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Abstract

We discuss an effective way for analyzing the system on the magnetized twisted orbifolds in operator 

formalism, especially in the complicated cases T 2/Z3, T 2/Z4 and T 2/Z6. We can obtain the exact and 

analytical results which can be applicable for any larger values of the quantized magnetic flux M , and 

show that the (non-diagonalized) kinetic terms are generated via our formalism and the number of the 

surviving physical states are calculable in a rigorous manner by simply following usual procedures in linear 

algebra in any case. Our approach is very powerful when we try to examine properties of the physical 

states on (complicated) magnetized orbifolds T 2/Z3, T 2/Z4, T 2/Z6 (and would be in other cases on 

higher-dimensional torus) and could be an essential tool for actual realistic model construction based on 

these geometries. (Note: This article is registered under preprint number: arXiv:1409.5421.)
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1. Introduction

Even through the mass of the Higgs boson had been measured precisely at the CERN Large 

Hadron Collider, some other related topics are still veiled, e.g., the origin of the generations, the 

mass hierarchy and the mixings of the Standard Model (SM) fermionic particles. Extra dimen-

sions can call us fascinating directions, especially when we try to solve the above problems.

Plenty of models have been proposed to date, and in this paper, we focus on torus compactifi-

cation with magnetic flux [1–5].1 This possibility holds lots of captivating aspects. Chiral theory 

can be realized as a four-dimensional low energy effective theory on the background. Zero-mode 

equations are analytically solvable, apart from further nontrivial background, e.g., Calabi–Yau 

manifolds, and, interestingly, their profiles are split and quasi-localized. The former point nat-

urally leads to the nature with three generations, and the latter aspect would promise a natural 

explanation for the drastic hierarchies in the masses and the mixing patterns in the fermionic 

sector of the SM.2 Along this direction, several studies have been done to pursue (further realis-

tic) models and to search for the phenomenological aspects on, namely, Yukawa couplings [5],3

realization of quark/lepton masses and their mixing angles [20,21], higher order couplings [22], 

flavor symmetries [23–29],4 massive modes [33], and others [34–45].

Another important manipulation in higher-dimensional model building is orbifolding. By 

adding discrete symmetries on original backgrounds via this mechanism, we can realize su-

persymmetry breaking [46,47], removing exotic particles and breaking down gauge symme-

tries [48–50]. On two-dimensional torus T 2 (without magnetic flux), not only the simplest Z2

case, also more complicated twisted orbifolds T 2/ZN for N = 3, 4, 6 can be constructed [47] and 

their geometrical aspects are discussed [51–53] within the context of string theory. In a higher-

dimensional field theory, detailed studies of SU(N) and SO(N) gauge theory have been carried 

out [54–58]. Furthermore on T 6, which has much amount of degrees of freedom compared with 

T 2, other complex patterns are possible like T 6/Z7, T 6/Z8, T 6/Z12 and so on.

Here, we can also consider to combine the two ideas. On orbifolded background geome-

tries, all the states are classified under the eigenvalue (parity) of orbifold, and some zero-mode 

particles are projected out. Also, mode functions are deformed from the original ones, which 

could be helpful when we try to realize more realistic SM flavor structure. The simplest case of 

twisted orbifold with magnetic flux T 2/Z2 was studied in [59,60],5 and other cases on higher-

dimensional torus (with magnetic flux) T 6/Z2 and T 6/(Z2 ×Z′
2) were also already analyzed [59,

60]. More nontrivial twisted orbifolds on T 2, namely, T 2/Z3, T
2/Z4, T

2/Z6 with magnetic 

flux was recently scrutinized in Ref. [63]. On these magnetized orbifolds, nontrivial (discrete) 

Scherk–Schwarz phases [64,65] and (discrete) Wilson line phases [52,66,67] play an important 

1 See for string magnetized D-brane models [6,7] and references therein.
2 Another possible way to tackle these problems is to introduce point interactions (zero-thickness branes) in the bulk 

space of a five-dimensional theory on S1 and consider various boundary conditions of fields on them [8–10].
3 Within the framework of superstring theory, magnetized D-brane models are T-dual of intersecting D-brane models 

[6,7]. Yukawa couplings are also computed in intersecting D-brane models [11–14]. See also Refs. [15–19]
4 A similar flavor symmetry can be obtained in heterotic string theory on an orbifold [30] (see also [31,32]).
5 See for heterotic models on magnetized orbifolds [61] and also for shifted T 2/ZN orbifold models with magnetic 

flux [62].
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role.6 Especially in T 2/Z3 and T 2/Z6, nonzero values of Scherk–Schwarz phases and/or Wilson 

line phases are mandatory for defining these magnetized orbifolds consistently [63].

On the T 2/Z3, T
2/Z4, T

2/Z6 magnetized orbifolds, constructing mode functions itself is still 

formally possible following the usual prescription. However, analyzing the number of surviving 

physical states and writing down four-dimensional (4D) effective Lagrangians with suitable field 

normalizations are highly nontrivial because the forms of mode functions on magnetized T 2/ZN

are very entangled, where we should consider (weighted) linear combinations of complicated 

original functions on magnetized T 2 which include theta functions for all the mass-degenerated 

states. According to our previous analysis based on numerical computations in [63], the number 

of degenerated states we should consider tends to be quite large for realizing three generations, 

especially in the case of T 2/Z6, it culminates in 24. Only focusing on efficiency, exact analytical 

evaluation of the above issues is desirable.

In this paper, we declare that operator formalism gives us a remedy for analytic computa-

tions of important physical quantities. The way discussed in operator formalism is very powerful 

when we try to examine properties of the physical states on (complicated) magnetized orbifolds 

T 2/Z3, T
2/Z4, T

2/Z6 and could be an essential tool for actual (realistic) model construction 

based on these geometries. We would like to note that we can derive all the results on the number 

of physical modes in exact and analytic ways based on operator formalism, while it was evaluated 

in Ref. [63] relying on (huge) numerical calculations.

This paper is constructed as follows. In Section 2, we review the previous wavefunction anal-

ysis on magnetized T 2/ZN orbifolds. In Section 3, with keeping in mind the difficulties of the 

wavefunction analysis, we show how to describe the system on T 2 with magnetic flux in op-

erator formalism. Based on the knowledge, in Section 4, we analyze the system on magnetized 

orbifolds T 2/Z2 and complicated T 2/Z3, T
2/Z4, T

2/Z6 with operator formalism step by step 

and lead the results in the exact way. After that, in Section 5, we confirm the correspondence 

between analysis with actual forms of wavefunctions and that in operator formalism. Section 6

is devoted to the conclusions and discussions. In Appendix A, we have a discussion on physi-

cal degrees of freedom in the quantum mechanical system in operator formalism through large 

gauge transformations. In Appendix B, derivations of the formulas which we use in Section 4 is 

supplied.

2. Brief review of the wavefunction analysis

In this section, we review the wavefunction analysis of the magnetized T 2/ZN orbifold mod-

els [63].

In the previous wavefunction analysis, ZN orbifolds (N = 2, 3, 4, 6) were introduced for the 

torus T 2 with a homogeneous magnetic flux and the structure of the generations, which is a 

key ingredients for the generation problem, was evaluated. However, the analysis totally relied 

on the numerical calculations and has limitations to derive the analytic results. Moreover, there 

are several unclear points, e.g., the meaning of the degeneracy index j of the wave functions 

f
(j+α1,ατ )

T 2,ψ+,0
(z; aw), g

(j+α1,ατ )

T 2,ψ+,0
(z; aw) (see Eq. (2.11)). The index j is expected to be an eigenvalue 

of an operator though no one finds such an operator so far.

6 Also in intersecting D-brane models, Scherk–Schwarz phases were discussed in [68] and discrete Wilson line phases 

were studied in [69] (see also [70,71]).
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As we will see in this section, the difficulties to derive the exact results appear from the 

ZN -rotated zero-mode functions. On the magnetized T 2/ZN orbifold, the physical states consist 

of the proper linear combinations of the ZN -rotated zero modes. The ZN -rotated zero modes also 

can be expanded by the original zero modes on T 2 since both of them satisfy the same zero-mode 

equation and the boundary conditions. Then, we need to compute the expansion coefficients of 

the ZN -rotated states to find the number of physical states on T 2/ZN . However, the derivation 

of the expansion coefficients with the general magnetic flux is very difficult in an analytic way 

because the zero-mode functions contain theta functions.

We will see in Section 4 that, in the operator analysis, we can overcome these difficulties and 

can obtain exact analytic results for the number of physical states and the expansion coefficients. 

The correspondence between the wavefunction analysis and the operator analysis can be found 

in Section 5.

2.1. Fermion zero-mode wavefunctions on T 2 and T 2/ZN with magnetic flux

We consider the 6D action on M4 × T 2 with magnetic flux [5,72]

∫

M4

d4x

∫

T 2

dzdz̄
{
iΨ̄+Γ MDMΨ+

}
, (2.1)

where the capital roman indices M, N run over µ (= 0, 1, 2, 3), z and z̄. The complex coordinate 

z (z̄), which is very useful for evaluating the actual forms of wavefunctions, is defined as z =
y1 + iy2 (z̄ = y1 − iy2), where y1 and y2 are two Cartesian coordinates. Here, we take the bases 

of the torus as u1 = (1, 0)T, u2 = (Re τ, Im τ)T with the modulus parameter τ (τ ∈ C, Im τ > 0)

for convenience.

Ψ+ is a 6D Weyl fermion with 6D positive chirality and the covariant derivative DM

(:= ∂M − iqAM) represents the gauge interaction with a U(1) gauge field AM with the back-

ground configurations A
(b)
z and A

(b)
z̄ , where q is a U(1) charge. On T 2, the complex coordinate 

z is identified as z ∼ z + 1 ∼ z + τ , the counterpart of which in operator formalism is found in 

Eq. (3.5). When we consider the case with a 6D Weyl fermion with 6D negative chirality Ψ−, the 

resultant 4D chirality is simply flipped. We use the notations for representations of 6D Clifford 

algebra and complex coordinates adopted in Ref. [63].

The vector potential A(b) describing the magnetic flux b =
∫
T 2 F through the field strength 

F = ib
2 Im τ

dz ∧ dz̄ can be written as

A(b)(z) =
b

2 Im τ
Im
[
(z̄ + āw)dz

]

=
b

4i Im τ
(z̄ + āw)dz −

b

4i Im τ
(z + aw)dz̄

=: A(b)
z (z) dz + A

(b)
z̄ (z) dz̄, (2.2)

where aw is a complex Wilson line phase. From Eq. (2.2), we obtain

A(b)(z + 1) = A(b)(z) +
b

2 Im τ
Imdz =: A(b)(z) + dχ1(z + aw),

A(b)(z + τ) = A(b)(z) +
b

2 Im τ
Im(τ̄ dz) =: A(b)(z) + dχτ (z + aw), (2.3)
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where χ1(z + aw) and χτ (z + aw) are given by7

χ1(z + aw) =
b

2 Im τ
Im(z + aw),

χτ (z + aw) =
b

2 Im τ
Im
[
τ̄ (z + aw)

]
. (2.4)

Here, the Lagrangian density in Eq. (2.1) should be single-valued under the identification z ∼
z + 1 ∼ z + τ , and thereby the field Ψ+(x, z) should satisfy the pseudo-periodic boundary con-

ditions

Ψ+(x, z + 1) = U1(z)Ψ+(x, z), Ψ+(x, z + τ) = Uτ (z)Ψ+(x, z), (2.5)

with

U1(z) := eiqχ1(z+aw)+2πiα1 , Uτ (z) := eiqχτ (z+aw)+2πiατ , (2.6)

where α1 and ατ are allowed to be any real numbers, and correspond to Scherk–Schwarz phases. 

The consistency of the contractible loops, e.g., z → z + 1 → z + 1 + τ → z + τ → z, requires 

the magnetic flux quantization condition,

qb

2π
=: M ∈ Z. (2.7)

Then, U1(z) and Uτ (z) satisfy

U1(z + τ)Uτ (z) = Uτ (z + 1)U1(z). (2.8)

It should be emphasized that all of the Wilson line phases and the Scherk–Schwarz phases 

can be arbitrary on T 2, but are not physically independent because the Wilson line phases can 

be absorbed into the Scherk–Schwarz phases by a redefinition of fields and vice versa. This fact 

implies that we can take, for instance, the basis of vanishing Wilson line phases, without any loss 

of generality. It is then interesting to point out that allowed Scherk–Schwarz phases are severely 

restricted for T 2/ZN orbifold models, as we will see in Section 4, while there is no restriction 

on the Scherk–Schwarz phases for T 2 models.

It is known that the zero-mode states of Ψ+ become chiral and multiple due to the effect of 

the magnetic flux

Ψ+,0(x, z) =

⎧
⎪⎪⎨
⎪⎪⎩

∑|M|−1
j=0

(
ψ

(j)

R,0(x)

0

)
f

(j+α1,ατ )

T 2,Ψ+,0
(z;aw) for M > 0,

∑|M|−1
j=0

(
0

ψ
(j)

L,0(x)

)
g

(j+α1,ατ )

T 2,Ψ+,0
(z;aw) for M < 0,

(2.9)

where j = 0, 1, . . . , |M| − 1 is just an index for |M|-degenerated states and ψ
(j)

R,0(x) or ψ
(j)

L,0(x)

are 4D chiral zero modes. The mode functions f
(j+α1,ατ )

T 2,Ψ+,0
(z; aw) and g

(j+α1,ατ )

T 2,Ψ+,0
(z; aw) are the 

solutions of the zero-mode equations

7 Note that we can freely add constants in the definition of χ1 and χτ without changing the relation (2.3). Here, we 

chose such constants, as in Eq. (2.4), for later convenience.
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(
∂z̄ +

πM

2 Im τ
(z + aw)

)
f

(j+α1,ατ )

T 2,Ψ+,0
(z;aw) = 0,

(
∂z −

πM

2 Im τ
(z̄ + āw)

)
g

(j+α1,ατ )

T 2,Ψ+,0
(z;aw) = 0, (2.10)

and take the forms

f
(j+α1,ατ )

T 2,Ψ+,0
(z;aw) =N eiπM(z+aw)

Im(z+aw)
Im τ · ϑ

[ j+α1

M
−ατ

](
M(z + aw),Mτ

)
,

g
(j+α1,ατ )

T 2,Ψ+,0
(z;aw) = N eiπM(z̄+āw)

Im(z̄+āw)
Im τ̄ · ϑ

[ j+α1

M
−ατ

](
M(z̄ + āw),Mτ̄

)
, (2.11)

with the normalization factor N . For aw = 0 and (α1, ατ ) = (0, 0), ψ
(j+α1,ατ )

±,0 (z; aw) are reduced 

to the results obtained in Ref. [5]. Here, N may be fixed by the orthonormality condition
∫

T 2

dzdz̄
(
f

(j+α1,ατ )

T 2,Ψ+,0
(z;aw)

)∗
f

(k+α1,ατ )

T 2,Ψ+,0
(z;aw) = δjk,

∫

T 2

dzdz̄
(
g

(j+α1,ατ )

T 2,Ψ+,0
(z;aw)

)∗
g

(k+α1,ατ )

T 2,Ψ+,0
(z;aw) = δjk. (2.12)

It should be stressed that although j (= 0, 1, 2, . . . , |M| − 1) in Eq. (2.11) is the index that 

distinguishes the |M| degenerate zero-modes and is expected an eigenvalue of some hermitian 

operator, the form of such operator is unclear in the wavefunction approach. We will later clarify 

the operator, which is crucial to evaluate the exact analytic results, in operator formalism.

The ϑ function is defined by

ϑ

[
a

b

]
(cν, cτ ) =

∞∑

l=−∞
eiπ(a+l)2cτ e2πi(a+l)(cν+b), (2.13)

with the properties

ϑ

[
a

b

](
c(ν + n), cτ

)
= e2πiacnϑ

[
a

b

]
(cν, cτ ),

ϑ

[
a

b

](
c(ν + nτ), cτ

)
= e−iπcn2τ−2πin(cν+b)ϑ

[
a

b

]
(cν, cτ ),

ϑ

[
a + m

b + n

]
(cν, cτ ) = e2πianϑ

[
a

b

]
(cν, cτ ), (2.14)

where a and b are real numbers, c, m and n are integers, and ν and τ are complex numbers with 

Im τ > 0.

Now, we explicitly write down a part of the 4D effective Lagrangian describing fermion ki-

netic terms. Through Eqs. (2.9), (2.11) and (2.12), when M > 0, Eq. (2.1) leads to the following 

zero-mode part

|M|−1∑

j,k=0

{
iψ̄

(j)

R,0[δjk]γ µ∂µψ
(k)
R,0

}
=

|M|−1∑

j=0

{
iψ̄

(j)

R,0γ
µ∂µψ

(j)

R,0

}
, (2.15)

where we obtain a |M|-generation chiral theory. When we consider M < 0, the chirality of the 

fermions turns out to be left-handed.
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After imposing ZN -orbifolding on T 2 with ω = e2πi/N in which the modulus parameter τ

was identified with ω for T 2/Z3, T 2/Z4 and T 2/Z6, it had been found that the allowed Scherk–

Schwarz phases (α1, ατ ) are restricted to the specific values in the basis of aw = 0 [63]. We 

should mention that we can always move to the basis in which the Wilson line phase aw vanishes 

without any loss of generality through a large gauge transformation. Thus, in the following, we 

concentrate on the situation

aw = 0. (2.16)

On the orbifolds, the ZN -orbifolded mode functions,

f
(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z;0)η =N

(j)
R,η

N−1∑

x=0

η̄xf
(j+α1,ατ )

T 2,Ψ+,0

(
ωxz;0

)
,

g
(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z;0)ωη =N

(j)

L,ωη

N−1∑

x=0

(ω̄η̄)xg
(j+α1,ατ )

T 2,Ψ+,0

(
ωxz;0

)
, (2.17)

with the normalizing factors N
(j)

R,η =N
(j)

L,ωη = 1/N ,8 fulfill the following conditions:

f
(j+α1,ατ )

T 2/ZN ,Ψ+,0
(ωz;0)η = ηf

(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z;0)η,

g
(j+α1,ατ )

T 2/ZN ,Ψ+,0
(ωz;0)ωη = ωηg

(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z;0)ωη, (2.18)

where η is one of the possible eigenvalues η ∈ {1, ω, ω2, . . . , ωN−1}. Here, the subscript η of 

the function f
(j+α1,ατ )

T 2/ZN ,Ψ+,0
(ωz; 0)η denotes the eigenvalue of f

(j+α1,ατ )

T 2/ZN ,Ψ+,0
(ωz; 0)η under the ZN

rotation: z → ωz.

We note that the ZN -rotated mode function f
(j+α1,ατ )

T 2,Ψ+,0
(ωxz; 0)η (g

(j+α1,ατ )

T 2,Ψ+,0
(ωxz; 0)ωη) in 

Eq. (2.17) can be expanded by the original mode functions as

f
(j+α1,ατ )

T 2,Ψ+,0

(
ωxz;0

)
=

|M|−1∑

k=0

C
(ωx )
jk f

(k+α1,ατ )

T 2,Ψ+,0
(z;0), (2.19)

with the expansion coefficients

C
(ωx)
jk =

∫
dzdz̄ f

(j+α1,ατ )

T 2,Ψ+,0

(
ωxz;0

)(
f

(k+α1,ατ )

T 2,Ψ+,0
(z;0)

)∗
, (2.20)

since they satisfy the same zero-mode equation (2.10) and the boundary conditions (2.5). As in 

the T 2 case of Eq. (2.9), the zero modes on T 2/ZN are represented as follows:

Ψ+,0(x, z) =

⎧
⎪⎪⎨
⎪⎪⎩

∑|M|−1
j=0

(
ψ

(j)

R,0(x)

0

)
f

(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z;0)η for M > 0,

∑|M|−1
j=0

(
0

ψ
(j)

L,0(x)

)
g

(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z;0)ωη for M < 0.

(2.21)

In the T 2/ZN cases with η, the fermion kinetic terms could be evaluated like the previous T 2

8 This factor depends on a choice of the range of the integration 
∫

dzdz̄. 1/N corresponds to the case 
∫
T 2 dzdz̄ (after 

the orbifolding).
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case as

|M|−1∑

j,k=0

{
iψ̄

(j)

R,0

[
K

(ZN ;η)
jk

]
γ µ∂µψ

(k)
R,0

}
, (2.22)

with the kinetic matrix K
(ZN ;η)
jk

K
(ZN ;η)
jk =

∫

T 2

dzdz̄
(
f

(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z)η

)∗
f

(k+α1,ατ )

T 2/ZN ,Ψ+,0
(z)η

=
1

N2

N−1∑

x=0

N−1∑

y=0

ηx η̄y

|M|−1∑

m=0

(
C

(ωx )
jm

)∗
C

(ωy )
km . (2.23)

The matrix K
(ZN ;η)
jk is generally non-diagonal |M|-by-|M| matrix because the T 2/ZN mode 

functions are constructed as linear combinations of ZN -rotated zero-mode functions on T 2 (see 

Eq. (2.17)). An important point is that the rank of the matrix K
(ZN ;η)
jk indicates the number of 

physical states on T 2/ZN orbifold:

The number of physical states = Rank
[
K

(ZN ;η)
jk

]
. (2.24)

To estimate the matrix K
(ZN ;η)
jk with general |M|, we need to evaluate the expansion coefficients 

(2.20) thereby the integral (2.23) can be executed. However, it is enormously difficult to do it 

for large |M| in the wavefunction analysis because of the existence of the theta functions (2.11), 

though numerical calculations of Eq. (2.20) could be performed for small |M|.
As we will see in Section 4, in the operator analysis, we can overcome these difficulties and 

can obtain the exact analytic results for the number of physical states and the expansion coeffi-

cients. The hermitian operator, which has relation to the degeneracy index j in the wavefunction 

(2.11), also becomes clear in Section 3.

3. Operator formalism for T 2 with magnetic flux

Before we consider ZN -orbifolds, we formulate a quantum mechanical system on T 2 with a 

U(1) homogeneous magnetic flux like in Ref. [63]. Its energy spectrum should correspond to the 

mass spectrum of the six-dimensional (6D) system M4 ×T 2, where M4 means four-dimensional 

(4D) Minkowski spacetime. Due to compactness of the system, we face to additional constraints 

on the system, part of which describes degeneracy of the allowed physical states.

At first, we describe the system with the wavefunction ψ(y), where we adopt the vector 

notation on T 2 as y := (y1, y2)
T for two Cartesian coordinates y1 and y2. We consider the Hamil-

tonian H and the corresponding Schrödinger equation with energy E as

H =
(
−i∇ − qA(y)

)2
, Hψ(y) = Eψ(y), (3.1)

where we use the vector notations of ∇ := (∂y1
, ∂y2

)T and A := (Ay1
, Ay2

)T. The vector potential 

A providing a homogeneous magnetic flux penetrating T 2 can be expressed as

A(y) = −
1

2
Ω(y + a), (3.2)
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or with showing all the indices explicitly

Ai(y) = −
1

2

2∑

j=1

Ωij (yj + aj ) (i = 1,2). (3.3)

Here, we mention that only the antisymmetric part of Ω possesses a physical degree of freedom, 

while the symmetric part of Ω depending on a choice of gauge is unphysical and can be gauged 

away. In a later stage, we suitably fix the gauge to make the system simplified.

Two-dimensional torus T 2 is defined from the two-dimensional plane R2 by modding out the 

lattice shift Λ with two basis vectors u1 and u2:

T 2 =R
2/Λ, Λ =

{
2∑

a=1

naua

∣∣∣ na ∈ Z

}
, (3.4)

where n1 and n2 show the numbers of shifting along u1 and u2 directions, respectively. This 

means that the vector coordinate y should obey the identification

y ∼ y +
2∑

a=1

naua . (3.5)

The above condition leads to two requirements for ensuring consistency. The first one puts 

a constraint on the form of the wavefunction after shifting ψ(y + ua). In order to make the 

Schrödinger equation well-defined on T 2, the following pseudo-periodic boundary condition 

should be satisfied,

ψ(y + ua) = e−i
q
2 (y+a)TΩua+2πiαaψ(y) for a = 1,2, (3.6)

where αa shows the y-independent Scherk–Schwarz phase for the ua direction.9 In addition, 

after considering contractible loops on T 2, e.g., y → y + u1 → y + u1 + u2 → y + u2 → y, the 

magnetic flux should be quantized to ensure the single-valuedness of the wavefunction ψ(y) as 

follows:

quT
aBub = 2πQab (a, b = 1,2), (3.7)

where B := 1
2
(Ω − ΩT) is the gauge-independent antisymmetric part of Ω and Qab =

−Qba ∈ Z.

Now, we go to the operator formalism, where we introduce a momentum operator ̂p := −i∇
being conjugate to y. The operators satisfy the canonical commutation relations,

[̂yi, p̂j ] = iδi,j (the others) = 0 (i, j = 1,2). (3.8)

The wavefunction ψ(y) is represented in the operator formulation as 〈y|ψ〉 and the system is 

rewritten by use of |ψ〉 as

Ĥ =
(

p̂+
q

2
Ω(̂y + a)

)2

=:
(
p̂′)2, Ĥ |ψ〉 = E |ψ〉 . (3.9)

9 In this paper, the Scherk–Schwarz phases only represent twisted boundary conditions, not supersymmetry breaking.
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The constraints in Eq. (3.6) are also interpreted as

eiT̂a−i
q
4 uT

a Ωua |ψ〉 = e2πiαa |ψ〉 , T̂a = uT
a

(
p̂+

q

2
ΩT(̂y + a)

)
(a = 1,2). (3.10)

Here, we can find the relation

uT
aΩua = uT

a

(
1

2

(
Ω + ΩT

))
ua, (3.11)

which says that only unphysical components appear in this part. Hence in the following part, we 

drop the unphysical symmetric part of Ω ,

1

2

(
Ω + ΩT

)
= 0, (3.12)

which leads to the condition uT
aΩua = 0. We can define new operators,

Ŷ = −
√

2

ω
p̂′

2, P̂ =
√

2p̂′
1, (3.13)

̂̃Y =
1

2πM
T̂1 −

α1

M
, ̂̃P = −T̂2 + 2πα2, (3.14)

where ω = 2qB12 = 2qΩ12 and M := Q12 ⊂ Z. The transformation {ŷi, ̂pi; i = 1, 2} →
{Ŷ , P̂ , ̂̃Y , ̂̃P } is canonical and then the operators are suitably quantized with the canonical com-

mutation relations,

[Ŷ , P̂ ] = i, [̂̃Y , ̂̃P ] = i, (the others) = 0. (3.15)

As apparent from Eqs. (3.9) and (3.14), under the new variables, the Hamiltonian can be 

rephrased only with the two new variables P̂ and Ŷ as

Ĥ =
1

2
P̂ 2 +

ω2

2
Ŷ 2, (3.16)

the form of which is the one-dimensional harmonic oscillator. On the other hand, the remaining 

two ones, ̂̃P and 
̂̃Y , work as constraint conditions on the state,

ei ̂̃P |ψ〉 = |ψ〉 , e2πiM̂̃Y |ψ〉 = |ψ〉 , (3.17)

where the two operators are considered to control degenerated states since they do not appear in 

the Hamiltonian (3.16) and they commute with the Hamiltonian (3.16). In the following part, we 

check this statement.

After we take an eigenstate of ̂̃Y , which obeys the relation 
̂̃Y |Ỹ 〉 = Ỹ |Ỹ 〉, the second condition 

in Eq. (3.17) is simplified,

e2πiMỸ |Ỹ 〉 = |Ỹ 〉. (3.18)

Operating e2πiM̂̃Y on the state eia ̂̃P |Ỹ 〉 (a ∈ R) and using the relations in Eq. (3.15), we can 

obtain the relation

eia ̂̃P |Ỹ 〉 = |Ỹ − a〉 . (3.19)

From Eqs. (3.17), (3.18) and (3.19), we can reach the periodic condition,
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|Ỹ 〉 = |Ỹ − 1〉, (3.20)

and also the coordinate quantization condition,

Ỹ =
j

M

(
j = 0,1,2, . . . , |M| − 1

)
. (3.21)

These results imply that every energy state is |M|-fold degenerated and the index j discriminates 

them as

Ĥ

∣∣∣∣n,
j

M

〉
= En

∣∣∣∣n,
j

M

〉
, En = |ω|

(
n +

1

2

)
, (3.22)

〈
m,

i

M

∣∣∣∣n,
j

M

〉
= δm,nδi,j , (3.23)

where m, n = 0, 1, 2, . . . and i, j = 0, 1, 2, . . . , |M| − 1.

Here, we note three things. The first one is that there is no constraint on the Scherk–Schwarz 

phases α1 and α2 on the two-dimensional torus with magnetic flux. We will see in Section 4 that 

only the restricted values are allowed for the Scherk–Schwarz phase in the case of magnetized 

T 2/ZN orbifolds.

The second one is that the index j for the degeneracy states is nothing but an eigenvalue of the 

operator ̂̃Y . We can easily check that the index j in wavefunction analysis is also the eigenvalue 

of ̂̃Y :

e2πî̃Y f
(j+α1,ατ )

T 2,Ψ+,0
(z;aw) = e2πi

j
M f

(j+α1,ατ )

T 2,Ψ+,0
(z;aw), (3.24)

where the explicit form of the operator ̂̃Y in the complex coordinate is given by the following,

e2πî̃Y = e2πi· 1
2πM

(−i(∂z+∂z̄)− πM
Im τ

Im(z+aw)−2πα1). (3.25)

On the other hand, the operator ̂̃P acts as the translational operator with respect to the index j ,

e−i 1
M
̂̃P f

(j+α1,ατ )

T 2,Ψ+,0
(z;aw) = f

((j+1)+α1,ατ )

T 2,Ψ+,0
(z;aw), (3.26)

where the explicit form of the operator ̂̃P in the complex coordinate is

e−i 1
M
̂̃P = e−i 1

M
( i(τ∂z+τ̄ ∂z̄)− πM

Im τ
Im[τ(z̄+āw)]+2πα2). (3.27)

Thus, we have succeeded to clarify the form of the hermitian operator which has relation to the 

index j , as announced before.

The last one is that En correspond to eigenvalues of the Laplace operator with magnetic flux 

in Eq. (3.1), the value of which expresses the mass square of scalar field m2
n = |ω|(n +1/2) when 

we consider the higher-dimensional field theory on M4 × T 2 with magnetic flux. In the cases of 

spinor and vector, there is a constant shift from the scalar case originating from their Lorentz 

structure and the explicit forms are m2
n = |ω|n and m2

n = |ω|(n − 1/2), respectively [5,33].

4. Operator formalism for T 2/ZN twisted orbifolds with magnetic flux

Based on the knowledge in the previous section, now we discuss the operator formalism de-

scribing magnetized T 2/ZN twisted orbifold. We should emphasize that our results, e.g., the 

number of physical states, are consistent with the previous numerical results in Ref. [63] and, 
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moreover, our results are analytically exact. As we mentioned in Section 2, it is quite nontrivial 

because of the following reasons.

In the wavefunction analysis, the physical states f
(j)

T 2/ZN
(z)η with a ZN eigenvalue η on the 

magnetized T 2/ZN twisted orbifold consist of linear combinations of ZN -twisted zero-mode 

functions f (j)(ωkz) (k = 0, 1, 2, . . . , N − 1):

f
(j)

T 2/ZN
(z)η =N

(j)
R,η

N−1∑

x=0

η̄xf
(j)

T 2

(
ωxz
)
, (4.1)

where we omit the unimportant subscript. Since the ZN -twisted mode function f
(j)

T 2 (ωkz) satis-

fies the same equation as f
(j)

T 2 (z), f
(j)

T 2 (ωxz) has to be expanded in some linear combination of 

f
(j)

T 2 (z) as

f
(j)

T 2

(
ωxz
)
=

|M|−1∑

m=0

C
(ωx )
jm f

(m)

T 2 (z). (4.2)

If we can evaluate the coefficient C
(ωx)
jm analytically, then we can obtain the results, e.g., the 

number of independent physical states, analytically from Eq. (2.24). However, it is not easy 

since the mode functions f
(j)

T 2 (z) contain the theta functions (see Eq. (2.11)).

Amazingly, in the operator analysis, we can evaluate the coefficient C
(ωx)
jm analytically as we 

will see in this section. Furthermore, the results of the operator formalism are available to not 

only the zero modes but also all KK modes. The correspondence between the numerical results 

in Ref. [63] and the analytic results of ours will be found in the next section.

The T 2/ZN twisted orbifold enforces the discrete symmetry under 2π/N -angle rotation, 

where it is well known that only the N = 2, 3, 4, 6 are possible on T 2. In the following part, the 

unitary operator Ûθ manipulates the rotation with an angle θ around the origin (y1 = y2 = 0). In 

the vector coordinate y, the rotation is described by the two-by-two representation matrix Rθ ,

y → Rθ y, Rθ =
(

cos θ − sin θ

sin θ cos θ

)
, (4.3)

where the same expression is valid for the operators ̂y and ̂p,

ŷ → Ûθ ŷÛ
†
θ = Rθ ŷ, p̂ → Ûθ p̂Û

†
θ = Rθ p̂. (4.4)

In the following discussion, we take the Wilson line phase a as zero:

a = 0. (4.5)

It has already been discussed in Ref. [63] that we can remove the Wilson line phase by using 

a large gauge transformation without any loss of generality. We can find the discussion on the 

issue in operator formalism in Appendix A. By use of the results in Eq. (4.4), the transformation 

of the Hamiltonian in Eq. (3.9) under the rotation is evaluated as

Ĥ → Ûθ Ĥ Û
†
θ =

(
p̂+

q

2
RT

θ ΩRθ ŷ

)2

, (4.6)
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and hence the following condition is required for invariance:

[Rθ ,Ω] = 0. (4.7)

As shown in Eq. (3.11), only the unphysical symmetric part of Ω makes a nonzero contribution 

to the commutator [Rθ , Ω]. Therefore, the condition in Eq. (4.7) is realized after the gauge 

fixing (3.12) irrespective of the value of θ . Then, we can conclude that the Hamiltonian itself is 

invariant under the rotation in spite of the value of the angle θ .

Although the Hamiltonian is invariant under the rotation Uθ , situations in the constraints on 

states are found to be nontrivial. Remembering Eq. (3.10), the two operators T̂a (a = 1, 2) trans-

form under the rotation generated by Ûθ as

T̂a → Ûθ T̂aÛ
†
θ =

(
RT

θ ua

)T
(

p̂+
q

2
ΩTŷ

)
(a = 1,2). (4.8)

Here, the vector RT
θ ua is given by a linear combination of u1 and u2, and subsequently, T̂1 and T̂2

are also mixed each other in general. It is convenient to choose the two basis vectors ua in such a 

way that under the rotations generated by (Rθ=2π/N)T, the two basis vectors are transformed as

Z2 case: (Rθ=2π/N )Tu1 = −u1, (Rθ=2π/N )Tu2 = −u2,

Z3 case: (Rθ=2π/N )Tu1 = −u1 − u2, (Rθ=2π/N )Tu2 = +u1,

Z4 case: (Rθ=2π/N )Tu1 = −u2, (Rθ=2π/N )Tu2 = +u1,

Z6 case: (Rθ=2π/N )Tu1 = +u1 − u2, (Rθ=2π/N )Tu2 = +u1. (4.9)

Transformations of T̂a under the discrete rotations with angles θ = 2π/N in ZN orbifoldings 

(N = 2, 3, 4, 6) are easily evaluated by use of the results in Eq. (4.9),

Z2 case: T̂1 → −T̂1, T̂2 → −T̂2, (4.10)

Z3 case: T̂1 → −T̂1 − T̂2, T̂2 → T̂1, (4.11)

Z4 case: T̂1 → −T̂2, T̂2 → T̂1, (4.12)

Z6 case: T̂1 → T̂1 − T̂2, T̂2 → T̂1. (4.13)

To investigate the number of physical states on the above magnetized T 2/ZN orbifold, we 

will construct physical states via the following three steps:

1. Derivation of the allowed Scherk–Schwarz phases (α1, α2)

On T 2/ZN , any ZN -transformed state ÛZN
|ψ〉 should satisfy the same constraint condition 

as |ψ〉, which is a state on T 2.

eiT̂a
(
ÛZN

|ψ〉
)
= e2πiαa

(
ÛZN

|ψ〉
)

(a = 1,2), (4.14)

where we already fixed a gauge (3.12) and we adopt a notation ÛZN
:= Û2π/N . The above 

consistency condition will produce a restriction to the values of the Scherk–Schwarz phases 

(α1, α2) as a consequence of the ZN orbifold. We will find that the number of allowed 

Scherk–Schwarz phases are the same as the number of fixed points on T 2/ZN orbifold. 

See Appendix A, for detail.

2. Derivation of the analytic form of a ZN -transformed state (ÛZN
)x |ψ〉 (x = 0, 1, 2, . . . ,

N − 1)
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Since the physical states |ψ〉T 2/ZN
on T 2/ZN consist of linear combinations of the states 

|ψ〉 on T 2 with the projection operator P̂T 2/ZN ,η,

|ψ〉T 2/ZN ,η = P̂T 2/ZN ,η|ψ〉, (4.15)

P̂T 2/ZN ,η :=
1

N

{
N−1∑

x=0

η̄x(ÛZN
)x

}
, (4.16)

we need to obtain the analytic form of the ZN -transformed state (ÛZN
)x |n, 

j
M

〉. The states 

|n, 
j
M

〉 and ÛZN
|n, 

j
M

〉 satisfy the same equation with each other so that (ÛZN
)x |n, 

j
M

〉
should be expanded as follows:

(ÛZN
)x
∣∣∣∣n,

j

M

〉
=

|M|−1∑

m=0

D
(ωx)
jm

∣∣∣∣n,
m

M

〉
. (4.17)

To obtain the analytic form of (ÛZN
)x |n, 

j
M

〉, we need to calculate the coefficient D
(ωx)
jm . 

However, as we mentioned in the beginning of this chapter, it is quite difficult to evaluate 

D
(ωx)
jm in the wavefunction analysis. It turns out that it can be evaluated analytically and 

exactly by using operator formalism in this section.

3. Construction of the physical states

With combining the above results, we can construct physical states on T 2/ZN ,
∣∣∣∣n,

j

M

〉

T 2/ZN ,η

= P̂T 2/ZN ,η

∣∣∣∣n,
j

M

〉
,

=
1

N

N−1∑

x=0

η̄x

|M|−1∑

k=0

D
(ωx)
jk

∣∣∣∣n,
k

M

〉
. (4.18)

Thus, in the remaining part of this section, we first derive possible patterns of the two 

Scherk–Schwarz phases (α1, α2) for every ZN -orbifold (N = 2, 3, 4, 6) from Eq. (4.14). We 

then calculate D
(ωx)
jm in (4.17) and also the coefficients in (4.18) in the case of N = 2, 3, 4, 6, sep-

arately. Finally, we construct the physical states on the magnetized T 2/ZN orbifolds and derive 

the number of physical states.

We emphasize that all the relations discussed in Section 3 should hold since the ZN discrete 

symmetry is additional on T 2. As we showed in Eq. (3.20), the system has the periodicity,

|n, Ỹ 〉 = |n, Ỹ − 1〉, (4.19)

and the coordinate Ỹ is quantized, where the possible values in Eq. (3.21) differentiate the degen-

erated states. As shown in Eq. (3.19), the operator ̂̃P works as the generator for the translation 

along Ỹ -direction. The following expression is helpful,
∣∣∣∣n,

j

M

〉
= e−i

j
M
̂̃P |n,0〉. (4.20)

Throughout the following part, the mathematical formula for arbitrary operators Â and B̂ ,

ÂeB̂Â−1 = eÂB̂Â−1

(4.21)
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is very useful and we use the relations between the operators T̂1, T̂2 and 
̂̃Y , ̂̃P in Eq. (3.14) many 

times. Also, we comply with the three “conventions”:

• We only consider the case M > 0 but we can analyze the case of M < 0 in the same way.

• Fundamental regions of α1, α2 and Ỹ (in the eigenstate of ̂̃Y ) are selected as [0, 1) (without 

loss of generality).

• We omit to describe eigenvalues of the energy since the following discussion is viable in 

every energy eigenstate,

∣∣∣∣n,
j

M

〉
→
∣∣∣∣

j

M

〉
. (4.22)

4.1. T 2/Z2

First, we calculate the allowed Scherk–Schwarz phases on T 2/Z2 by using Eq. (4.14). This 

case is not complicated since the two operators T̂1 and T̂2 are not mixed under the operation 

of ÛZ2
, where only their signs are flipped. After requesting the coexistence of the conditions in 

Eqs. (3.17) and (4.14), we obtain the requirements,

α1 = −α1 and α2 = −α2 (mod 1), (4.23)

where we used the relation in Eqs. (4.10) and (4.21). As shown in [63], the two phases can take 

individual values and the possibilities are

(α1, α2) = (0,0),

(
1

2
,0

)
,

(
0,

1

2

)
,

(
1

2
,

1

2

)
. (4.24)

Next, we consider Z2-transformed states. Here, we remember the statement in Section 3 for 

the state on T 2 that degenerated states of an energy can be specified by the eigenvalues of the 

operator ̂̃Y . Thereby, we first try to find a state which includes the operator ÛZ2
and is also an 

eigenstate of ̂̃Y . We find such a state as ÛZ2
|j/M〉 with the eigenvalue (−2α1 − j)/M from the 

following calculation,

e2πî̃Y
(

ÛZ2

∣∣∣∣
j

M

〉)
= ÛZ2

(
Û

†
Z2

e2πi(
T̂1

2πM
− α1

M
)ÛZ2

) ∣∣∣∣
j

M

〉

= ÛZ2
e2πi(− T̂1

2πM
− α1

M
)

∣∣∣∣
j

M

〉

= ÛZ2
e−2πî̃Y−2πi

2α1
M

∣∣∣∣
j

M

〉

= e2πi(
−2α1−j

M
)

(
ÛZ2

∣∣∣∣
j

M

〉)
, (4.25)

and then we can write down the state ÛZ2
|j/M〉 as follows:

ÛZ2

∣∣∣∣
j

M

〉
= e2πiηj

∣∣∣∣
−2α1 − j

M

〉
, (4.26)
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where ηj expresses a phase ambiguity to be determined.10 Since there exists the relation on the 

translation along Ỹ -direction in Eq. (4.20), we have another expression for the above equation:

ÛZ2

∣∣∣∣
j

M

〉
= ÛZ2

e−i
j
M
̂̃P |0〉

=
(
ÛZ2

e−i
j
M
̂̃P Û

†
Z2

)
ÛZ2

|0〉 = e2πi(− j
M

2α2+η0)

∣∣∣∣
−2α1 − j

M

〉
, (4.27)

where we used the relations in Eqs. (3.14), (4.10), (4.20) and (4.26). Comparing the two equations 

(4.26) and (4.27), we have the relation

ηj = η0 −
j

M
2α2 (mod 1). (4.28)

The Z2-consistency requires the condition Û2
Z2

= 1̂ for every state, where ̂1 is the unit opera-

tor. This fact leads to the condition,

Û2
Z2

∣∣∣∣
j

M

〉
= e2πi(ηj +η−2α1−j )

∣∣∣∣
j

M

〉
=
∣∣∣∣

j

M

〉
, (4.29)

which is equivalent to

ηj + η−2α1−j = 0 (mod 1). (4.30)

Combining the results in Eqs. (4.24), (4.28) and (4.30), we can determine the form of ηj as

ηj = −
2α2

M
(j + α1), (4.31)

where we omit the trivial overall phase. The explicit analytic form of the Z2-transformed state 

ÛZ2
| j
M

〉, which corresponds to Eq. (4.17), is the following:

ÛZ2

∣∣∣∣
j

M

〉
= e−2πi· 2α2

M
(j+α1)

∣∣∣∣
−2α1 − j

M

〉
, (4.32)

which is equivalent to the following expression:

ÛZ2

∣∣∣∣
j

M

〉
=

M−1∑

k=0

D
(ω)
jk

∣∣∣∣
k

M

〉
,

D
(ω)
jk = e−2πi· 2α2

M
(j+α1)δ−2α1−j,k. (4.33)

Finally, we can construct the physical states on T 2/Z2 by using Eq. (4.18),

∣∣∣∣
j

M

〉

T 2/Z2,η

=
1

2

1∑

x=0

η̄x

M−1∑

k=0

D
(ωx)
jk

∣∣∣∣
k

M

〉

=:
M−1∑

k=0

M
(Z2;η)
jk

∣∣∣∣
k

M

〉
(η = +1,−1). (4.34)

10 Here, the norm should not be changed under the rotation.
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The number of independent physical states | j
M

〉T 2/Z2,η
is nothing but the rank of the M-by-M

matrix M
(Z2;η)
jk ,

The number of physical states

∣∣∣∣n,
j

M

〉

T 2/Z2,η

= Rank
[
M

(Z2;η)
jk

]
. (4.35)

The analytic results for the T 2/Z2 have already been given by Ref. [63].

4.2. T 2/Z3

First, we note that in the cases of T 2/Z3 and the following T 2/Z6, a linear combination of the 

two operators T̂a (a = 1, 2) appears to a variable of the exponential and the Baker–Campbell–

Hausdorff formula (or the Zassenhaus formula) for two operators Â and B̂ with t ∈R is helpful:

et (Â+B̂) = etÂetB̂e− t2

2 [Â,B̂] (
when

[
Â, [Â, B̂]

]
= 0 and

[
B̂, [Â, B̂]

]
= 0
)
. (4.36)

Since the commutation relation associated with T̂1 and T̂2 is given by

[T̂1, T̂2] = −2πiM, (4.37)

the precondition in Eq. (4.36) is trivially fulfilled for T̂as.

Now, to obtain the allowed Scherk–Schwarz phases, we follow the same strategy as in the 

case of T 2/Z2. Then, from Eq. (4.14), αas should satisfy the conditions

α1 = α2 and α2 = −α2 − α1 −
M

2
(mod 1), (4.38)

for T 2/Z3 and the resultant allowed combinations are as follows:

α := α1 = α2, (4.39)

α =

{
0, 1

3
, 2

3
for M: even,

1
6
, 3

6
, 5

6
for M: odd.

(4.40)

Interestingly, when the value of M is odd, the Z3-orbifold system cannot be defined without the 

Scherk–Schwarz phases.

To evaluate the form of the Z3-transformed state ÛZ3
|j/M〉, we act the operator e2πî̃Y to it. 

In the case of T 2/Z3, the state ÛZ3
|j/M〉 is not an eigenstate of ̂̃Y because the argument of the 

ket vector gets to be different from the original one as j/M → (j + 1)/M after manipulating 

e2πî̃Y to the Z3-rotated state ÛZ3
|j/M〉:

e2πî̃Y ÛZ3

∣∣∣∣
j

M

〉
= ÛZ3

(
Û

†
Z3

e2πi(
T̂1

2πM
− α1

M
)ÛZ3

) ∣∣∣∣
j

M

〉

= ÛZ3
e2πi(

T̂2
2πM

− α1
M

)

∣∣∣∣
j

M

〉

= ÛZ3
e2πi(−

̂̃P
2πM

+ α2
M

− α1
M

)

∣∣∣∣
j

M

〉

= ÛZ3
e−i

̂̃P
M

∣∣∣∣
j

M

〉

= ÛZ3

∣∣∣∣
j + 1

M

〉
, (4.41)
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where we used Eq. (4.39). This fact gives us a hint for finding a suitable form of an eigenstate 

of ̂̃Y . Effects of this shift would be cancelled out after taking summation over the index j . Based 

on this speculation, we focus on the following state,

M−1∑

j=0

ÛZ3

∣∣∣∣
j

M

〉
. (4.42)

Since the above state satisfies the condition,

e2πî̃Y
M−1∑

j=0

ÛZ3

∣∣∣∣
j

M

〉
=

M−1∑

j=0

ÛZ3

∣∣∣∣
j

M

〉
, (4.43)

the following representation should be completed with two parameters A and θ , which show the 

magnitude and phase parts of the undetermined coefficient,

M−1∑

j=0

ÛZ3

∣∣∣∣
j

M

〉
=Aeiθ |0〉. (4.44)

With casting the shift operator e−i l
M
̂̃P on both sides, we obtain

e−i π
M

l2−i 6πα
M

l

M−1∑

j=0

e−2πi
l·j
M ÛZ3

∣∣∣∣
j

M

〉
=Aeiθ

∣∣∣∣
l

M

〉
, (4.45)

and subsequently, we can derive the following simple form from the above with summing over l

from 0 to M − 1,

ÛZ3
|0〉 =

A

M
eiθ

M−1∑

l=0

ei π
M

l2+i 6πα
M

l

∣∣∣∣
l

M

〉
. (4.46)

Here, we used the formula,

M−1∑

k=0

e2πi s
M

k = Mδs,0 (s = 0,1, . . . ,M − 1), (4.47)

which is proved with ease via properties of M-th root of unity.

The Z3-consistency (ÛZ3
)3 = 1̂ pins down values of A and θ immediately when we utilize 

the formula,

M−1∑

s=0

e−πi
(s+t±β)2

M =
√

Me− 1
4 πi for t ∈ Z, β =

{
0 for M: even,
1
2

for M: odd.
(4.48)

We mention that the above summation takes the universal form irrespective of the choice of 

t , β and the sign in front of β (within the shown ranges in Eq. (4.48)). The derivation of this 

is provided in Appendix B. After some calculations, resultant values are declared, (e.g., via 

Û3
Z3

|0〉 = |0〉) as

A =
√

M, θ = −
π

12
+

3π

M
α2, (4.49)

where we ignored the trivial overall phase in θ .
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Now, we can obtain the form of the Z3-transformed state ÛZ3
| j
M

〉 for the projection operator 

from Eq. (4.46) with the shift operation in Eq. (4.20) as

ÛZ3

∣∣∣∣
j

M

〉
=
(
Û

†
Z3

)2
∣∣∣∣

j

M

〉
=

1
√

M
e−i π

12 +i 3πα2

M

M−1∑

k=0

ei π
M

k(k+6α)+2πi
j ·k
M

∣∣∣∣
k

M

〉
,

(ÛZ3
)2

∣∣∣∣
j

M

〉
= Û

†
Z3

∣∣∣∣
j

M

〉
=

1
√

M
ei π

12 −i 3πα2

M
−i π

M
j (j+6α)

M−1∑

k=0

e−2πi
j ·k
M

∣∣∣∣
k

M

〉
, (4.50)

which are equivalent to the following expressions:

(ÛZ3
)x
∣∣∣∣

j

M

〉
=

M−1∑

k=0

D
(ωx )
jk

∣∣∣∣
k

M

〉
(x = 0,1,2),

D
(ω)
jk =

1
√

M
e−i π

12 +i 3πα2

M ei π
M

k(k+6α)+2πi
j ·k
M ,

D
(ω2)
jk =

1
√

M
ei π

12 −i 3πα2

M
−i π

M
j (j+6α)e−2πi

j ·k
M . (4.51)

We again comment that the above analytic results of the Z3-transformed state are nontrivial. 

In the case of the wavefunction analysis, we need to rely on numerical calculations since the 

states are given by theta functions. On the other hand, we can evaluate the exact form of the 

Z3-transformed states in this case and, moreover, the above results are applicable to all KK-

modes since they are irrelevant to the principal quantum number n of the state |n, 
j
M

〉. We can 

say the same thing for the following T 2/Z4 and T 2/Z6 cases.

Finally, we construct physical states on T 2/Z3. By using Eq. (4.18), the physical states are 

represented by

∣∣∣∣
j

M

〉

T 2/Z3,η

=
1

3

2∑

x=0

η̄x

M−1∑

k=0

D
(ωx)
jk

∣∣∣∣
k

M

〉

=:
M−1∑

k=0

M
(Z3;η)
jk

∣∣∣∣
k

M

〉 (
η = 1,ω,ω2

)
, (4.52)

where

M
(Z3;η)
jk =

1

3

2∑

x=0

η̄xD
(ωx )
jk . (4.53)

The number of independent physical states | j
M

〉T 2/Z3,η
is nothing but the rank of the matrix 

M
(Z3;η)
jk ,

The number of physical states

∣∣∣∣
j

M

〉

T 2/Z3,η

= Rank
[
M

(Z3;η)
jk

]
. (4.54)

After investigating the rank of the matrix M
(Z3;η)
jk , we obtain the results shown in Tables 1, 

2, 3 and 4. We, again, emphasize that the following results are completely consistent with the 

previous wavefunction analysis [63]. The correspondence between the matrix M
(Z3;η)
jk and the 

kinetic matrix K
(Z3;η)
jk will be discussed in Section 5.
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Table 1

The numbers of linearly independent zero-mode eigenstates with Z3 eigenvalue η for M = even

and (α1, α2) = (0, 0) on T 2/Z3 .

η |M|
2 4 6 8 10 12 14

1 1 1 3 3 3 5 5

ω 0 2 2 2 4 4 4

ω̄ 1 1 1 3 3 3 5

Table 2

The numbers of linearly independent zero-mode eigenstates with Z3 eigenvalue η for M = even

and (α1, α2) = ( 1
3
, 1

3
), ( 2

3
, 2

3
) on T 2/Z3 .

η |M|
2 4 6 8 10 12 14

1 1 2 2 3 4 4 5

ω 1 1 2 3 3 4 5

ω̄ 0 1 2 2 3 4 4

Table 3

The numbers of linearly independent zero-mode eigenstates with Z3 eigenvalue η for M = odd

and (α1, α2) = ( 1
6
, 1

6
), ( 5

6
, 5

6
) on T 2/Z3 .

η |M|
1 3 5 7 9 11 13

1 1 1 2 3 3 4 5

ω 0 1 2 2 3 4 4

ω̄ 0 1 1 2 3 3 4

Table 4

The numbers of linearly independent zero-mode eigenstates with Z3 eigenvalue η for M = odd

and (α1, α2) = ( 3
6
, 3

6
) on T 2/Z3 .

η |M|
1 3 5 7 9 11 13

1 0 2 2 2 4 4 4

ω 1 1 1 3 3 3 5

ω̄ 0 0 2 2 2 4 4

4.3. T 2/Z4

In the case of T 2/Z4, the situation is similar to T 2/Z2 case but is somewhat complicated. The 

way for determining allowed values of α1 and α2 is the same as in T 2/Z2 and T 2/Z3. By using 

Eqs. (4.12), (4.14) and (4.21), we find that the following two conditions should be fulfilled:

α1 = α2 and α1 = −α2 (mod 1). (4.55)

Here, we conclude that the consistent values are
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α := α1 = α2 (4.56)

α = 0 or
1

2
, (4.57)

which are a subset of the result in T 2/Z2 since the Z4 orbifolding includes the Z2 operation.

To evaluate the form of the Z4-transformed state ÛZ4
|j/M〉, we act the operator e2πî̃Y to the 

transformed state. Unlike T 2/Z2, the state ÛZ4
|j/M〉 itself is not an eigenstate of ̂̃Y as in the 

case of the T 2/Z3, i.e.,

e2πî̃Y
(

ÛZ4

∣∣∣∣
j

M

〉)
= ÛZ4

(
Û

†
Z4

e2πi(
T̂1

2πM
− α1

M
)ÛZ4

) ∣∣∣∣
j

M

〉

= ÛZ4
e2πi(

T̂2
2πM

− α1
M

)

∣∣∣∣
j

M

〉

= ÛZ4
e2πi(−

̂̃P
2πM

+ α2
M

− α1
M

)

∣∣∣∣
j

M

〉

= ÛZ4
e−i

̂̃P
M

∣∣∣∣
j

M

〉

= ÛZ4

∣∣∣∣
j + 1

M

〉
. (4.58)

Then we again consider the following state as a candidate for ̂̃Y -eigenstates as T 2/Z3,

M−1∑

j=0

ÛZ4

∣∣∣∣
j

M

〉
. (4.59)

Using Eq. (4.58), the following condition holds,

e2πî̃Y
M−1∑

j=0

ÛZ4

∣∣∣∣
j

M

〉
=

M−1∑

j=0

ÛZ4

∣∣∣∣
j

M

〉
. (4.60)

Then it should be rewritten as

M−1∑

j=0

ÛZ4

∣∣∣∣
j

M

〉
=Aeiθ |0〉 , (4.61)

and casting the operator e−i l
M
̂̃P on both sides brings us to

e−i 4πα
M

l

M−1∑

j=0

e−2πi
l·j
M ÛZ4

∣∣∣∣
j

M

〉
=Aeiθ

∣∣∣∣
l

M

〉
. (4.62)

The parameters A and θ show the magnitude and phase parts of the undetermined coefficient, 

respectively as in the case of T 2/Z3. Here, taking summation over l from 0 to M −1 in Eq. (4.62)

leads to the simple relation,

ÛZ4
|0〉 =

A

M
eiθ

M−1∑

l=0

ei 4πα
M

l

∣∣∣∣
l

M

〉
, (4.63)
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where we used the formula (4.47). The form (4.63) is just a part of what we would like to obtain.

The values of A and θ can be derived when we examine the consistency condition coming 

from Z4 symmetry, Û4
Z4

= 1̂. After making use of Eq. (4.47), we can reach the result,11

A =
√

M, θ =
2π

M
α2, (4.64)

where we dropped the overall phase in θ .

Now, the form of the Z4-transformed state ÛZ4
|j/M〉 is easily evaluated from Eq. (4.63)

by using the shift operation in Eq. (4.20). Here, we summarize the results for constructing the 

projective operator,

ÛZ4

∣∣∣∣
j

M

〉
=
(
Û

†
Z4

)3
∣∣∣∣

j

M

〉
=

1
√

M
e2πi α2

M

M−1∑

k=0

e2πi 2α
M

k+2πi
j ·k
M

∣∣∣∣
k

M

〉
,

(ÛZ4
)2

∣∣∣∣
j

M

〉
=
(
Û

†
Z4

)2
∣∣∣∣

j

M

〉
= e−2πi 2α

M
(α+j)

∣∣∣∣
−2α − j

M

〉
,

(ÛZ4
)3

∣∣∣∣
j

M

〉
= Û

†
Z4

∣∣∣∣
j

M

〉
=

1
√

M
e−2πi α2

M
−2πi 2α

M
j

M−1∑

k=0

e−2πi
j ·k
M

∣∣∣∣
k

M

〉
, (4.65)

which are equivalent to the following expressions:

(ÛZ4
)x
∣∣∣∣

j

M

〉
=

M−1∑

k=0

D
(ωx )
jk

∣∣∣∣
k

M

〉
(x = 0,1,2,3),

D
(ω)
jk =

1
√

M
e2πi α2

M e2πi
j ·k
M

+2πi 2α
M

k,

D
(ω2)
jk = e−2πi 2α

M
(α+j)δ−2α−j,k,

D
(ω3)
jk =

1
√

M
e−2πi α2

M
−2πi 2α

M
je−2πi

j ·k
M . (4.66)

Finally, we construct physical states on T 2/Z4 by using Eq. (4.18),

∣∣∣∣
j

M

〉

T 2/Z4,η

=
1

4

3∑

x=0

η̄x

M−1∑

k=0

D
(ωx )
jk

∣∣∣∣
k

M

〉

=:
M−1∑

k=0

M
(Z4;η)
jk

∣∣∣∣
k

M

〉 (
η = 1,ω,ω2,ω3

)
, (4.67)

where

M
(Z4;η)
jk =

1

4

3∑

x=0

η̄xD
(ωx)
jk . (4.68)

11 The relation Û4
Z4

= 1̂ is valid irrespective of operated states. The easiest way to determine A and θ is to use the state 

|0〉 (Û4
Z4

|0〉 = |0〉).
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Table 5

The numbers of linearly independent zero-mode eigenstates with Z4 eigenvalue η for (α1, α2) = (0, 0) on T 2/Z4 .

η |M|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

+1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5

+i 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4

−1 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

−i 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4

Table 6

The numbers of linearly independent zero-mode eigenstates with Z4 eigenvalue η for (α1, α2) = ( 1
2
, 1

2
) on T 2/Z4 .

η |M|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

+1 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4

+i 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

−1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4

−i 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4

The number of independent physical states | j
M

〉T 2/Z4,η
is nothing but the rank of the matrix 

M
(Z4;η)
jk ,

The number of physical states

∣∣∣∣n,
j

M

〉

T 2/Z4,η

= Rank
[
M

(Z4;η)
jk

]
. (4.69)

After investigating the rank of the matrix M
(Z4;η)
jk , we obtain the results shown in Tables 5 and 6. 

We emphasize that the following results are consistent with the previous wavefunction analysis 

[63].

4.4. T 2/Z6

For the case of T 2/Z6, there is no new future to be declared separately and all the calculations 

are basically the same with those in the previous T 2/Z3, even though it is somewhat more com-

plicated. Thereby, it suffices to pick up only important points which are different from T 2/Z3

and to write down components of the projective operator in this case.

From the requirement (4.14), the two Scherk–Schwarz phases α1 and α2 should comply with 

the conditions

α1 = α2 and α2 = α2 − α1 −
M

2
(mod 1), (4.70)

and only the following varieties are realizable,

α := α1 = α2 (4.71)

α =
{

0 for M: even,
1
2

for M: odd.
(4.72)
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To evaluate the form of the Z6-transformed state, we can also consider the following state

M−1∑

j=0

ÛZ6

∣∣∣∣
j

M

〉
. (4.73)

Since the above state satisfies the condition

e2πî̃Y
M−1∑

j=0

ÛZ6

∣∣∣∣
j

M

〉
=

M−1∑

j=0

ÛZ6

∣∣∣∣
j

M

〉
, (4.74)

we can reach to the form

M−1∑

j=0

ÛZ6

∣∣∣∣
j

M

〉
=Aeiθ |0〉. (4.75)

With casting the shift operator e−i l
M
̂̃P on both sides, we obtain

ei π
M

l2−2πi α
M

l

M−1∑

k=0

e−2πi l·k
M ÛZ6

∣∣∣∣
k

M

〉
=Aeiθ

∣∣∣∣
l

M

〉
, (4.76)

and subsequently, we can derive the following simple form from the above with summing over l

from 0 to M − 1,

ÛZ6
|0〉 =

A

M
eiθ

M−1∑

k=0

e−i π
M

k2+2πi α
M

k

∣∣∣∣
k

M

〉
. (4.77)

The Z6-consistency (ÛZ6
)6 = 1̂ will lead to the following values for A and θ , with the help of 

Eqs. (4.13), (4.14), (4.20), (4.47), (4.48), (4.77),

A =
√

M, θ =
π

12
+

π

M
α2. (4.78)

In the above, we neglected the trivial overall phase.

Summarizing the above results, we can indicate the forms of the Z6-transformed states for 

constructing the projective operator in T 2/Z6:

ÛZ6

∣∣∣∣
j

M

〉
=
(
Û

†
Z6

)5
∣∣∣∣

j

M

〉
=

1
√

M
ei π

12 +i π
M

α2
M−1∑

k=0

e−i π
M

k2+2πi α
M

k+2πi
j ·k
M

∣∣∣∣
k

M

〉
,

(ÛZ6
)2

∣∣∣∣
j

M

〉
=
(
Û

†
Z6

)4
∣∣∣∣

j

M

〉
=

1
√

M
e−i π

12 +i 3πα2

M
+i π

M
j2+2πi α

M
j

M−1∑

k=0

ei 4πα
M

k+2πi
j ·k
M

∣∣∣∣
k

M

〉
,

(ÛZ6
)3

∣∣∣∣
j

M

〉
=
(
Û

†
Z6

)3
∣∣∣∣

j

M

〉
= e−i 4πα2

M
−i 4πα

M
j

∣∣∣∣
−2α − j

M

〉
,

(ÛZ6
)4

∣∣∣∣
j

M

〉
=
(
Û

†
Z6

)2
∣∣∣∣

j

M

〉
=

1
√

M
ei π

12 −i 3πα2

M
−i 4πα

M
j

M−1∑

k=0

e−i π
M

k2−2πi α
M

k−2πi
j ·k
M

∣∣∣∣
k

M

〉
,

(ÛZ6
)5

∣∣∣∣
j

M

〉
= Û

†
Z6

∣∣∣∣
j

M

〉
=

1
√

M
e−i π

12 −i π
M

α2+i π
M

j2−2πi α
M

j

M−1∑

k=0

e−2πi
j ·k
M

∣∣∣∣
k

M

〉
, (4.79)
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which are equivalent to the following expressions:

(ÛZ6
)x
∣∣∣∣

j

M

〉
=

M−1∑

k=0

D
(ωx )
jk

∣∣∣∣
k

M

〉
(x = 0,1,2,3,4,5),

D
(ω)
jk =

1
√

M
ei π

12 +i π
M

α2

e−i π
M

k2+2πi α
M

k+2πi
j ·k
M ,

D
(ω2)
jk =

1
√

M
e−i π

12 +i 3πα2

M
+i π

M
j2+2πi α

M
j ei 4πα

M
k+2πi

j ·k
M ,

D
(ω3)
jk = e−i 4πα2

M
−i 4πα

M
j δ−2α−j,k,

D
(ω4)
jk =

1
√

M
ei π

12 −i 3πα2

M
−i 4πα

M
j e−i π

M
k2−2πi α

M
k−2πi

j ·k
M ,

D
(ω5)
jk =

1
√

M
e−i π

12 −i π
M

α2+i π
M

j2−2πi α
M

j e−2πi
j ·k
M . (4.80)

Finally, we construct physical states on T 2/Z6 at last. By using Eq. (4.18), the physical states 

are represented by the follows:

∣∣∣∣
j

M

〉

T 2/Z6,η

=
1

6

5∑

x=0

η̄x

M−1∑

k=0

D
(ωx)
jk

∣∣∣∣
k

M

〉

=:
M−1∑

k=0

M
(Z6;η)
jk

∣∣∣∣
k

M

〉 (
η = 1,ω,ω2,ω3,ω4,ω5

)
, (4.81)

where

M
(Z6;η)
jk =

1

6

5∑

x=0

η̄xD
(ωx )
jk . (4.82)

The number of independent physical states | j
M

〉T 2/Z6,η
is nothing but the rank of the matrix 

M
(Z6;η)
jk ,

The number of physical states

∣∣∣∣n,
j

M

〉

T 2/Z6,η

= Rank
[
M

(Z6;η)
jk

]
. (4.83)

After investigating the rank of the matrix M
(Z6;η)
jk , we obtain the results shown in Tables 7 and 

8. We again emphasize that the following results are consistent with the previous wavefunction 

analysis [63].

5. Correspondence between the operator analysis and the wavefunction analysis

Based on the analytical results that we have obtained in the previous section, we will derive 

the correspondence between the wavefunction analysis in Section 2 and the operator analysis in 

Section 4. First, we introduce the description of the magnetized twisted orbifold T 2/ZN with 

wavefunctions and rewrite it into the words of the operator analysis. After that, we check the 

consistency between the operator analysis and the wavefunction analysis.
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Table 7

The numbers of linearly independent zero-mode eigenstates with Z6 eigenvalue η for M = even and (α1, α2) = (0, 0)

on T 2/Z6 .

η |M|
2 4 6 8 10 12 14 16 18 20 22 24 26

1 1 1 2 2 2 3 3 3 4 4 4 5 5

ω 0 1 1 1 2 2 2 3 3 3 4 4 4

ω2 1 1 1 2 2 2 3 3 3 4 4 4 5

ω3 0 0 1 1 1 2 2 2 3 3 3 4 4

ω4 0 1 1 1 2 2 2 3 3 3 4 4 4

ω5 0 0 0 1 1 1 2 2 2 3 3 3 4

Table 8

The numbers of linearly independent zero-mode eigenstates with Z6 eigenvalue η for M = odd and (α1, α2) = ( 1
2
, 1

2
)

on T 2/Z6 .

η |M|
1 3 5 7 9 11 13 15 17 19 21 23 25

1 0 1 1 1 2 2 2 3 3 3 4 4 4

ω 1 1 1 2 2 2 3 3 3 4 4 4 5

ω2 0 0 1 1 1 2 2 2 3 3 3 4 4

ω3 0 1 1 1 2 2 2 3 3 3 4 4 4

ω4 0 0 0 1 1 1 2 2 2 3 3 3 4

ω5 0 0 1 1 1 2 2 2 3 3 3 4 4

First, we start to discuss the relation when M > 0

f
(j+α1,ατ )

T 2,Ψ+,0
(z) =

〈
z

∣∣∣∣0,
j

M

〉(α1,ατ )

. (5.1)

Although we explicitly write down the energy eigenvalue and the Scherk–Schwarz phases in 

Eq. (5.1) we hereafter omit the information on the T 2 state |0, j/M〉(α1,ατ ) as |j/M〉 for simplic-

ity in description.

The rotated state |ωz〉 on T 2/ZN can be expressed with the operator ÛZN

|ωz〉 = Û
†
ZN

|z〉 . (5.2)

Now, when we consider the following product

C
(ωx )
jk =

∫

T 2

dzdz̄f
(j+α1,ατ )

T 2,Ψ+,0

(
ωxz
)(

f
(k+α1,ατ )

T 2,Ψ+,0
(z)
)∗

(x = 0,1, . . . ,N − 1), (5.3)

it can be represented in the operator formalism as

C
(ωx )
jk =

∫

T 2

dzdz̄

〈
k

M

∣∣∣∣z
〉〈

z

∣∣∣∣(ÛZN
)x
∣∣∣∣

j

M

〉
=
〈

k

M

∣∣∣∣(ÛZN
)x
∣∣∣∣

j

M

〉
, (5.4)

where we used the completeness relation 
∫
T 2 dzdz̄ |z〉 〈z| = 1. As we calculated in the previous 

section, the state (ÛZN
)x |j/M〉 can be represented as a linear combination of the states on T 2
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(ÛZN
)x
∣∣∣∣

j

M

〉
=

M−1∑

m=0

D
(ωx)
jm

∣∣∣∣
m

M

〉
. (5.5)

Then, from the orthonormality relation 〈 k
M

| m
M

〉 = δk,m we can conclude that

C
(ωx)
jk = D

(ωx )
jk , (5.6)

where the concrete forms of D
(ωx)
jk are found in Eqs. (4.51), (4.66) and (4.80) in the T 2/Z3, 

T 2/Z4 and T 2/Z6 cases, respectively. Since we already obtained all the analytical forms of 

D
(ωx )
jk in the previous section, we are now able to express the following relation analytically by 

use of D
(ωx)
jk

f
(j+α1,ατ )

T 2,Ψ+,0

(
ωxz
)
=

M−1∑

k=0

D
(ωx)
jk f

(k+α1,ατ )

T 2,Ψ+,0
(z). (5.7)

We would like to note that the relation in Eq. (5.7) itself is interesting because it brings us lots 

of nontrivial formulas on the theta functions. By using the numerical calculation for C
(ωx)
jk in 

Eq. (5.3), we can easily check the validity of the relation Eq. (5.6).

Next, we try to see the correspondence in the orbifold cases directly. The wavefunctions on 

T 2/ZN can be shown in operator formalism by use of the projection operator P̂T 2/ZN ,η for the 

ZN eigenstate with eigenvalue η in Eq. (4.16)

f
(j+α1,ατ )

T 2/ZN ,Ψ+,0
(z)η =

〈
z

∣∣∣∣P̂T 2/ZN ,η

∣∣∣∣
j

M

〉
, (5.8)

and the kinetic matrix in Eq. (2.23) is rephrased as follows:

K
(ZN ;η)
jk =

∫

T 2

dzdz̄

〈
j

M

∣∣∣∣P̂T 2/ZN ,η

∣∣∣∣z
〉〈

z

∣∣∣∣P̂T 2/ZN ,η

∣∣∣∣
k

M

〉

=
〈

j

M

∣∣∣∣P̂T 2/ZN ,η

∣∣∣∣
k

M

〉

=
〈

j

M

∣∣∣∣
1

N

N−1∑

x=0

η̄x(ÛZN
)x
∣∣∣∣

k

M

〉

=
〈

j

M

∣∣∣∣
1

N

N−1∑

x=0

η̄x

M−1∑

s=0

D
(ωx)
ks

∣∣∣∣
s

M

〉

= M
(ZN ;η)
kj , (5.9)

where we used the completeness relation on z and the property of the projection operator, 

(P̂T 2/ZN ,η)
2 = P̂T 2/ZN ,η with Eq. (5.5). As shown in Eq. (5.9), all the materials of K

(ZN ;η)
jk

are analytically evaluated and then we can now check the consistency between the results of both 

the analyses by calculating the rank of K
(ZN ;η)
jk and form of the unitary matrix diagonalizing 

K
(ZN ;η)
jk . We already re-evaluated the numbers of independent zero-mode eigenstates in all the 

cases of T 2/Z2, T 2/Z3, T 2/Z4 and T 2/Z6 in Section 4 with every possible combination of the 
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Scherk–Schwarz phases. We then confirmed the agreement between the results of both the anal-

yses with exhausting the possibilities of three generations.12 All the results are totally consistent 

with the previous ones in Ref. [63] and they are summarized in Tables 1 to 8, where we skipped 

the T 2/Z2 because in this case, exact formulas are available in Ref. [63].

Finally, we show some specific examples of the correspondence. The first one is the T 2/Z6

case with M = 2 and (α1, α2) = (0, 0). In the Z6 orbifolding, we should consider linear combina-

tions of six terms and calculations requires lots of efforts. However, when we utilize the operator 

formalism on T 2/Z6, situations get to be very clear. We can explicitly evaluate the forms of the 

inner products 〈 j
M

|P̂T 2/Z6,η
| k
M

〉 (=K
(Z6;η)
jk = M

(Z6;η)
kj ) for all the cases of x by use of the results 

in Eq. (4.80) and Eq. (4.82). These concrete forms are

K
(Z6;ω0)
op =

(
1
6
(2 +

√
2e− iπ

12 +
√

2e
iπ
12 ) 1

6
(i

√
2e− iπ

12 +
√

2e
iπ
12 )

1
6
(
√

2e− iπ
12 − i

√
2e

iπ
12 ) 1

6
(2 − i

√
2e− iπ

12 + i
√

2e
iπ
12 )

)

≈
(

0.789 0.289 + 0.289i

0.289 − 0.289i 0.211

)
, (5.10)

K
(Z6;ω1)
op =

(
0 0

0 0

)
, (5.11)

K(Z6;ω2)
op =

(
1
6
(2 +

√
2e− 7iπ

12 +
√

2e
7iπ
12 ) 1

6
(
√

2e− 7iπ
12 + i

√
2e

7iπ
12 )

1
6
(−i

√
2e− 7iπ

12 +
√

2e
7iπ
12 ) 1

6
(2 + i

√
2e− 7iπ

12 − i
√

2e
7iπ
12 )

)

≈
(

0.211 −0.289 − 0.289i

−0.289 + 0.289i 0.789

)
, (5.12)

K(Z6;ω3)
op =

(
0 0

0 0

)
, (5.13)

K
(Z6;ω4)
op =

(
0 0

0 0

)
, (5.14)

K(Z6;ω5)
op =

(
0 0

0 0

)
, (5.15)

where the subscript “op” indicates that these matrices are evaluated in operator formalism ex-

plicitly. The above result means that there is no physical degree of freedom in the cases of 

η = ω1, ω3, ω4, ω5. For η = ω0, ω2, the unitary matrix U diagonalizing the “kinetic matrix” 

K(Z6;η) can be easily calculated,

U |x=0 =

⎛
⎝

4

√
1
6
(−2 −

√
3) − 4

√
1
6
(−2 +

√
3)

1√
3+

√
3

√
1
6
(3 +

√
3)

⎞
⎠ , (5.16)

U |x=2 =

⎛
⎝− 4

√
1
6
(−2 +

√
3) 4

√
1
6
(−2 −

√
3)√

1
6
(3 +

√
3) 1√

3+
√

3

⎞
⎠ . (5.17)

12 Situations are the same with the right-handed KK modes (in the case of M > 0) since all the discussions are valid 

irrespective of the KK number. We can consider the left-handed KK modes (without corresponding zero mode in the case 

of M > 0) with the help of the Dirac equation for KK fermionic states.
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After the manipulation U†K(Z6;η)U , the kinetic terms are suitably diagonalized as follows:

U†
K

(Z6;ω0)
op U =

(
1 0

0 0

)
, U†

K
(Z6;ω2)
op U =

(
1 0

0 0

)
. (5.18)

The two expressions clearly indicate that one mode is physical after the orbifolding in x = 0, 2.

Here, we comment on consistency with the numerical calculation with the explicit forms of 

the theta functions. By calculating Eq. (2.23) numerically with the theta functions in Eq. (2.11), 

we obtain the following corresponding results,

K
(Z6;ω0)
wf =

(
0.789 0.289 + 0.289i

0.289 − 0.289i 0.211

)
, (5.19)

K
(Z6;ω1)
wf =

(
0 0

0 0

)
, (5.20)

K
(Z6;ω2)
wf =

(
0.211 −0.289 − 0.289i

−0.289 + 0.289i 0.789

)
, (5.21)

K
(Z6;ω3)
wf =

(
0 0

0 0

)
, (5.22)

K
(Z6;ω4)
wf =

(
0 0

0 0

)
, (5.23)

K
(Z6;ω5)
wf =

(
0 0

0 0

)
, (5.24)

where the subscript “wf” is the counterpart of the subscript “op” in the numerical calculation 

with wavefunctions following the approach in Ref. [63]. We can conclude that they agree with 

each other within the error of the numerical computation as

K
(Z6;η)
op =K

(Z6;η)

wf for η = ω0,ω1, . . . ,ω5, (5.25)

and hence, the relation (5.9) is valid.

As the second example, we focus on the T 2/Z4 case with M = 2 and (α1, α2) = (0, 0)

since the analytical result was already discussed with the exact forms of the mode functions 

with theta functions as in Eq. (2.11) and some related mathematical relations, and their explicit 

forms are available in Appendix C of Ref. [63]. The explicit shapes of the kinetic matrix in 

η = ω0, ω1, ω2, ω3 are

K
(Z4;ω0)
op =

(
1
4
(2 +

√
2) 1

2
√

2
1

2
√

2

1
4
(2 −

√
2)

)
, (5.26)

K
(Z4;ω1)
op =

(
0 0

0 0

)
, (5.27)

K
(Z4;ω2)
op =

(
1
4
(2 −

√
2) − 1

2
√

2

− 1

2
√

2

1
4
(2 +

√
2)

)
, (5.28)

K
(Z4;ω3)
op =

(
0 0

0 0

)
. (5.29)

Apparently, physical modes survive only in the cases η = ω0, ω2. Each unitary matrix for diago-

nalizing the kinetic matrix takes the following form:
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U |x=0 =

⎛
⎝

√
2+

√
2

2
− 1

2

√
2 −

√
2

1√
2(2+

√
2)

1√
4−2

√
2

⎞
⎠ , (5.30)

U |x=2 =

⎛
⎝− 1

2

√
2 −

√
2

√
2+

√
2

2
1√

4−2
√

2

1√
2(2+

√
2)

⎞
⎠ , (5.31)

and the diagonalized kinetic terms are calculated as

U†
K

(Z4;ω0)
op U =

(
1 0

0 0

)
, U†

K
(Z4;ω2)
op U =

(
1 0

0 0

)
. (5.32)

After evaluating the ratios of matrix elements of U as

U21|x=0

U11|x=0
=

√
2 − 1,

U21|x=2

U11|x=2
= −

√
2 − 1, (5.33)

these values should correspond to the ratios of coefficients in the construction with mode func-

tions on T 2 discussed in Ref. [63]. We can easily check that this statement is correct.

6. Summary and discussions

We have discussed an effective way for analyzing the system on the magnetized twisted orb-

ifolds in operator formalism, especially in the following complicated cases T 2/Z3, T 2/Z4, 

T 2/Z6. With the help of mathematical formulas, we have obtained the exact and analytical 

results which can be applicable for any larger values of the quantized magnetic flux M . The 

(non-diagonalized) kinetic terms are immediately generated via the formalism and the number 

of the surviving physical states are straightforwardly calculable in a rigorous manner by simply 

following usual procedures in linear algebra. We have checked and re-derived all the results in 

Ref. [63] based on huge numerical computations with ease analytically.

Based on the achievement in this paper, we can consider a few next directions. One is to 

construct actual (semi-)realistic models based on the magnetized twisted orbifolds of T 2/Z2, 

T 2/Z3, T 2/Z4 and T 2/Z6. Even in the simplest T 2/Z2 case, possibilities with nontrivial 

Scherk–Schwarz phases are not yet touched. Complex geometries would help us to generate 

the complicated nature of fermion flavor structure in the SM, and also to eliminate unwanted 

exotic states in the zero-mode sector. Here, we would like to emphasize that all the technical 

obstacles in analysis were removed by the formalism which we have discussed. It is also in-

teresting to study non-Abelian flavor symmetries appearing in T 2/ZN orbifolds with magnetic 

fluxes [23–28]. (See also [73].)

Another option is to analyze other geometries, e.g., magnetized twisted orbifolds based on 

higher-dimensional torus in operator formalism [34]. Our strategy which has been used in this 

paper is expected to be valid in such much more complicated cases. “Dualities” between anal-

yses with wavefunctions and operator formalism are quite interesting since we can excavate 

mathematical relations like in Eqs. (5.3) and (5.6). Such a study can be a fascinating theme in 

mathematical physics.
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Appendix A. Large gauge transformation in operator formalism

Based on the knowledge obtained in Section 3, we reconsider the quantum mechanical system 

on T 2/ZN as

Ĥ |ψ〉 = E |ψ〉 , eiT̂a |ψ〉 = e2πiαa |ψ〉 (a = 1,2), (A.1)

where the Hamiltonian Ĥ and the operator T̂a describing the constraints on the state on T 2/ZN , 

|ψ〉, are given as

Ĥ =
(

p̂+
q

2
Ω(̂y + a)

)2

, T̂a = uT
a

(
p̂+

q

2
ΩT(̂y + a)

)
, (A.2)

where the gauge-fixing is already done as in Eq. (3.12). α1 and α2 represent the Scherk–Schwarz 

phases in the original coordinate.

When we examine the gauge transformation,

ψ(y) = e−i
q
2 yT(Ωa)ψ ′(y), 〈y |ψ〉 = ψ(y), (A.3)

the Schrödinger equation (3.1) and the pseudo-periodic boundary condition (3.6) are modified as

(
−i∇ +

q

2
Ωy

)2

ψ ′(y) = Eψ ′(y), (A.4)

ψ ′(y + ua) = e−i
q
2 (y+0)TΩua+2πiαa−iqaTΩuaψ ′(y)

=: e−i
q
2 (y+0)TΩua+2πiα′

aψ ′(y) for a = 1,2, (A.5)

and the forms of the operators Ĥ and T̂a get morphed as follows:

Ĥ → Ĥ ′ =
(

p̂ +
q

2
Ω ŷ

)2

, T̂a → T̂ ′
a = uT

a

(
p̂ +

q

2
ΩTŷ

)
, (A.6)

where the Wilson line phases are gauged away from the Hamiltonian Ĥ ′ and the translational op-

erators T̂ ′
a . Besides, due to the modification in the operators T̂ ′

a , the values of the Scherk–Schwarz 

phases in the gauge-transformed system α′
1 and α′

2 turn out to be

2πα′
a = 2παa − qaTΩua, mod 2π. (A.7)

The above expression is equivalent to the following expression:

{
2πα′

1 = 2πα1 + 2πMa2,

2πα′
2 = 2πα2 − 2πMa1,

for T 2/Z2,
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⎧
⎪⎪⎨
⎪⎪⎩

2πα′
1 = 2πα1 +

2π

sin(2π/N)
Ma2,

2πα′
2 = 2πα2 −

2π

sin(2π/N)

(
Ma1 sin(2π/N) − Ma2 cos(2π/N)

)
,

for T 2/ZN (N = 3,4,6), (A.8)

where we used the choices of u1 = (1, 0)T, u2 = (0, 1)T for N = 2 and u1 = (1, 0)T, u2 =
(cos(2π/N), sin(2π/N))T for N = 3, 4, 6, respectively. We also used

Ω =
2πM

q sin(2π/N)

(
0 1

−1 0

)
, (A.9)

which is obtained from Eq. (3.7) with M := Q12.

Here, we understand that the Wilson line phases and the Scherk–Schwarz phases are corre-

lated under the large gauge transformation and not independent degrees of freedom. Now, we 

conclude that we can take

a = 0, (A.10)

without any loss of generality.

When we take αa = 0, we can see the correspondence in a direct way. Thus, from Eq. (A.8), 

the following relations should hold

Z2 case: Ma1 = −α′
2, Ma2 = α′

1, (A.11)

ZN case: Ma1 = α′
1 cos(2π/N) − α′

2, Ma2 = α′
1 sin(2π/N) (N = 3,4,6), (A.12)

or

Z2 case: Ma1 = −α′
2, Ma2 = α′

1, (A.13)

Z3 case: Ma1 = −
3

2
α′, Ma2 =

√
3

2
α′, (A.14)

Z4 case: Ma1 = −α′, Ma2 = α′, (A.15)

Z6 case: Ma1 = −
1

2
α′, Ma2 =

√
3

2
α′. (A.16)

As we discussed in Section 4 in the system with a = 0, the two Scherk–Schwarz phases should 

take the same value α′ := α′
1 = α′

2 on T 2/Z3, T 2/Z4 and T 2/Z6. After we reflect on the fact that 

α′
1 and α′

2 have the period 1, we check that the differences of the allowed values of M(a1, a2)

correspond to the positions of the fixed points of T 2/ZN , which strongly indicate that the number 

of the allowed Scherk–Schwarz phases is connected to the number of the fixed points:

Z2 case: M(a1, a2) = (0,0)
(
α′

1 = 0, α′
2 = 0

)

= (1/2,0)
(
α′

1 = 1/2, α′
2 = 0

)

= (0,1/2)
(
α′

1 = 0, α′
2 = 1/2

)

= (1/2,1/2)
(
α′

1 = 1/2, α′
2 = 1/2

)
, (A.17)

Z3 case: M(a1, a2) = (0,0)
(
M: even, α′ = 0

)

= (1/2,
√

3/6)
(
M: even, α′ = 2/6

)

= (0,
√

3/3)
(
M: even, α′ = 4/6

)
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= (3/4,
√

3/12)
(
M: odd, α′ = 1/6

)

= (1/4,
√

3/4)
(
M: odd, α′ = 3/6

)

= (−1/4,5
√

3/12)
(
M: odd α′ = 5/6

)
, (A.18)

Z4 case: M(a1, a2) = (0,0)
(
α′ = 0

)

= (1/2,1/2)
(
α′ = 1/2

)
, (A.19)

Z6 case: M(a1, a2) = (0,0)
(
M: even, α′ = 0

)

= (3/4,
√

3/4)
(
M: odd, α′ = 1/2

)
. (A.20)

Note that the results are totally consistent with those in Ref. [63] with wavefunctions.

Appendix B. Derivation of formulas

B.1. Eq. (4.48)

In this part, we derive the formula (4.48)

I±(t, β) :=
M−1∑

s=0

e−πi
(s+t±β)2

M =
√

Me− 1
4 πi for t ∈ Z,

β =
{

0 for M: even,
1
2

for M: odd,
(B.1)

where M is a positive integer and the resultant form is independent of t , β and the sign in front 

of β . First, we show the relation I±(t, β) = I±(0, β), which implies the independence of t .

I±(t, β) =
M−1+t∑

s′=t

e−πi
(s′±β)2

M
(
s′ := s + t

)

=

[
M−1∑

s′=t

+
M−1+t∑

s′=M

]
e−πi

(s′±β)2

M

=
M−1∑

s′=t

e−πi
(s′±β)2

M +
t−1∑

s′′=0

e−i π
M

[(s′±β)2+M(M±2β+2s′′)] (
s′′ := s′ − M

)
. (B.2)

After noticing that M±2β is always an even integer, we can justify the manipulation,

e−i π
M

[M(M±2β+2s′′)] = e−iπ(M±2β+2s′′) → 1. (B.3)

Then, the following result is obtained

I±(t, β) =

[
M−1∑

s′=t

+
t−1∑

s′=0

]
e−πi

(s′±β)2

M =
M−1∑

s=0

e−πi
(s±β)2

M = I±(0, β). (B.4)

From now on, we can set t = 0 without loss of generality and examine the β = 0 (M is even) and 

β = 1/2 (M is odd) separately.

The former case (β = 0) is evaluated straightforwardly. Using the periodicity of the exponen-

tial functions (when M is even), the following deformation is realized
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I±(0,0) =
1

2

[
M−1∑

k=0

e−πi k2

M +
2M−1∑

k=M

e−πi
(k−M)2

M

]

=
1

2

[
M−1∑

k=0

+
2M−1∑

k=M

]
e−πi k2

M

=
1

2

N−1∑

k=0

e−2πi k2

N (N := 2M). (B.5)

After using the mathematical relation, which is proved in the next subsection,

N−1∑

s=0

e−2πi s2

N =
√

N

2
e− 1

4 πi
(
1 + e

N
2 πi
)

(N ∈N), (B.6)

we can reach the final form,

I±(0,0) =
1

2

√
Me− 1

4 πi
(
1 + eMπi

)
=

√
Me− 1

4 πi, (B.7)

where M is even and then eMπi = 1.

In the latter case (β = 1/2) is somewhat complicated. By use of the fact that 2M is even, the 

following deformation is possible,

I+

(
0,

1

2

)
=

1

2

N−1∑

s=0

e−2πi
(2s+1)2

4N (N := 2M)

=
1

2

2N−1∑

k=+1,
k:odd

e−2πi k2

4N (k := 2s + 1)

=
1

2

{[
2N−1∑

k=+1

−
2N−1∑

k=+1,
k:even

]
e−2πi k2

4N

}

=
1

2

{[
2N−1∑

k=0

−
2N−1∑

k=0,
k:even

]
e−2πi k2

4N

}

=
1

2

{
2N−1∑

k=0

e−2πi k2

4N −
N−1∑

l=0

e−2πi l2

N

} (
l :=

k

2

)
, (B.8)

I−

(
0,

1

2

)
=

1

2

N−1∑

s=0

e−2πi
(2s−1)2

4N (N := 2M)

=
1

2

2N−3∑

k=−1,
k:odd

e−2πi k2

4N (k := 2s − 1)

=
1

2

{[
2N−1∑

k=−1

−
2N−1∑

k=−1,
k: even

]
e−2πi k2

4N − e−2πi
(2N−1)2

4N

}
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=
1

2

{[
2N−1∑

k=0

e−2πi k2

4N + e−2πi
(−1)2

4N

]

−
2N−2∑

k=0,
k: even

e−2πi k2

4N − e−2πi 1
4N

[4N(N−1)+1]
}

=
1

2

{
2N−1∑

k=0

e−2πi k2

4N −
N−1∑

l=0

e−2πi l2

N

} (
l :=

k

2

)
, (B.9)

where the two final forms get to be the same. Here, the second term of the last line of Eq. (B.8)

or (B.9) can be calculated with the help of the formula in Eq. (B.6). The first term of the last line 

in Eq. (B.8) or (B.9) needs additional transformations to be evaluated,

2N−1∑

k=0

e−2πi k2

4N =
1

2

[
2N−1∑

k=0

e−2πi k2

4N +
4N−1∑

k=2N

e−2πi
(k−2N)2

4N

]

=
1

2

[
2N−1∑

k=0

e−2πi k2

4N +
4N−1∑

k=2N

e−2πi
(k2+4N(N−k))

4N

]

=
1

2

[
2N−1∑

k=0

+
4N−1∑

k=2N

]
e−2πi k2

4N

=
1

2

4N−1∑

k=0

e−2πi k2

4N , (B.10)

in which the final form is applicable for the formula in Eq. (B.6). Now, we can show the final 

result as

I±

(
0,

1

2

)
=

1

4

√
4Me− 1

4 πi
(
1 + e4Mπi

)
−

1

2

√
Me− 1

4 πi
(
1 + eMπi

)

=
√

Me− 1
4 πi, (B.11)

where we use the oddness of M as e4Mπi = 1, eMπi = −1.

B.2. Eq. (B.6)

In this part, we prove an essential formula in the previous subsection. Firstly, we consider the 

following function with a positive integer M ,

F(z) =
e2πiz2/M

e2πiz − 1
, (B.12)

where it contains the shift properties,

F(z + M) = e4πizF(z),

F (z + M) − F(z) = e2πiz2/M+2πiz + e2πiz2/M . (B.13)

The integral contour is considered in Fig. B.1, which consists of four paths C1, C2, C3 and C4

with the condition on θ of 0 < θ < π/4. Here, we set a /∈ Z to avoid poles of F(z).
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Fig. B.1. A description for the integral contour consisting of four paths C1 , C2, C3 and C4 with the condition on θ of 

0 < θ < π/4.

The complex integrals on C2 and C4 can be ignored in the limit Λ → ∞ since F(z) gets to 

be zero in this limit (when 0 < θ < π/4), and then the remaining integrals are

I (Λ) :=
∫

C1

dzF (z) +
∫

C3

dzF (z) =
Λ∫

−Λ

dreiθ
[
F
(
M + a + reiθ

)
− F

(
a + reiθ

)]
. (B.14)

After using the shift properties in Eq. (B.13), we obtain

I (Λ) =
Λ∫

−Λ

dreiθ
[
e2πi(a+reiθ )2/M+2πi(a+reiθ ) + e2πi(a+reiθ )2/M

]
. (B.15)

When we take a notice of sin 2θ/M > 0, changing variable from r to x := (reiθ + a)eπi/4 is 

available to perform the integration I (Λ). Also, we can use generalized Fresnel integrals,

∞∫

0

dxe−(b2 cot φ)x2

cos
(
b2x2

)
=

√
π

2b

√
sinφ cos(φ/2), (B.16)

∞∫

0

dxe−(b2 cot φ)x2

sin
(
b2x2

)
=

√
π

2b

√
sinφ sin(φ/2), (B.17)

where b > 0 and 0 < φ < π/2.

The limiting value

I (Λ → ∞) =
√

Mπ

2π
eiπ/4−iπM/2 +

√
Mπ

2π
eiπ/4 (B.18)

is independent of a. Since the poles of F in the contour are located in z = [a] + 1, . . . , [a] + M , 

we use the residue theorem on complex integral,

1

2πi

[a]+M∑

k=[a]+1

(2πi)e2πik2/M =
√

Mπ

2π
eiπ/4−iπM/2 +

√
Mπ

2π
eiπ/4. (B.19)
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Here, the right-hand side of Eq. (B.19) is independent of a and still, e2πi([a]+M+1)2/M =
e2πi([a]+1)2/M . When we set a in the range of −1 < a < 0, the following sum formula can be 

derived,

M−1∑

k=0

e2πik2/M =
√

M

2
eiπ/4−iπM/2 +

√
M

2
eiπ/4 =

√
M

2
eiπ/4

(
1 + e−πiM/2

)
, (B.20)

which is just (complex-conjugated) what we would like to show.
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