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Abstract Expression of synthetic proteins from inter-

genic regions of E. coli and their functional association was

recently demonstrated (Dhar et al. in J Biol Eng 3:2, 2009.

doi:10.1186/1754-1611-3-2). This gave birth to the ques-

tion: if one can make ‘user-defined’ genes from non-coding

genome—how big is the artificially translatable genome?

(Dinger et al. in PLoS Comput Biol 4, 2008; Frith et al. in

RNA Biol 3(1):40–48, 2006a; Frith et al. in PLoS Genet

2(4):e52, 2006b). To answer this question, we performed a

bioinformatics study of all reported E. coli intergenic se-

quences, in search of novel peptides and proteins, unex-

pressed by nature. Overall, 2500 E. coli intergenic

sequences were computationally translated into ‘protein

sequence equivalents’ and matched against all known

proteins. Sequences that did not show any resemblance

were used for building a comprehensive profile in terms of

their structure, function, localization, interactions, stability

so on. A total of 362 protein sequences showed evidence of

stable tertiary conformations encoded by the intergenic

sequences of E. coli genome. Experimental studies are

underway to confirm some of the key predictions. This

study points to a vast untapped repository of functional

molecules lying undiscovered in the non-expressed genome

of various organisms.
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Introduction

Several studies have reported the presence of previously

uncharacterized functional peptides from the ‘non-coding’

regions of genomes—from bacteria to human (Dinger et al.

2008; Frith et al. 2006a, b). Many of these short peptides

seem to be involved in critical biological processes like

signal transduction, cellular communication, metabolism,

innate immunity and anti-microbial activities.

Recent reports indicate large numbers of non-coding

transcripts \100 codon length ORFs encoding small pep-

tides (Dinger et al. 2008; Frith et al. 2006a, b; Kondo et al.

2010; Kageyama et al. 2011). It is quite possible that cells

may be translating some of these ncRNAs into functional

peptides of\50 amino acids (Frith et al. 2006a, b). As an

example, peptides encoded by a short ORF gene pri pre-

viously thought to encode ncRNA, have been found to

control epidermal differentiation in Drosophila me-

lanogaster (Kondo et al. 2010). Similarly, the plant gene

ENOD40, previously thought to encode a non-coding RNA

has been found to encode two functional peptides

(Kageyama et al. 2011).

A number of short peptides (\100 amino acids) have been

reported in mammalian genomes (Frith et al. 2006a, b).

Computational prediction of functional domains in these

proteins points towards cytochrome c-oxidase and chemo-

kine activity. The finding that a large proportion of already

known short peptides are extra-cellular indicates that these

may be involved in cell–cell interactions. Interestingly, the

short protein coding ORFs seem to be more evolutionarily

conserved than DNA sequences.
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The recently discovered ability to artificially express

non-coding sequences (Dhar et al. 2009) has given rise to

sheer scale of making user-defined genes. Authors syn-

thesized novel proteins from intergenic regions of E. coli

that did not show any natural history of transcription. On

functional evaluation, one of these proteins showed evi-

dence of cell growth inhibition. The present study is an

extension of this report with an aim to find novel protein/

peptide structures from the non-coding genome which can

play functional roles.

Methodology

Identifying the study sample

Intergenic sequences of E. coli were downloaded from the

EcoGene 2.0 database. The database stores 2500 inter-

genic sequences along with their coordinates—proximal

and distal genes, their orientation, length and so on. All

the sequences were computationally translated and mat-

ched against NCBI non-redundant protein database, using

BlastX tool. Of 2500 sequences, 1579 sequences were

discarded from this study as their sequence similarity

scores ranged over 40 %. The selected dataset of 921

sequences that showed \40 % local similarity with

known proteins, were translated into six reading frames

using Expasy Translate tool. We used 30 amino acids

residues and above cut off to narrow down dataset of

5526 (921*6) sequences to 892 candidate sequences for

making proteins.

Structure prediction

Homology based approaches could not be applied as the

study was limited to sequences that lacks complete

similarity with known proteins. Hence we used I-TAS-

SER, an automated protein structure and function pre-

diction server which combines threading and ab initio

approaches for structure prediction (Zhang 2008).

I-TASSER is one of the best tool available for protein

structure prediction which ranked 1st in CASP7, CASP8

and CASP9 experiments. The major scoring function

C-score or confidence score is an estimate of quality of

predicted conformations. The C-score is usually found to

span between -5 to 2 and a score closer to 2 signifies

higher confidence level for the predicted protein structure.

All the 892 sequences were subjected to structure pre-

diction using I-TASSER and out of these 362 sequences

found to form folded tertiary conformations with optimal

C-scores ranging from -2 to 5 and formed the core data

set for our study.

Stability analysis

In order to analyze the structural stability of the predicted

proteins, non-bonded interactions like hydrogen bonds,

hydrophobic interactions, salt bridges and disulphide

bridges were computed using What If Server (Vriend 1990)

and Protein Interaction Calculator (Tina et al. 2007). SCide

program (Dosztanyi et al. 2003) was used for calculating

stabilization centres while instability index (for estimating

protein’s stability in vitro) was calculated using Expasy

ProtParam Tool (Gasteiger et al. 2005). The total energy of

the structures was estimated in Steepest Descent method

implemented in Deep View (Guex and Peitsch 1997). Ca-

tion pi interactions were found out using CaPTURE pro-

gram (Gallivan and Dougherty 1999).

Sequence based functional annotations

The primary functional annotations were carried out using

Protfun 2.2 server (Jensen et al. 2002). The server allows

predicting the Functional and Gene Ontology categories of

input amino acid sequences. The method implemented in

Protfun relies on physico-chemical parameters of the

amino acid sequences, protein sorting signals, and post

translational modification sites, unlike other sequence ho-

mology based approaches. It was best suited in our case as

the peptides are selected based on lack of complete se-

quence similarity with known proteins. The functional

categories in Protfun predictions are Signal transducer,

receptor, hormone, structural protein, transporter, ion

channel, voltage-gated ion channel, transcription, tran-

scription regulation, stress response, immune response and

growth factor.

The subcellular localization of protein molecules is an

important parameter that is used in annotation of gene

products and in predicting potential functions (Cherian and

Nair 2010). All the 362 peptide sequences were subjected

to localization prediction using CELLO v.2.5 webserver.

CELLO (Yu et al. 2006) is a subcellular localization pre-

diction system based on the physicochemical parameters of

amino acids that predicts whether a protein is cytoplasmic,

inner membrane, periplasmic, outer membrane or extra-

cellular with a prediction accuracy of 88.7 % for gram

negative bacteria.

Results

Validating the dataset

Of 2500 intergenic sequences collected from EcoGene

Database, 921 intergenic sequences (ranging from 97 to
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960 nucleotides) were predicted to be non-homologous to

all known proteins based on sequence similarity search

against non-redundant protein database (\40 % global

similarity). After translating (a) all these sequences into six

reading frames and (b) applying a 30 amino acid cut off,

892 sequences without stop codons were obtained

(Table 1).

Structure prediction

Of the 892 structure predicted sequences, 362 protein se-

quences showed evidence of a stable tertiary conformation

(confidence score -2 to -5), which is a good indicator.

Presence of secondary structure elements—alpha helices

and beta strands (with involvement of at least five amino

acids) were identified in 155 structures. Considering that

most of the peptides remained within a length range of

30–50 amino acids, presence of secondary structure ele-

ments indicate conformational stability and functional po-

tential. 132 proteins showed alpha helices, 15 showed beta

strands while 8 proteins have both the secondary structure

elements. 86 proteins have traces of alpha helices in their

tertiary conformations, but major part was formed of loops

(Fig. 1; Table 2).

52 peptides from this dataset showed linear helical

structure with a considerable distribution of positively

charged and hydrophobic amino acids indicating possible

functional implications.

Stability analysis

Peptide structures were analyzed for the presence hydrogen

bonds, hydrophobic interactions, disulphide bridges, salt

bridges, stabilization centres, cation pi interactions, insta-

bility index and total energy to get an idea of their possible

stability. Negative energy values, \40 instability index,

higher numbers of hydrogen bonds and hydrophobic in-

teractions, presence of stabilization centres, cation pi in-

teractions, salt bridges and cysteine bridges are good

indicators of conformational stability (Ramanathan et al.

2011).

Calculation of total energy which indicates deviation

from ideal molecular parameters identified 198 PSP pro-

teins out of 362 shows negative energy values. Instability

Index calculation with ProtParam tool has identified 137

peptides with instability index lesser than 40 indicating

thermodynamic stability. Variation in the number of hy-

drogen bonds was marked with PSP101 showing highest

(84) and PSP388 with just 7 hydrogen bonds. 252 peptides

shown to have [30 hydrogen bonds. Considering the size

of our peptides, presence of [30 h-honds in could sub-

stantially contribute to structure integrity (Ramanathan

et al. 2011). Of the 362 structures, 269 showed [10 hy-

drophobic interactions. Long range interactions like disul-

phide bridges and salt bridges were found in 51 peptides

and 184 respectively. 152 peptides showed stabilization

centres based on SCide predictions and 110 showed cation

pi interactions (Tables 3, 4, 5).

Sequence based function predictions

Gene Ontology predictions using Protfun 2.2 server

showed a wide range of gene ontology categories for our

peptide dataset. The various gene ontology categories at-

tributed to our peptide dataset are immune response,

structural protein, transcriptional regulation and signal

transducer. Other major predicted categories include tran-

scription, stress response and receptor (Table 6).

All the 362 peptide sequences were subjected to sub-

cellular localization prediction using CELLO v.2.5 web-

server (Yu et al. 2006). 282 peptides were predicted to be

localized in the cytoplasm while 63 peptides are periplas-

mic. 12 of the dataset are characterized as extracellular

while two predicted to be inner membrane peptides

(Table 7).

Discussion

Functional genomics aims to characterize all functional

units transcribed from the genome. Several recent studies,

especially tiling array experiments suggest that the anno-

tations so far missed a large proportion of transcripts; both

protein coding and non-coding functional RNAs. It implies

that many genomic regions, considered intergenic or ‘junk’

may actually encode unannotated functional products in-

volved in various biological processes. It has been also

demonstrated that many transcripts which were considered

non-coding are in fact being translated to small proteins

and peptides. Moreover Dhar et al. has recently described

an appropriate method for the functional validation on in-

tergenic regions.

Motivated by these recent studies, the present work

aimed at identifying potential peptide structures embedded

in the intergenic regions of E. coli that might be already

expressing but missed out in annotation procedures.

Moreover there may structures that were functional in

ancestral organisms, or even entirely novel structures with

Table 1 Length distribution of protein sequences

No. of amino acid residues 30–40 40–50 50–60 [60

No. of sequences 624 198 60 10

Majority of the sequences (69.9 % of sequences) in the dataset were

30–40 amino acids long
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potential to perform new biological roles. In our work we

have concentrated only on novel structures, hence we ex-

cluded all interegnic sequences that have a considerable

sequence similarity, which yielded 892 sequences.

The specific function of a protein/peptide is closely re-

lated to its unique three dimensional globular structures.

Hence one of the prerequisites for a sequence to form a

functional protein is its ability to form a considerably stable

tertiary conformation. Moreover, information on the struc-

ture will also provide valuable clues about the possible

functions of the protein sequence under consideration. So we

wanted to investigate whether the ‘non-coding’ sequences of

our dataset can form folded tertiary structures. Ab initio

structure prediction using I-TASSER webserver showed that

362 sequences of our dataset can form optimal tertiary

conformations with the C-score ranging from -2 to 5.

Further analysis of the predicted structures shows that

out of the 362 peptide structures 155 has true secondary

structure elements formed of alpha helices and beta strands.

This itself indicates that at least a few or these molecules

can play biological roles if expressed, either naturally or

artificially. Out of these 155, 132 peptides are formed

mainly of alpha helices, with 32 having long linear helices.

Presence of alpha helices could be an important indicator

Fig. 1 Predicted structures of PSP proteins 101 (a), 164 (b) and 535 (c)

Table 2 Distribution of

secondary structure elements in

362 structures

Secondary structure elements Helices B-sheets Helix and sheets Trace helices Loops

No. of secondary structure elements 132 15 8 86 121

155 sequences formed true secondary structure elements with the involvement of five or more amino acids

Table 3 A sample of peptides showing stability parameters and values

Id Length H-bonds Hydrophobic

interactions

Disulphide

bridges

Salt

bridges

Stabilization

centres

Cation pi Instability

index

Total energy

PSP186 48 51 36 1 1 10 1 28.85 -1365.216

PSP245 44 41 22 0 1 7 3 24.36 -941.149

PSP325 42 42 21 1 1 7 3 37.02 -1359.283

PSP432 38 53 26 1 2 2 1 33.25 -1569.342

PSP565 35 61 37 0 1 5 2 29.51 -1083.816

Table 4 Distribution of

Hydrogen bonds and

hydrophobic interactions

Numbers \10 10–20 20–30 30–40 40–50 50–60 60–70 [70

H-bonds 2 15 82 131 87 33 9 1

Hydrophobic interactions 71 174 89 23 2 0 2 1

Table 5 Distribution of salt

bridges and stabilization centres
Numbers 0 1 2 3 4 5 6 7 8 9 10 [10

Salt bridges 131 119 57 25 11 14 4 1 – – – –

Stabilization

centres

170 0 50 9 23 11 16 11 6 13 11 21
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of potential biological activity. Many proteins exert their

biological function with the help of an alpha helix segment

that interact with other proteins or the DNA itself. More-

over most of the cationic peptides with anti-microbial ac-

tivity are helical peptides (Harrison et al. 2010; Powers and

Hancock 2003). One of the major functions attributed to

short peptides with helicity is immune response and hence

the anti-microbial potential of CSSB peptides has to be

further investigated.

Since structure stability is an important indicator of

functional potential of bioactive peptides, we adopted a

computational approach to investigate certain parameters

that are critical in determining structure stability. Various

kinds of atomic contacts within the protein and with the

medium are instrumental in protein structure formation.

While short interactions like H-bonds between neighbour-

ing amino acids involved in folding, long range interactions

like disulphide bridges contribute to tertiary structure sta-

bility. The major non-covalent interactions that contribute

to structure stability include H-bonds, hydrophobic inter-

actions, disulphide bridges and salt bridges. Calculation of

H-bonds, hydrophobic interactions, stabilization centres,

instability index etc. indicates that a major proportion of

our peptides dataset can be thermodynamically stable,

further confirming their potential to play biological roles.

The primary functional annotations were carried our

using Protfun 2.2 server. The server allows predicting the

Functional and Gene Ontology categories of input amino

acid sequences. Gene Ontology (GO) refers to a hierar-

chical set of terms that describe protein functions at dif-

ferent levels. The method implemented in Protfun relies on

physico-chemical parameters of the amino acid sequences,

protein sorting signals, and post translational modification

sites, unlike other sequence homology based approaches. It

was best suited in our case as the peptides are selected

based on lack of complete sequence similarity with known

proteins. Gene Ontology predictions using Protfun 2.2

server showed a wide range of gene ontology categories for

our peptide dataset. The highest number of peptides (83)

was attributed to in Immune response while 57 predicted as

involved in Transcription regulation. As per the findings, a

substantial number of peptides (47) can potentially act as

signal transducers while 24 could be involved in Stress

response, if expressed. This is an important observation as

these four are the major functional roles attributed to short

peptides in recent studies.

Conclusion

In the present study we have demonstrated a method to

computationally characterize novel peptide structures from

the intergenic space. With several recent studies suggesting

the presence of short peptides embedded in the ‘dark

matter’ genome of many organisms, with roles in immune

response, signal transduction etc. Our study aimed at ex-

ploring the functional potential of these ‘non-natural’

peptides, which offers a huge untapped repository of pro-

teins with novel functions. The prediction of 362 peptide

structures with considerable conformational stability indi-

cates that at least a few of them may be already expressed

as functional peptides in E. coli. Further sequence based

and structure based predictive methods are to be applied to

narrow down the functional roles attributed to the peptides.

Moreover the overwhelming presence of helical peptides

augments their potential as therapeutic agents which are to

be further investigated.
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