 3.1 in Ref. [2]), and the third and fourth terms to the energy

and momentum conservation, respectively.
After integrating over x and t (neglecting the time boundaries), we get the expression for the

probability amplitude, namely the dimensionless S-matrix:

S = −iλ (2πσ)3/2
√

2πς

(
4∏

A=1

(
1

πσA

)3/4 1√
2EA

)
e−R

2 − σ
2 (δP)

2− ς
2

(
δE−V ·δP)2

= −iλ (2π)4
(

4∏
A=1

(
1

πσA

)3/4 1√
2EA

)
e−R

2

(( σ
2π

)3/2
e− σ

2 (δP)
2
)(√

ς

2π
e− ς

2

(
δE−V ·δP)2) .

(A.7)

We may compare this result with the relation between the dimensionful plane-wave S-matrix element
Splane and the dimensionless plane-wave amplitude Mplane:

Splane = i (2π)4 δ4(Pout − Pin)Mplane. (A.8)

We see that

M = Mplane e−R/2 (A.9)

gives the proper normalization, where Mplane = −λ for the current case. That is,

S = iM (2π)4
(

4∏
A=1

(
1

πσA

)3/4 1√
2EA

)(( σ
2π

)3/2
e− σ

2 (δP)
2
)(√

ς

2π
e− ς

2

(
δE−V ·δP)2) . (A.10)
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