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ABSTRACT

Long non-coding RNAs (lncRNAs) make up a sig-
nificant portion of non-coding RNAs and are in-
volved in a variety of biological processes. Accu-
rate identification/annotation of lncRNAs is the pri-
mary step for gaining deeper insights into their func-
tions. In this study, we report a novel tool, PLncPRO,
for prediction of lncRNAs in plants using transcrip-
tome data. PLncPRO is based on machine learning
and uses random forest algorithm to classify cod-
ing and long non-coding transcripts. PLncPRO has
better prediction accuracy as compared to other ex-
isting tools and is particularly well-suited for plants.
We developed consensus models for dicots and
monocots to facilitate prediction of lncRNAs in non-
model/orphan plants. The performance of PLncPRO
was quite better with vertebrate transcriptome data
as well. Using PLncPRO, we discovered 3714 and
3457 high-confidence lncRNAs in rice and chick-
pea, respectively, under drought or salinity stress
conditions. We investigated different characteristics
and differential expression under drought/salinity
stress conditions, and validated lncRNAs via RT-
qPCR. Overall, we developed a new tool for the pre-
diction of lncRNAs in plants and showed its utility
via identification of lncRNAs in rice and chickpea.

INTRODUCTION

Recent studies have shown that transcription is pervasive
and non-coding transcripts make up a significant portion of
an organism’s transcriptome (1,2). Even though non-coding

RNAs (ncRNAs), are not translated into proteins, they play
an important role in regulating expression of other coding
transcripts (3,4). Long non-coding RNAs (lncRNAs) do
not code for proteins and have minimum transcript length
of 200 bp. Although many lncRNAs in plants and animals
have been identified, their exact role in biological processes
remains largely unknown (5,6). Some of recently discov-
ered lncRNAs have been shown to perform regulatory roles
in crucial biological processes via association with chro-
matin modifying complex, histone modifications and target
mimicry (4,7,8).

The accurate prediction of lncRNAs remains one of the
major problems in plants. Therefore, we need accurate and
efficient computational methods to predict lncRNAs in
plants to further investigate their roles. Next generation
RNA-sequencing (RNA-seq) methods have given an op-
portunity to study the whole transcriptome of any organ-
ism and these data can be used to identify potential lncR-
NAs. Efficient methods/tools are needed to analyse the
high-throughput data for discovery of lncRNAs. There are
quite a few already existing tools, which can analyse the
transcript sequences to assess their coding potential, such
as coding potential calculator (CPC), coding-non-coding
index (CNCI), coding-potential assessment tool (CPAT),
lncRScan-SVM and predictor of lncRNAs and messenger
RNAs based on an improved k-mer scheme (PLEK) (9–13).
CPC, CNCI, lncRScan-SVM and PLEK use support vector
machine (SVM) model to calculate the coding potential of
transcripts (9,11–13), whereas CPAT uses linear regression
model to discriminate coding and non-coding transcripts
(10). These methods use different features of transcript se-
quences to build a classification model and have been shown
to work well in animal datasets. However, to the best of our
knowledge, there is no dedicated tool available, which can
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predict the lncRNAs with high accuracy in plants. It has
been shown that models built with human data to predict
ncRNAs or lncRNAs may work well with other closely re-
lated vertebrate species, but perform poorly with plant data
(13). Thus, we need to build specific models for classification
of coding and long non-coding transcripts in plants.

Here, we have developed a new tool, PLncPRO (Plant
Long Non-Coding RNA Prediction by Random fOrest), to
discover lncRNAs in plants via classifying coding and long
non-coding transcripts. We have built classification models
for different plant species to predict lncRNAs and tested
our tool on various available datasets. We benchmarked the
accuracy of PLncPRO vis-a-vis other existing programs us-
ing known set of lncRNAs in different plants. Furthermore,
we developed dicot and monocot specific models to facili-
tate more robust discovery of lncRNAs in plants. We as-
sessed the lncRNA prediction accuracy of PLncPRO in hu-
man and mouse also. In addition, we demonstrated the ap-
plication of our tool via prediction of novel lncRNAs in two
crop plants, chickpea and rice, under abiotic stress condi-
tions. The availability of plant-specific lncRNA prediction
tool and identification of stress-responsive lncRNAs will
provide a useful resource for understanding lncRNA biol-
ogy in plants.

MATERIALS AND METHODS

Data description

We defined prediction of coding RNAs and lncRNAs as a
binary classification problem and labelled coding sequences
as positive and long non-coding sequences as negative. The
lncRNA sequences for ten plant species (Amborella tri-
chopoda, Arabidopsis thaliana, Chlamydomonas reinhardtii,
Glycine max, Oryza sativa, Physcomitrella patens, Se-
laginella moellendorffii, Solanum tuberosum, Vitis vinifera
and Zea mays) were downloaded from CANTATAdb as
negative examples. CANTATAdb is an online repository for
computationally identified plant lncRNAs, predicted from
RNA-seq libraries (14). The positive examples, i.e. protein
coding transcripts (pct) were downloaded from Phytozome
v11 (15) for all the plant species. We split the data randomly
into disjoint train and test sets for each species (Supplemen-
tary Table S1). The validation of constructed training mod-
els of dicots and monocots was performed using published
lncRNA datasets for different plant species (Supplemen-
tary Table S2). We downloaded protein coding and lncRNA
sequences from GENCODE for human (v24), and mouse
(vM9) to test our tool on vertebrates (16). One training and
two test datasets were generated for human and mouse by
randomly splitting the data (Supplementary Table S3).

Feature extraction

To construct a random forest model, we extracted a 71 di-
mensional feature vector for each sequence in a given la-
belled (positive and negative) dataset. These features were
selected based on the previous knowledge about coding
and non-coding transcripts (17,18). We used two programs,
Framefinder (19) and BLASTX (20) to extract some of the
features.

To estimate quality of an open reading frame (ORF)
present in a transcript, we used Framefinder software and
extracted ORF score and coverage, designated as FF-score
and ORF coverage, respectively.

Next, we used BLASTX program to find if the transcripts
have a significant similarity to any known protein coding
sequence in SWISS-PROT database (21). We extracted four
relevant features by parsing the BLASTX output.

1. Number of hits, N: For a true protein coding sequence,
a higher number of hits are expected. Thus, N is a good
feature to distinguish between true coding and non-
coding transcripts.
Many query sequences, however, can show random in-
significant matches to a blast database. To handle this
problem, we defined three more features, which can be
helpful in discriminating between a true protein coding
and a non-coding transcript sequence.

2. Significance Score, S: For a good quality hit, we expect
a lower e-value. Thus, we defined S for a given query se-
quence as,
S = ∑N

j=1 − log Ej , where Ej is the e-value for jth match
for the given query. If a given query has lower value of
S, it is more likely to be a true protein coding sequence.

3. Total bit score, B: The bit score in BLAST is a normal-
ized measure derived from raw alignment score, which
indicates the quality of alignment. We defined total bit
score B for a given query sequence as,
B = ∑N

j=1 S′
j , where S′

j is the bit score for jth match for
the given query. For a good quality hit, higher B is ex-
pected.

4. Frame entropy, F: It captures information about how the
hits are distributed in different reading frames. A hit just
by chance is likely to be distributed among all possible
frames. Frame entropy is based on Shannon’s entropy
function (22) and is defined as,
F = −∑3

i = 1 pi log pi , where pi is the probability that
hits are in the ith frame, calculated as pi = fi

N , where fi is
the frequency of hits in ith frame and N is the total num-
ber of hits. When a query shows hit in one frame only,
frame entropy is minimum (zero). If hits are equally dis-
tributed in all the three frames, frame entropy is maxi-
mum (1.5849).

In addition, we extracted frequencies of each of 64 possi-
ble trimers of the four nucleotides from the input sequences
to capture codon usage bias and length of the transcript.

Model construction

For a given training set, we constructed a random forest
model with 1000 trees after extracting the above mentioned
features from the input sequences. Random forest is an en-
semble learning method for classification and regression,
which constructs a number of decision trees from the train-
ing data and reports the output after computing results
from all the trees in the forest (22). For classification, it out-
puts the mode of the classes produced by individual decision
tree. Random forests can efficiently handle large datasets
with many variables and also provide relative feature rank-
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ing, which can be helpful in interpreting the model and data.
In addition, random forest algorithm does not require a sep-
arate cross-validation set, as it reports out-of-bag (OOB)
score (an estimate of generalization error) which is equiv-
alent to cross-validation error. This is particularly useful,
when enough data is not available to make a separate cross-
validation set. Our program builds five random forest mod-
els and chooses the one with the highest OOB score. The
model built using the training data is then used for classi-
fication of unlabelled data. To measure the performance of
classification, we used following metrics:

Sensi tivi ty = T P
T P + F N

Speci f ici ty = TN
TN + F P

Accuraccy = T P + TN
T P + F P + TN + F N

Matthews correlation coe f f icient (MCC)
= T P X TN−F P X F N√

(T P+F P)(T P+F N)(TN+F P)(TN+F N)

where
TP: Number of true positives (coding transcripts cor-

rectly classified as coding)
TN: Number of true negatives (long non-coding tran-

scripts classified as lncRNA)
FP: Number of false positives (long non-coding tran-

scripts incorrectly classified as coding RNA)
FN: Number of false negatives (coding transcripts incor-

rectly classified as lncRNA)

Program description

PLncPRO takes a set of training transcript sequences as in-
put, builds a random forest classifier and outputs the ran-
dom forest model in a file. Once a model has been trained,
it can be used to classify unknown transcript sequences and
label them as potential coding or long non-coding sequence
(1 or 0, respectively). Figure 1 shows the schematic work-
flow of PLncPRO algorithm. PLncPRO is multi-threaded
and memory-efficient standalone program, which can run
on any environment with python. We have empirically set
some default computing parameters, such as number of
trees and minimum length of lncRNA for PLncPRO, which
can be changed by the user as per requirement.

Prediction of lncRNAs in rice and chickpea and differential
expression analysis

We used transcriptome data of rice (O. sativa) and chickpea
(Cicer arietinum) under abiotic stress conditions (drought
and salinity) from previous reports (24,25) to identify lncR-
NAs. Rice transcriptome represented assembly generated
using RNA-seq data from control, desiccation and salin-
ity stress conditions (nine samples) for three rice culti-
vars, IR64 (stress-sensitive), Nagina 22 (N22, drought-
tolerant) and Pokkali (salinity-tolerant) at the seedling
stage (24). Chickpea transcriptome represented assembly

generated using RNA-seq data of 30 samples representing
control, drought/salinity stress for four chickpea genotypes
ICC 1882 (drought-sensitive), ICC 4958 (drought-tolerant),
ICCV 2 (salinity-sensitive) and JG 62 (salinity-tolerant) at
vegetative/early reproductive and late reproductive stages
(25). The description of samples has been summarized in
Supplementary Table S4. A total of 42 064 and 33 179 tran-
scripts from rice and chickpea, respectively, representing the
longest isoform of each transcript were used for prediction
of lncRNAs. LncRNAs in chickpea and rice were identi-
fied using two different probability cut-offs (≥0.5 and ≥0.8)
with other parameters set at default. The novel lncRNAs in
rice and chickpea were identified via comparing the lncR-
NAs identified in this study with already published reports
(8,14,26–29) using CD-Hit tool with c ≥ 0.8 (30). Various
characteristics of lncRNAs and mRNAs were determined
using custom scripts. The statistical significance of differ-
ences in various characteristics between lncRNAs and mR-
NAs was calculated using Wilcoxon rank sum test in R (31).

The high-confidence lncRNAs (probability cut-off ≥ 0.8)
identified in rice and chickpea were analyzed for differen-
tial expression via Cuffdiff. The lncRNAs were considered
as differentially expressed, if the absolute value of log2 fold
change between the two given samples was ≥1 with P-value
≤0.05.

Reverse transcriptase-quantitative polymerase chain reaction
(RT-qPCR) validation

To validate the expression profiles, 13 and 21, dif-
ferentially expressed lncRNAs under different stress
conditions/genotype/developmental stage, from chickpea
and rice, respectively, were selected. Primers were designed
using Primer Express (version 3.0) software (Applied
Biosystems, Foster City, CA, USA). The details of the
primer sequences used in this study are provided in Sup-
plementary Table S5. RT-qPCR analysis of lncRNAs was
performed using total RNA isolated from different samples
as described previously (24,25). For each sample, at least
two biological replicates and three technical replicates
for each biological replicate were used. Most suitable
house-keeping genes, Elongation factor 1 alpha (EF1α) and
Ubiquitin (UBQ5), were used to normalize the transcript
level for chickpea and rice, respectively (32,33). Fold change
in the transcript level was determined using the standard
2−��CT method. Log2 values of average fold change
(average of two biological replicates and three technical
replicates of each biological replicate) for each lncRNA
were used to determine correlation between RT-qPCR and
RNA-seq data.

RESULTS

Development of models for prediction of lncRNAs in plants

We developed PLncPRO tool for prediction of lncRNAs in
plants based on various sequence features extracted from
the training data using random forest algorithm. The fea-
tures [FF score, ORF coverage, BLASTX results (N, S,
B and F), trimer frequency and transcript length] used in
PLncPRO represented a combination of the features used
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Figure 1. Schematic workflow of PLncPRO. The top panel shows building of the model using training data. Two files (training data) containing protein
coding (mRNA) and long non-coding transcripts (lncRNA) are given as input. PLncPRO extracts features and build a random forest model using these
features. The bottom panel shows classification of transcripts by PLncPRO. Test data containing transcripts are given as input and PLncPRO classifies
transcripts using the training model with probability score. The transcripts with non-coding probability score ≥0.5 (default parameter) are identified as
the lncRNAs.

in other available lncRNA prediction tools (Supplemen-
tary Table S6). We constructed training models for differ-
ent plant species using a set of known lncRNAs and cod-
ing RNAs (Supplementary Table S1). The OOB score of
the models for all the plant species generated by PLncPRO
was high (≥0.90 except for S. tuberosum; Supplementary
Table S7), indicating high cross-validation accuracy. The
species-specific models trained on data from individual
plant species were used for prediction of lncRNAs on the
test datasets of all the plant species. In terms of accuracy, the
species-specific models performed best for the same species
(Table 1). The accuracy of prediction ranged from 83% (S.
tuberosum) to 97.9% (A. trichopoda) with high sensitivity
(81–98%) and specificity (85 – 98%) (Supplementary Table
S7). Next, we analyzed the Mathew’s correlation coefficient
(MCC) and area under ROC curve to assess the quality of
prediction. Both MCC and area under ROC curve were also
high for all the plant models analysed (Supplementary Table
S7). However, we found that the prediction accuracy with
S. tuberosum model was in the range of 50–83% (Table 1).
We suspect that the data (known lncRNAs and/or coding
RNAs) for S. tuberosum were not good, which resulted in
low performance of S. tuberosum model. The performance
of PLncPRO on test dataset of C. reinhardtii was poor us-
ing other plant models. However, using C. reinhardtii spe-
cific model, PLncPRO achieved an accuracy of 97%. This
may be because of significant difference between the se-
quence makeup of C. reinhardtii (single-celled algae) and
other plants (higher plants).

While building the model, we assessed relative feature
ranking for each plant as determined by the random for-
est algorithm. ORF coverage and FF-score were found to
be the most important features for all the higher plants,
whereas ORF coverage ranked lower in C. reinhardtii and
FF-score ranked lower in A. trichopoda (Figure 2A and
B; Supplementary Figure S1). The relative ranking of
BLASTX features and trimer’s frequency in different plant

models showed clear distinction between monocot and di-
cot plant models. The trimers ranked higher in most of the
monocot plants (A. trichopoda, O. sativa, S. tuberosum and
Z. mays), whereas BLASTX and entropy based features
ranked high in majority of dicot plants (A. thaliana, G. max,
P. patens, and V. vinifera) (Figure 2A and B; Supplementary
Figure S1).

Consensus models for dicots and monocots

Each species-specific model performed best on its own data
and on closely related species (Table 1). For example, the
prediction of lncRNAs in A. thaliana using its own model
revealed an accuracy of 95.70%, while using G. max model
an accuracy of 94.54% was achieved. However, it was quite
less (89.72%) using O. sativa model (Table 1). Similarly,
for O. sativa, using its own model, an accuracy of 93.93%
was obtained, however, using A. thaliana and G. max mod-
els an accuracy of 87.41% and 88.79%, respectively, was
achieved (Table 1). These observations support the fact that
sequence make-up of coding and lncRNAs is more con-
served in closely related species. With lack of proper anno-
tation for many plant species, the model constructed from
closely related model organisms can be used for lncRNA
prediction. Therefore, we constructed consensus models for
dicots and monocots for prediction of lncRNAs. We con-
structed a single model for monocots (using training data
of O. sativa and Z. mays) and dicots (using training data of
A. thaliana, G. max and V. vinifera). We did not include S.
tuberosum in dicot model, as its accuracy within the dicot
group was relatively poor. The OOB score of the consensus
dicot and monocot models was 0.94 and 0.92, respectively,
which indicated high cross-validation accuracy. The relative
feature rankings obtained using dicot and monocot models
showed some differences. For example, trimers ranked lower
in dicot model (Figure 3A) as compared to the monocot
model (Figure 3B). However, FF-score and ORF coverage
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Table 1. Performance (percentage accuracy) of PLncPRO on different plant test data sets

Model used

Plant species At Gm Vv St Os Zm Amt Pp Sm Cr

A. thaliana (At) 95.70 94.54 93.72 91.36 89.72 93.72 62.61 92.03 84.69 54.05
G. max (Gm) 91.52 92.30 91.22 86.44 83.75 92.02 61.55 89.88 82.36 53.58
V. vinifera (Vv) 93.03 92.62 93.64 86.34 87.15 92.35 66.94 90.79 85.93 56.89
S. tuberosum (St) 73.98 74.07 74.13 83.05 74.51 74.69 67.48 72.13 72.03 50.48
O. sativa (Os) 87.41 88.79 90.09 86.07 93.93 88.45 81.30 84.32 83.36 71.05
Z. mays (Zm) 86.09 88.62 86.61 85.24 88.49 91.22 80.95 87.06 76.66 66.55
A. trichopoda (Amt) 70.20 75.43 75.82 89.11 88.62 77.81 97.92 73.71 75.56 64.48
P. patens (Pp) 87.26 86.55 87.84 83.03 79.76 87.53 62.58 90.74 74.86 60.73
S. moellendorffii (Sm) 85.22 87.63 86.53 72.91 88.57 82.52 74.70 74.04 93.70 74.70
C. reinhardtii (Cr) 75.49 74.42 75.37 56.21 73.76 67.66 54.28 74.25 80.31 96.78

Prediction accuracy using the model of same species is highlighted in bold.

A

B

C

Figure 2. Feature ranking and prediction accuracy of PLncPRO using species-specific models. (A and B) Relative feature ranking in A. thaliana (A) and
O. sativa (B) obtained using PLncPRO. The relative feature ranking for other plants is given in Supplementary Figure S1. (C) ROC curves for test sets of
different plants using species-specific models. The accuracy of prediction for each model has been given.

ranked top in both the models. We used dicot and monocot
models on the test data of all the plant species and found
that accuracy of dicot and monocot models was sufficiently
high for lncRNA prediction in dicot and monocot plants,
respectively (Figure 3C and D, Supplementary Table S8).
The performance of dicot and monocot models was com-
parable to the species-specific models on dicot and mono-
cot plants, respectively (Table 1; Supplementary Table S8).
For example, in A. thaliana, plant specific model gave an
accuracy of 95.7%, while consensus dicot model achieved
an accuracy of 95.56%. Likewise, the plant specific model
showed an accuracy of 93.93% in O. sativa, while consen-
sus monocot model gave an accuracy of 93.75% (Table 1;
Supplementary Table S8).

Further, we tested prediction accuracy of consensus di-
cot and monocot models on published lncRNA datasets
of A. thaliana, S. lycopersicum, P. trichocarpa, Gossypium
spp., Cucumis sativus, Medicago truncatula, Z. mays and
O. sativa (Figure 4). These lncRNAs have been identified
using different methods/pipelines (8,28,34–40). The results
showed that the consensus monocot and dicot models ex-
hibited reasonably high accuracy of lncRNAs prediction in
these plants ranging from 83% to 93.5% for monocots, and

91.6% to 99.5% for dicots (Figure 4). The higher accuracy
achieved with these datasets demonstrated that PLncPRO
can predict lncRNAs in previously unseen data of different
plant species with high accuracy and the models generated
did not overfit the training data.

Performance comparison with other existing tools

We compared the performance of PLncPRO with other
available lncRNA prediction tools, including PLEK, CPAT,
CNCI and CPC, using all the plant test sets. For a fair com-
parison, we trained models for all plants using the same
tool (wherever possible) with the datasets used in this study
and used these models for species-specific prediction. For
CNCI, we used its plant model and CPC was run using
its web server. The performance of each tool in terms of
accuracy along with sensitivity and specificity was com-
pared (Table 2; Supplementary Table S9). We compared the
MCC and area under ROC curve also to assess the quality
of classification in each tool (Supplementary Table S9). In
terms of prediction accuracy, PLncPRO performed better
(90.7–97.9% accuracy) for 8 out of 10 plants. For O. sativa
and S. moellendorffii, CNCI performed better by achiev-
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A

B D

C

Figure 3. Feature ranking and prediction accuracy of dicot and monocot specific models using PLncPRO. (A and B) Relative feature ranking using dicot
(A), and monocot model (B). (C and D) The ROC curves of all plant test datasets using dicot model (C) and monocot model (D). The accuracy of prediction
for each model has also been given.

Figure 4. Performance of PLncPRO on published lncRNA datasets using
monocot and dicot specific models for lncRNA discovery. The datasets
were obtained from the previous studies as given in Supplementary Table
S2.

ing marginally higher (0.18% and 1.38%, respectively) pre-
diction accuracy than PLncPRO. Interestingly, we noted
that PLncPRO had higher sensitivity and specificity as com-
pared to other tools, which indicated good quality classifi-
cation by reducing false positives and false negatives. How-
ever, CPC and CPAT showed higher sensitivity with low
specificity, and CNCI had lower sensitivity with high speci-
ficity. MCC and area under ROC curve were also signif-
icantly higher for PLncPRO as compared to other tools.

Overall, it is evident that PLncPRO performed much better
showing higher prediction accuracy as compared to other
existing tools.

Prediction of lncRNAs in human and mouse

To assess the performance of PLncPRO in vertebrates, we
built human (OOB score: 0.95) and mouse (OOB score:
0.96) classification models. We plotted top 10 feature rank-
ings for human and mouse models as computed by the ran-
dom forest algorithm using PLncPRO (Figure 5A and B).
FF-score was the most important feature in both the mod-
els. BLASTX based features also ranked high in both the
models. Further, the performance of PLncPRO on human
and mouse data was compared with the existing tools (Table
3). PLncPRO exhibited much better prediction accuracy in
all the test cases for both human and mouse data sets (Table
3, Supplementary Table S10). The accuracy of PLncPRO
ranged from 93.7% to 94.6%, while only lncRScan-SVM
achieved an accuracy of >90% among other tools. The ac-
curacy ranging from 75.7% to 89.6% was achieved for other
tools, including PLEK, CPAT, CNCI and CPC. Apart from
accuracy, we noticed that PLncPRO achieved highest sensi-
tivity (>92%) along with high specificity (>96%) in all the
test cases (Supplementary Table S10), which demonstrated
that PLncPRO is a better quality classifier for vertebrates
as well. However, all other tools showed high specificity as
compared to the sensitivity on the test datasets. This im-
plies that they may be biased towards classification of lncR-
NAs and may produce false negatives i.e. classify coding se-
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Table 2. Performance comparison (percentage accuracy) of PLncPRO with existing tools on different plant data sets

Plant species PLEK CPAT CNCI CPC PLncPRO

A. thaliana 87.92 91.27 89.11 86.33 95.70
G. max 83.27 82.58 85.13 83.11 92.30
V. vinifera 85.62 85.45 86.08 88.06 93.64
S. tuberosum 74.85 76.06 81.87 60.52 83.05
O. sativa 87.24 89.81 94.11 83.78 93.93
Z. mays 84.10 80.93 82.18 77.88 91.22
A. trichopoda 88.72 97.53 83.36 58.51 97.92
P. patens 78.71 72.14 84.82 76.00 90.74
S. moellendorffii 86.94 87.47 95.08 83.90 93.70
C. reinhardtii 88.13 72.32 96.41 80.10 96.78

The highest accuracy achieved for each species is highlighted in bold.

A

B

C

Figure 5. Feature ranking and prediction accuracy of PLncPRO using hu-
man and mouse models. (A and B) Relative feature ranking in human (A)
and mouse (B) models. (C) ROC curves for test datasets of human and
mouse using human and mouse models, respectively. The accuracy of pre-
diction for each test data has also been given.

quences wrongly as lncRNAs. Both MCC and area under
ROC curve were also significantly higher in PLncPRO as
compared to other tools (Supplementary Table S10). Over-
all, these results demonstrated PLncPRO as more accurate
and reliable tool to differentiate between coding and long
non-coding transcripts in human and mouse as well.

Prediction of novel lncRNAs in chickpea and rice

To demonstrate the applicability of our tool, we predicted
novel lncRNAs in rice and chickpea using the consen-
sus monocot and dicot models, respectively. The transcrip-
tomes of rice (42 064) and chickpea (33 179) were taken
as input in PLncPRO with default parameters (probabil-
ity cut-off ≥ 0.5 and minimum length of 200 bp) to an-
notate lncRNAs. A total of 7345 (17.5%) and 4969 (15%)
transcripts in rice and chickpea, respectively, were anno-
tated as lncRNAs. The sequences of all the lncRNAs iden-
tified in rice and chickpea are available at http://ccbb.jnu.
ac.in/plncpro. A comparison with the previous studies on
lncRNAs in rice (8,14,26–28) and chickpea (29) revealed the
identification of at least 4815 (65%) and 4384 (87%) novel
lncRNAs in rice and chickpea, respectively, in our study.
We investigated various genomic features of the identified
lncRNAs and compared them with mRNAs. The median
length of mRNAs was significantly longer than lncRNAs
in chickpea (1272 bp compared to 788 bp, P-value < 2.2e–
16) and rice (1378 bp compared to 1171 bp, P-value < 0.05)
(Figure 6). The median length of previously reported lncR-
NAs was also found to be shorter as compared to mRNAs
(8,41). In contrast, the median exon length of lncRNA tran-
scripts was longer as compared to mRNAs in chickpea (301
bp compared to 155 bp, P-value < 2.2e–16) and rice (256 bp
compared to 169 bp, P-value < 2.2e–16), respectively (Fig-
ure 6). The lncRNAs were mostly single exonic. In rice, 44%
of lncRNAs were single exonic (Figure 6A) with average
of three exons per transcript as compared to 4.5 exons per
transcript in protein coding transcripts. In chickpea, 55%
of lncRNAs were single exonic (Figure 6B) with average of
2.13 exons per transcript. These results are consistent with
previous studies of lncRNAs in rice and chickpea (8,29). It
has been suggested that lesser number of exons in lncRNAs
may result in higher exon length (38). The AU content dis-
tinctively differentiated lncRNAs from mRNAs in both rice
and chickpea (Figure 6); as lncRNAs are considered to be
AU rich, while mRNAs as GC rich. Similar observations
have been reported in other plant species too (8,29,38).

Differential expression analysis of lncRNAs under stress con-
ditions

Recent studies have revealed the role of lncRNAs in dif-
ferent biological contexts including response to different
stresses in plants (39,42–45). To reveal the potential role
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Table 3. Performance comparison (percentage accuracy) of PLncPRO with existing tools on human and mouse data sets

Data set PLEK CPAT CNCI CPC lncRScan PLncPRO

Human Test A 84.41 87.91 87.79 81.05 92.86 94.34
Human Test B 84.62 87.37 87.64 80.46 92.50 93.72
Mouse Test A 76.27 89.51 89.36 82.98 92.25 94.57
Mouse Test B 75.68 89.40 89.61 83.26 91.86 94.63

The highest accuracy achieved for each dataset is highlighted in bold.

Figure 6. Comparative analysis of different characteristics of predicted lncRNAs and mRNAs in rice and chickpea. (A and B). The relative distribution
of transcript length, exon length, AU content and exon number per transcript in lncRNAs and mRNAs in rice (A) and chickpea (B).

of lncRNAs in abiotic stress responses, we analysed their
differential expression under drought and/or salinity stress
conditions in rice and chickpea. We extracted expression
level (FPKM) of all the lncRNAs from rice and chickpea
in different samples using Cufflinks (Supplementary Tables
S11 and S12), and compared with that of mRNAs (Sup-
plementary Figure S2). The expression level of lncRNAs
in most of the samples (except few in chickpea) was found
to be less as compared to mRNAs. However, this differ-
ence was much higher in rice samples as compared to the
chickpea samples (Supplementary Figure S2). The lncR-
NAs were found to be expressed at low levels as compared to
mRNAs in previous studies too (8,39,42). Further, we anal-
ysed RNA-seq data of stress-sensitive and tolerant of rice
cultivars (IR64, N22 and Pokkali) at the seedling stage and
chickpea genotypes (ICC 1882, ICC 4958, ICCV 2 and JG
62) at the vegetative (Veg), early reproductive (ER) or late
reproductive stages (Rep/LR) under control and stress con-
ditions (Supplementary Table S4) to identify differentially
expressed lncRNAs under drought and/or salinity stress.
For differential expression analysis, we analyzed a total of
3714 and 3457 high-confidence lncRNAs (probability cut-
off of ≥ 0.8) in rice and chickpea, respectively. The analysis
revealed differential expression of a large number of lncR-
NAs under stress conditions as compared to control condi-

tion. In chickpea, a total of 1503 (43.5%) high-confidence
lncRNAs exhibited differential expression under at least
one of the stress condition/developmental stage/genotype
analysed. This fraction is similar to the fraction (43.1%)
of total gene loci that showed differential expression under
these conditions in our previous study (24). The number
of lncRNAs showing differential expression varied under
different stress conditions/developmental stage/genotype
(Figure 7A; Supplementary Figure S3A). Drought-sensitive
chickpea genotype (ICC 1882) exhibited least number of
differentially expressed lncRNAs (126) at ER stage (Dsen-
ER-DS), while largest number (455) of lncRNAs were dif-
ferentially expressed in salinity-tolerant genotype (JG 62) at
the reproductive stage (Stol-Rep-SS) (Supplementary Fig-
ure S3A). A larger fraction of lncRNAs were found to be
down-regulated on exposure to stress in all the samples
(except salinity-sensitive genotype). Further, we identified
at least 827 lncRNAs that showed differential expression
between stress-sensitive and stress-tolerant chickpea geno-
types under control conditions. A larger number of lncR-
NAs depicted differential expression in drought-tolerant
genotype at early reproductive stage, whereas a larger num-
ber of lncRNAs were differentially expressed in salinity-
tolerant genotype at the late reproductive stage (Supple-
mentary Figure S3B). These results are consistent with our
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Figure 7. Differential expression analysis and validation of lncRNAs. (A and B) Venn diagram showing differentially expressed lncRNAs in different
samples in chickpea (A), and rice (B). (C) Scatter-plot showing correlation of expression pattern of lncRNAs obtained from RNA-seq and qRT-PCR
analyses for chickpea and rice. Each data point in the scatter plot shows average log2 fold change (from at least two biological replicates) of the selected
lncRNAs under the stress condition(s) in different genotypes/cultivars/developmental stage via RT-qPCR and RNA-seq.

previous study based on the whole transcriptome analysis
(25).

Further, a major fraction (38.1–76.5%) of lncR-
NAs was differentially expressed in a specific sample
(genotype/developmental stage/stress condition) (Figure
7A). A significantly larger fraction of the differentially
expressed lncRNAs in the drought-tolerant genotype at
the ER stage (73.8%) and salinity-tolerant genotype at the
Rep stage (76.5%) revealed specific differential expression
(Figure 7A; Supplementary Figure S3). These results
suggested developmental stage/genotype specific role of
lncRNAs in determining stress response in chickpea.

In rice, a total of 1010 (27.2%) lncRNAs exhibited
differential expression under at least one of the stress
condition/cultivar analysed. This fraction is quite higher
than the fraction (17.4%) of total transcripts that showed
differential expression under these conditions in the previ-
ous study (23), suggesting an important role of lncRNAs
in regulation of abiotic stress responses in rice. The stress-
sensitive cultivar (IR64) revealed the differential expression
of at least 249 and 63 lncRNAs under desiccation and salin-
ity stress, respectively (Figure 7B; Supplementary Figure
S4A). Drought-tolerant cultivar (N22) exhibited 227 differ-
entially expressed lncRNAs and 81 lncRNAs were differen-
tially expressed in salinity-tolerant cultivar (Pokkali) after
exposure to desiccation and salinity stress, respectively (Fig-
ure 7B, Supplementary Figure S4A). A larger fraction of
lncRNAs were up-regulated upon exposure to stress in the
rice cultivars (Supplementary Figure S4a). Further, a larger
number of differentially expressed lncRNAs were identified
under drought stress as compared to salinity stress. Like-
wise, a larger fraction of lncRNAs showed differential ex-
pression in IR64/N22 (408) as compared to IR64/Pokkali
(227) under control conditions too (Supplementary Figure
S4B). Here also, we found a large fraction (38.1–73.3%)

of lncRNAs to be differentially expressed in cultivar/stress
condition specific manner (Figure 7B). The overall result
suggested that differentially expressed lncRNAs might be
involved in regulating stress/genotype/developmental stage
specific responses in rice and chickpea.

Validation of differential expression of lncRNAs by RT-
qPCR

The differential expression of randomly selected 21 and 13
lncRNAs from rice and chickpea, respectively, were val-
idated in different genotypes/cultivars under control and
stress (drought and/or salinity) conditions by RT-qPCR.
The results showed high correlation between RNA-seq and
RT-qPCR analysis. Even though correlation between RNA-
seq and RT-qPCR was variable (0.43–1.00 for rice and 0.45–
1.00 for chickpea) for individual lncRNAs (Supplementary
Figure S5), overall correlation was 0.70 and 0.72 in chick-
pea and rice, respectively (Figure 7C). At least 17 and nine
lncRNAs in rice and chickpea, respectively, showed corre-
lation of >0.70 between RNA-seq and RT-qPCR analysis.
The results confirmed the lncRNA prediction via demon-
strating their expression and differential expression as pre-
dicted from the RNA-seq data.

DISCUSSION

Recent studies have discovered various roles of lncRNAs
in diverse cellular and developmental processes includ-
ing transcription regulation (4,7). Researchers are inter-
ested to study lncRNAs in great detail to understand the
underlying mechanism by which lncRNAs perform their
functions. However, the accurate identification of lncR-
NAs still remains a challenging task especially in plants
(13,39,46). In this study, we have developed a new tool,
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PLncPRO, for lncRNA discovery in plants and verte-
brates. This tool performed much better than other available
lncRNA prediction tools, including CPC, CNCI, CPAT,
PLEK and lncRScan-SVM (9–13). We found that other
tools performed inconsistently with plant datasets, whereas
PLncPRO was consistent with an accuracy of over 90%
in most of the plants analyzed. We built consensus mod-
els for dicot and monocot species and found that they per-
form quite well with dicot and monocot plants, respectively.
These consensus models will be helpful in the prediction of
lncRNAs for any poorly annotated and/or newly sequenced
dicot/monocot species. PLncPRO performed better on hu-
man and mouse data as well with an accuracy of >94%
in all test sets, whereas only lncRScan-SVM was able to
achieve an accuracy of 93% among other tools. However,
lncRScan-SVM showed high specificity and low sensitiv-
ity, which implies that it may predict many false negatives,
whereas PLncPRO demonstrated both high specificity and
sensitivity to give an overall good quality classification.

The performance of any machine learning based classifier
depends on the training data and features of the data (23).
Several features, such as sequence homology, ORF quality
and codon usage bias, individually and/or in combination,
have been shown to be informative to predict coding poten-
tial of transcript sequences (17,18). PLncPRO extracts all
these features together to facilitate better prediction accu-
racy for lncRNAs. In addition, the implemented random
forest algorithm also offers several advantages, including
robustness, suitability for both numerical and categorical
data, non-requirement of cross-validation set, and high sen-
sitivity and specificity. This is well supported by the consis-
tent performance of PLncPRO, i.e. balanced sensitivity and
specificity, on all the test datasets analysed for plants and
vertebrates in our study. PLncRPO revealed high accuracy
with the published lncRNA datasets from different plant
species, which were identified using different programs and
pipelines (8,28,34–40) This implied that models generated
by PLncPRO did not overfit the training data and were able
to learn the general features of lncRNAs.

We demonstrated the applicability of PLncPRO via iden-
tification of the lncRNAs from rice and chickpea transcrip-
tome data related to abiotic stress response. A significant
fraction of these lncRNAs were found to be differentially
expressed under drought/salinity stress conditions. Recent
studies suggested the roles of lncRNAs in abiotic stress re-
sponses in various plants, such as Arabidopsis, maize, cot-
ton, Medicago and Populus (36,39,41,42,47). In Arabidop-
sis, npc536 lncRNA was found to be involved in salt stress
and increased primary and secondary root growth (41).
In cotton, lincRNAs, XLOC 063105 and XLOC 115463,
were involved in drought stress response by regulating
neighbouring genes (42). Several lncRNAs were identi-
fied in leaf and root of Medicago and were predicted to
regulate expression of stress-responsive genes involved in
oxidation/reduction reaction, transcription, energy synthe-
sis and signal transduction (39). The lncRNAs have been
shown to regulate drought stress response by regulating
miRNAs either acting as precursors of miRNAs in maize
(47) or acting as target mimics of miRNAs in Populus (36).
Several genotype/cultivar-specific and stress-specific lncR-
NAs were identified in both rice and chickpea. Several genes

encoding for regulatory proteins and metabolic pathways
were found to be regulated under drought/salinity stresses
in rice and chickpea (23,24). The differential coexpression
of a large number of lncRNAs and mRNAs under stress
conditions suggest their interaction and complex regula-
tory network, which needs to be studied further. This study
provides a comprehensive list of lncRNAs expressed under
drought and/or salinity stress, which can serve as a very use-
ful resource to analyse their exact function in abiotic stress
responses and other biological process.

In this study, we reported a novel tool, PLncPRO, which
allows the discovery of lncRNAs and is particularly well-
suited for plants. PLncPRO outperforms other existing
tools for lncRNA prediction on several parameters. We
demonstrated the utility/accuracy of this tool with human
and mouse data as well. We discovered novel lncRNAs
in chickpea and rice expressed under drought and salinity
stresses and revealed their differential expression to identify
the stress-responsive lncRNAs. With the huge amount of
RNA-seq data being generated, PLncPRO will be a useful
tool for discovery of lncRNAs especially in plants. Further.
The lncRNAs identified in rice and chickpea will provide
a resource to elucidate their exact function in abiotic stress
responses in future studies.

DATA AVAILABILITY

PLncPRO has been implemented using python 2.7.11. It
uses python libraries like scikit-learn, bio-python and sci-
py. We used scikit-learn’s random forest to implement our
method. PLncPRO is freely available for non-commercial
purposes and can be downloaded from http://ccbb.jnu.ac.
in/plncpro/. A comprehensive user manual describing the
usage guidelines is also available along with the software.
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