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Abstract

We propose an exact calculation of the probability density function (PDF) and cumulative distribution function (CDF)
of mutual information (MI) for a two-user multiple-input multiple-output (MIMO) multiple access channel (MAC)
network over block Rayleigh fading channels. This scenario can be found in the uplink channel of MIMO
non-orthogonal multiple access (NOMA) system, a promising multiple access technique for 5G networks. So far, the
PDF and CDF have been numerically evaluated since MI depends on the quotient of two Wishart matrices, and no
closed form for this quotient was available. We derive exact results for the PDF and CDF of extreme (the smallest/the
largest) eigenvalues. Based on the results of quotient ensemble, the exact calculation for PDF and CDF of mutual
information is presented via Laplace transform approach and by direct integration of joint PDF of quotient ensemble’s
eigenvalues. Furthermore, our derivations also provide the parameters to apply the Gaussian approximation method,
which is comparatively easier to implement. We show that approximation matches the exact results remarkably well
for outage probability, i.e., CDF, above 10%. However, the approximation could also be used for 1% outage probability
with a relatively small error. We apply the derived expressions to investigate the effects of adding antennas in the
receiver and its ability to decode the weak user signal. By supposing no channel knowledge at transmitters and
successive decoding at receiver, the capacity of the weak user increases and its outage probability decreases with the
increment of extra antennas at the receiver end.

Keywords: Multiple access channel, Multiple-input multiple-output, Non-orthogonal multiple access, Mutual
information, Outage probability, Rayleigh fading, Wishart matrices, Quotient ensemble, Extreme eigenvalues, Gap
probabilities

1 Introduction
It is now well acknowledged that the use of multiple-input
multiple-output (MIMO) scheme is crucial to increase
the capacity and reliability of wireless systems. MIMO
setup provides several benefits such as higher received
power via beamforming, higher channel capacity via spa-
tial multiplexing without increasing bandwidth or trans-
mission power, and improved transmission robustness via
diversity coding [1]. Current cellular systems such as 4G
Long-TermEvolution (LTE) are usingMIMO, and the next
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generation system such as 5G considers the deployment
terminal with dozens of antennas, the so-called massive
MIMO. A new scheme called non-orthogonal multiple
access (NOMA) has been considered as a potential solu-
tion to improve the system capacity of future wireless
systems due to its superior spectral efficiency [2, 3]. The
basic principle of NOMA is to serve multiple users by
power domain multiplexing at transmitter and succes-
sive interference cancellation (SIC) at receiver, which can
achieve the capacity region of the downlink addictive
white Gaussian noise channel and significantly outper-
form the orthogonal multiple access (OMA) schemes [3].
In this paper, we derive exact expressions to obtain

the distribution and the outage probability of the mutual
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information for a two-user MIMO multiple-access chan-
nel (MAC). To the best of our knowledge, no exact
expressions were derived before, under the following
assumptions: channel state information at receiver (CSIR),
block Rayleigh fading channel, and successive decoding
[4]. The main difficulty to derive exact expressions for
this scenario is that the mutual information is a random
variable that depends on the quotient of two Wishart
matrices [5]. The recent exact analysis of quotient ensem-
ble involvingWishart matrices led to the availability of the
corresponding joint probability density function (JPDF)
of the eigenvalues [6]. This opened the possibility to
describe, in an exact manner, the behavior of the mutual
information in a scenario such as MIMO NOMA uplink.
Therefore, we derive the exact expressions related to the
mutual information that allows, for example, the analy-
sis of the impact of adding more antennas at the base
station on the performance of network. In addition, we
also present, for the first time in literature, the probability
distributions and densities of extreme eigenvalues of the
quotient ensemble.
We emphasize that the scenario proposed here is of

practical interest since when there is no channel state
information at the transmitter (CSIT), then the transmit-
ter encodes its messages with a fixed rate (fixed power)
[1, 7]. However, under the slow-fading scenario with
Rayleigh distribution, the signal transmitted could not be
properly decoded at the receiver. In this case, an outage
event occurs [1]. Our aim here, is to track the outage
probability based on the message rate, on the number of
antennas at all nodes, and the signal power. The proposed
two-user scenario appears in existing studies for the
implementation of NOMA, which has been suggested as
a possible solution to pair two users whose channel condi-
tions are very different [8]. We assume a SIC scenario [4],
where the first user to be decoded is affected for the signal
of the second user (that experiences an interference-free
scenario), and therefore called weak user in NOMA nota-
tion. Here, we focus on the mutual information distribu-
tion of the weak user.With our results, we can quantify the
performance improvement achieved with extra power or
antennas.

1.1 Related works
The possible application of MIMO in wireless systems
probably gained much more attention after Telatar’s
canonical work [9]. Telatar has shown that the capacity
of a MIMO system is directly related to the realizations
of the random channel matrix. These realizations are
characterized by the probability density function (PDF).
However, since the matrix dimensions grow as the num-
ber of antennas in the system increases, evaluation of the
capacity is not a straightforward task. One key contribu-
tion of Telatar’s work was to use random matrix theory

(RMT) to show that instead of working with the matrix
PDF, the distribution of the mutual information could be
accessed just by using the JPDF of the matrix eigenval-
ues. This is possible because of the invariant nature of
the mutual information expression under unitary conju-
gation. Wang and Giannakis [10] showed that the mutual
information could be well approximated by a Gaussian
distribution, therefore, generating a Gaussian approxima-
tion (GA). Since a Gaussian distribution is fully charac-
terized by its mean and variance, the problem reduces
to working out these two parameters. The calculation of
mean of mutual information yields the ergodic capacity,
while the Gaussian approximation of mutual information
can be used to obtain the outage probability.
The case of a single-user MIMO channel has been

extensively studied. In [11], a closed-form expression for
ergodic capacity was derived for any number of trans-
mit and receive antennas for Rayleigh fading. The exact
distribution of mutual information was presented in [12]
for dual MIMO systems under Rician fading. In [13], the
MIMO channel capacity over the Hoyt fading channel
was presented. In [14], a random matrix model for the
Nakagami-q (Hoyt) fading MIMO communication chan-
nels with arbitrary number of transmitting and receiving
antennas is considered. The Gaussian approximation was
investigated in [15] for the Rician fading channel in the
asymptotic regime of large number of transmitting and
receiving antennas. In [16], the authors showed that Gaus-
sian approximation remains quite robust even for large
signal-to-noise ratio (SNR) for the case of unequal num-
bers of transmitting and receiving antenna arrays, while it
deviates strongly from the exact result for equal number
of antenna arrays. Beside the single-user scenario, MIMO
systems have been studied in a variety of multi-user
networks such as Broadcast Channel (BC), Interference
Channel (IC), MAC, and Relay Channel. Earlier, much
effort was devoted to extend the already known results for
single-antenna case to the MIMO case [7]. Recent works
are investigating how multiple antennas can be utilized to
reduce interference in multi-user scenarios [17].
Although much investigation has been conducted to

determine the capacity region and ergodic capacity of
MIMO MAC network, only a few works have focused on
the determination of outage probability for this channel.
The authors in [17], assuming correlated Rayleigh fading
in a multiuser MIMO beamforming network with chan-
nel distribution information (CDI), derived a closed-form
expression for the outage probability. This expression was
used to create algorithms for joint transmit/receive beam-
forming and power control to minimize the weighted
sum power in the network while guaranteeing this out-
age probability. In [18], the authors derived closed-form
expressions for outage probability in MIMO IC under
the assumption of Gaussian-distributed CSI error and
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derived the asymptotic behavior of the outage probability
as a function of several system parameters based on the
Chernoff bound. In [19], the authors compared the per-
formance in terms of capacity and maximum throughput,
of a BC multiuser MIMO system and a MIMO time-
division multiple-access (TDMA) MIMO system. Their
key assumption is that the number of transmit antennas
is much larger than the number of receive antennas at
each user and complete knowledge of the CSIT. In [20],
the authors analyzed asymptotic weighted sum rate maxi-
mization in theMIMOMAC. In [21], the authors propose
an iterative algorithm to design optimal linear transmit-
ters and receivers in a K-user frequency-flat MIMO IC
with channel state information at the transmitter and
receiver (CSITR).
Recently, many efforts have been conducted to inves-

tigate the application of MIMO techniques to NOMA
systems, as a possibility to enhance the performance gains
of NOMA. In [22], a novel MIMO-NOMA framework
for downlink and uplink transmission is proposed by
applying the concept of signal alignment. Closed-form
analytical results are developed to facilitate the perfor-
mance evaluation of the proposed framework. The impact
of fixed power allocation and cognitive radio inspired
power allocation on the performance of MIMO-NOMA
is also investigated. In [3], the ergodic capacity maxi-
mization problem is first studied for the Rayleigh fad-
ing MIMO-NOMA systems with statistical CSIT. The
authors propose both optimal and low complexity subop-
timal power allocation schemes to maximize the ergodic
capacity of MIMO-NOMA system with total transmit
power constraint and minimum rate constraint of the
weak user. Numerical results show that the proposed
NOMA schemes significantly outperform the traditional
OMA scheme. A new design of precoding and detec-
tion matrices for MIMO-NOMA is proposed, in [23],
and its performance is analyzed for the case with a fixed
set of power allocation coefficients. Computer simulation
results are provided to facilitate the performance evalua-
tion of MIMO-NOMA and also demonstrate the accuracy
of the developed analytical results. A Pseudo Double Scat-
tering Channel (PDSC)Matrix assumption is proposed, in
[24], for the downlink NOMA within the massive MIMO
systems. Afterwards, the CDF and the outage probability
of such a system are investigated with the aid of random
matrix and statistics theories. The derivations obtained
are verified through numerical simulations. The authors
find out that with the increase of the number of anten-
nas, the outage probability is reduced. In [25], for single-
antenna case, the authors analyze the outage capacities of
SIC and Joint Decoding (JD) in the case of single-block
transmission over a two-user Gaussian MAC with partial
CSIT. Results show that JD can achieve a sum-rate gain of
up to 10% or sum-power gain of 0.8 dB.

1.2 On the paper contributions
The key contributions of this paper are to obtain exact
results for the cumulative distribution function (CDF) and
PDF of (i) the extreme eigenvalues of the quotient ensem-
ble comprising twoWishartmatrices and (ii) mutual infor-
mation for the case when it is a random variable and again
depends on the quotient of two Wishart matrices. As we
show in Section 2, both the PDF and CDF of mutual infor-
mation could be written as a function of JPDF, as in the
single-user case. We invoke the closed form of JPDF of
eigenvalues for the quotient ensemble derived in [6] in
Section 3. In Section 4, we derive, for the first time in lit-
erature, closed-form expressions of CDF and PDF for the
extreme eigenvalues that can be further explored to calcu-
late the outage probability in beamforming scenario [24].
With the aid of JPDF, we propose two different methods
in Section 5 to derive the exact expressions for PDF and
CDF of the mutual information. The first one relies on
direct integration of the JPDF, while the second one is to
use Laplace transform approach.
Although the exact expressions for PDF and CDF of

the mutual information involve integrals, they provide
analytical exact results. Besides the two exact solutions
indicated above, we also present in Section 5 the means
to obtain the mean and variance of mutual information
using two approaches. The first one is based on employing
the Laplace transform of mutual information as moment-
generating function. The second one, on the other hand,
uses the first- and the second-order marginal densities
(one-point and two-point correlation functions, respec-
tively) of the eigenvalues of the quotient ensemble. With
these parameters, we also obtain the Gaussian approxima-
tion that is straightforward to use and matches the exact
results.
Finally, we use the above derivations to analyze the out-

age probability for a two-user MIMO MAC in a low-SNR
scenario. The numerical results show that increasing the
number of antennas at the base station decreases the out-
age probability for the weak user signal. The results are
evaluated in Section 6, where Monte Carlo simulations
show perfect agreement with all our analytical expres-
sions. We characterize the possible outage values where
the Gaussian approximation matches the exact results
extremely well.

2 Systemmodel, mutual information probability,
and density and outage probability

In this section, we first describe the system model under
consideration–the two-userMIMOMAC, a common net-
work that usually appears in the uplink of a cellular-type
system [7]. To understand how much information this
two-user MIMO MAC could convey, we need to char-
acterize its mutual information. Since the mutual infor-
mation is a random variable that depends on realizations
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of the channel matrix, our goal here is to express the
mutual information PDF as a function of channel matri-
ces’ eigenvalues, which reduces the complexity of the
problem. Afterwards, we define the outage probability,
that is the mutual information CDF and our main metric
to analyze the performance of the two-user MIMOMAC.
These expressions are the starting point to derive the exact
results proposed in this work.

2.1 Systemmodel
Consider the two-user MIMO MAC network depicted in
Fig. 1. The base station (BS) has n receiving antennas and
each of the users’ equipment or mobile stations has ni,
i = A, B, transmitting antennas. We assume that ni ≥ n,
following the same assumption made in [8], where ni ≥
n/2.
The users transmit ui ∈ Cni×1, that is circularly sym-

metric complex Gaussian vector with zero-mean and pos-
itive definite covariance matrices Qi. Users are subject to
an individual power constraint of tr(Qi) ≤ ni, where tr(·)
is the trace of a matrix. Let v ∈ Cn×1 denote the received
signal at BS. The w ∈ Cn×1 is the noise vector circularly
symmetric complex Gaussian with zero-mean and covari-
ance matrix In, where In is the n × n identity matrix. The
n×ni dimensional channel matrix is denoted byHi, and its
entries are independent and identically distributed (i.i.d.)
complex Gaussian random variables with zero-mean and
unit variance. Therefore,Hi is governed by the probability
density

pH(Hi) ∝ e−trHiH†
i . (1)

Fig. 1 System model of two-user MIMO MAC network. Mobile
stations A and B have ni , i = A, B, transmitting antennas, respectively.
The base station has n receiving antennas. The random channel gain
matrix of each user is represented by Hi

Here, † denotes the conjugate transpose. The received
signal at BS is given by

v = √
aHAuA + √

bHBuB + w, (2)

where “a = SNRA/nA and b = SNRB/nB, and SNRi
are the normalized power ratios of ui to the noise (after
fading) at each receiver antenna of BS” as stated in [26].

2.2 Mutual information
The BS wishes to recover ui from v. Since ui and v are ran-
dom variables, we use the mutual information to measure
how much information BS is able to recover. Then, the
MIMO MAC capacity region, assuming SIC decoding, is
given in terms of mutual information ofA and B as [3, 4, 7]

IA = log2 [det (In + A + B)] − IB
= log2

[
det

(
In + (In + B)−1A

)]
, (3)

and

IB = log2 [det (In + B)] , (4)

where A = aHAH†
A, B = bHBH†

B, and det(·) is the
determinant of a square matrix. We note that the positive
definite matrices A and B are fromWishart distributions:

pA(A) ∝ det(A)nA−ne−a−1trA,

pB(B) ∝ det(B)nB−ne−b−1trB.
(5)

As determinant is invariant under unitary transforma-
tion, applying a procedure similar to that in [9], we can
rewrite (3) as function of the eigenvalues λj, j = 1, . . . , n
of the n × n complex matrixW as

IA = log2 det (In + W) =
n∑

j=1
log2(1 + λj), (6)

where

W = (In+B)−1A =
(
In + bHBH†

B

)−1 (
aHAH†

A

)
. (7)

Note that we have assumed, without loss of generality,
that BS decodes A’s signal first and then B’s signal. In this
case, the rate of A is affected by the interference caused by
B’s signal, which does not happen with B [4]. In this case,
(4) is themutual information of a single-userMIMO chan-
nel and is characterized in [9, 10]. On the other side, the
mutual information for the MIMO MAC sum-rate given
by (IA + IB) has its PDF and CDF approximated in [27],
and its mean exactly characterized in [28].
Therefore, in this work, we focus on the distribution

and outage of mutual information of user A given in (6),
that is known as the weak user in MIMO NOMA system
notation [3].
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2.3 Outage probability and outage rate
Now, we characterize the outage probability and outage
rate, the metrics we chose to analyze the performance of
the MIMOMAC network.
We consider in this work, the slow-fading scenario. In

slow fading, with no CSIT, the transmitter encodes ui with
a fixed rate R bits/s/Hz. An outage event could happen
when the channel gain is too low for ui to be recovered [1].
The probability of occurrence of an outage event is known
as outage probability and is given by ([4], Eq. (5.54)):

pout(R) = Pr {IA < R}
= Pr

{
log2 [det (In + W)] < R

}
. (8)

The outage rate is defined in [10] as the rate R for which
the outage probability is at the given level ε:

Rout = argR[ pout(R) = ε] . (9)

In other words, the outage rate is the rate conveyed
subject to outage probability equal to ε [1].
Since working with W is not straightforward because

the number of integrals is related with the number ofW’s
entries, we adopt similar procedure from [9] and rewrite
(8) as a function of the eigenvalues ofW. Then, the outage
probability is given by

pout(R) = Pr
{( n∏

i=1

(
1 + λj

)
)

< 2R
}

(a)=
∫ ∞

0
· · ·
∫ ∞

0
�

⎛

⎝2R−
n∏

j=1

(
1 + λj

)
⎞

⎠P(λ1, . . . , λn) dλ1 . . . dλn

=
∫ ∞

0
· · ·
∫ ∞

0
�

⎛

⎝R−
n∑

j=1
log2

(
1+λj

)
⎞

⎠P(λ1,. . ., λn) dλ1. . .dλn,

(10)

where �(·) represents the Heaviside-theta function, with
�(x) = 0 for x < 0 and �(x) = 1 for x > 0, x ∈ R.
Note that (a) follows because the theta function ensures
that contribution to the probability comes only from the
region where

∏n
i=1(1 + λj) < 2R. Evidently, determining

the outage probability amounts to calculating the CDF of
the mutual information.
Finally, the PDF of mutual information is obtained by

differentiating (10) and is given by

p(IA) = dpout(x)
dx

∣
∣∣
∣x=IA =

∫ ∞

0
· · ·
∫ ∞

0
δ

×
⎛

⎝IA −
n∑

j=1
log2

(
1 + λj

)
⎞

⎠P(λ1, . . . , λn) dλ1 · · · dλn,
(11)

where δ(·) is the Dirac-delta function ([29], pg. 1029).
The expressions (10) and (11) are the formal solutions to

the outage probability and the density of mutual informa-
tion. In Section 4, we plug the JPDF in (10) and (11) and

present the final expressions. We also present an alterna-
tive form based on Laplace transform which is also exact
and represent an alternative in terms of computation time.
Finally, a Gaussian approximation is also presented. This
last solution provides a trade-off between accuracy and
time.

3 The quotient ensemble eigenvalues
distribution

In the previous section, we showed that the PDF and CDF
of mutual information depends on the JPDF P(λ1, . . . , λn)
ofW. In this section, we invoke the recently derived JPDF
P(λ1, . . . , λn) for a quotient comprising Wishart matrices
[6]. We link this result to the r-point correlation function.
Both the JPDF P(λ1, . . . , λn) of W and the r-point corre-
lation function will be used in the following sections to
derive our proposed expressions.
Consider the quotient ensemble of random matrices W

as defined in (7). The probability density of these n × n
dimensional complex matrices was recently derived in [6]:

pW (W) ∝e−a−1trW det(W)nA−n

× �
(
nB, nA + nB + n; (b−1In + a−1W)

)
.

(12)

Here, �(·) is the confluent hypergeometric function of
the second kind (Tricomi function) with matrix argument
[30]:

�(α, γ ;X) = 1
πn(n−1)/2∏n

j=1 
(α − j + 1)
∫

Y>0
e−tr(XY)|Y|α−n|I + Y|γ−α−n dY,

(13)

with Re(X) > 0, Re(α) > (n − 1) for convergence, and
Re(·) denotes the real part. It should be noted that the
integral in (13) is over the set of positive definite matrices
(Y > 0).
The JPDF P(λ1, . . . , λn) of eigenvalues of W exhibits a

biorthogonal structure of Borodin type [31] and is given
by [6]

P(λ1, . . . , λn) = Cn�n({λ})
n∏

i=1
e−λi/a λ

nA−n
i det

[
fj(λk)

]
j,k=1,...,n ,

(14)

where

�n({λ}) = det
[
λ
j−1
k

]

j,k=1,...,n
=
∏

j>k
(λj − λk), (15)

is the Vandermonde determinant, and

fj(λk) = U
(
nB − j + 1, nA + nB − j + 2;

1
b

+ λk
a

)

(16)

is in terms of the usual confluent hypergeometric function
U(·) of the second type (Tricomi function).1
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The normalization factor in (14), Cn, turns out to be

C−1
n = n! det[ hj,k]j,k=1,...,n

= n! annA−n(n−1)/2 bnnB
n∏

j=1

(j)
(nA − j + 1),

(17)

with

hj,k =
∫ ∞

0
e−λ/a λnA−n+k−1fj(λ) dλ

= anA−n+k
(nA − n + k)U
(
nB−j+1, nB+n − j−k + 2;

1
b

)
.

(18)

The r-point correlation function [32], (1 ≤ r ≤ n),
corresponding to (14) is given by [6]:

Rr(λ1, . . . , λr) = n!
(n − r)!

∫ ∞

0
· · ·
∫ ∞

0
P(λ1, . . . , λn) dλn · · · dλr+1

=(−1)rn!Cn

r∏

l=1
e−λl/a λ

nA−n
l det

⎡

⎢
⎣

0
[
λk−1
j

]
j=1,...,r
k=1,...,n

[ fj(λk)]j=1,...,n
k=1,...,r

[ hj,k] j=1,...,n
k=1,...,n

⎤

⎥
⎦,

(19)

where 0 represents a r × r block with all entries zero.
The one-point function R1(λ1) and the two-point func-

tion R2(λ1, λ2) will be useful in order to obtain the Gaus-
sian approximation. We note that the one-point function
is related to the marginal density as p1(λ) = R1(λ)/n,
while the two-point function gives the JPDF of two eigen-
values as p2(λ1, λ2) = R2(λ1, λ2)/(n(n − 1)).

4 Extreme eigenvalues statistics
Along with the mutual information PDF and CDF that
depends on the distribution of all n eigenvalues2 as shown
in (10) and (11), respectively, the distribution of the
extreme eigenvalues (the smallest/the largest) [33] also
serve as important metric for analyzing the performance
of MIMO systems [34–36].
In this section, we derive exact results for the distribu-

tions and densities of both the smallest eigenvalue (λmin)
and the largest eigenvalue (λmax) of the quotient ensem-
ble defined in (7). These are based on the general results
summarized in [37]. We first present exact results for the
gap probability which refers to the probability of finding
no eigenvalue in a given interval. These are then used to
obtain the densities of λmin and λmax.
The probability that there are no eigenvalues between 0

and x, or equivalently the probability that all eigenvalues
are greater than or equal to x is given by

E((0, x)) =
∫ ∞

x
· · ·
∫ ∞

x
P(λ1, . . . , λn) dλ1 . . . dλn.

(20)

On the other hand, we have

E((x,∞)) =
∫ x

0
· · ·
∫ x

0
P(λ1, . . . , λn) dλ1 . . . dλn, (21)

which gives the probability that there is no eigenvalue
between x and ∞, or equivalently that all eigenvalues are
less than or equal to x. Inserting the JPDF given in (14) in
the above equation and implementing Andréief ’s integra-
tion formula [38], at once, yield the result for the above
gap probabilities in the present case. We have

E((0, x)) = n! Cn det[χj,k((0, x))]j,k=1,...,n , (22)

with the kernel χj,k((0, x)) given by

χj,k((0, x)) =
∫ ∞

x
e−λ/a λnA−n+k−1fj(λ) dλ

= e−x/a
nA−n+k−1∑

r=0


(nA − n + k)

(nA − n + k − r)

ar+1xnA−n+k−r−1

× U
(
nB − j + 1, nA + nB − j − r + 1;

1
b

+ x
a

)
.

(23)

To obtain the finite-sum result in the second line above,
we used the transformation μ = λ − x, applied the bino-
mial expansion on the resulting factor (μ + x)nA−n+k−1,
and finally performed term by term integration overμ.We
note that for x → 0, χj,k((0, x)) reduces to hj,k as in (18).
In a similar way, we obtain

E((x,∞)) = n! Cn det[χj,k((x,∞)]j,k=1,...,n , (24)

where χj,k((x,∞) is given by

χj,k((x,∞))=
∫ x

0
e−λ/a λnA−n+k−1fj(λ) dλ=hj,k−χj,k((0, x)).

(25)

Now, since E((0, x)) gives the survival function3 (SF) or
reliability function of the λmin, it can be used to obtain the
corresponding PDF. It is given by

pλmin(x) =− d
dx

E((0, x)) = n!Cn

n∑

μ=1
det

[
φ

(μ)

j,k (x)
]

j,k=1,...,n
,

(26)

where

φ
(μ)

j,k (x) =
{
e−x/a xnA−n+k−1fj(x), j = μ,
χj,k((0, x)), j 	= μ. (27)

Similarly, E((x,∞)) is the CDF of the λmax, and hence
the PDF of λmax is obtained as

pλmax(x)=
d
dx

E((x,∞))=n! Cn

n∑

μ=1
det

[
ψ

(μ)

j,k (x)
]

j,k=1,...,n
,

(28)
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with

ψ
(μ)

j,k (x) =
{
e−x/a xnA−n+k−1fj(x), j = μ,
χj,k((x,∞)), j 	= μ. (29)

We show in Section 6 that the above exact expressions
agree perfectly with the Monte Carlo simulations.

5 Proposedmutual information exact density and
outage probability

In this section, we present two exact ways to obtain the
PDF and outage probability of mutual information. More-
over, the Gaussian approximation is also presented, since
it leads to reasonable results and is more straightforward
than the exact solutions.

5.1 Exact results based directly on JPDF
We first calculate the PDF of mutual information. For this,
we notice that one of the integrals in (11) can be easily per-
formed because of the Dirac-delta function. To see this,
we write (11) as

p(IA) =
∫ ∞

0
· · ·
∫ ∞

0
δ

(

log2
2IA

∏n
j=1(1 + λj)

)

× P(λ1, . . . , λn) dλ1 · · · dλn

= ln 2
∫ ∞

0
· · ·
∫ ∞

0
δ

(

λ1 + 1 − 2IA
∏n

j=2
(
1 + λj

)

)

× 2IA
∏n

j=2
(
1 + λj

)P(λ1, . . . , λn) dλ1 · · · dλn.

In the second line, we used the property δ(F(z)) = δ(z−
z0)/|F ′(z0)| for z = λ1, with z0 being the root of F(z) =
0. The λ1 integral can now be performed using the result∫∞
0 δ(z − z0)G(z) dz = G(z0)�(z0) to yield

p(IA) = ln 2
∫ ∞

0
· · ·
∫ ∞

0

2IA
∏n

j=2
(
1 + λj

) P
(

2IA
∏n

j=2
(
1 + λj

) − 1, λ2, . . . , λn

)

× �

⎛

⎝2IA −
n∏

j=2

(
1 + λj

)
⎞

⎠ dλn · · · dλ2

= ln2
∫ u2

0
· · ·
∫ un

0

2IA
∏n

j=2(1+λj)
P
(

2IA
∏n

j=2(1+λj)
−1, λ2, . . . , λn

)

dλn · · · dλ2,

(30)

where

uμ = 2IA(1 + λ2)∏μ
j=2(1 + λj)

− 1 = 2IA
∏μ−1

j=2 (1 + λj)
− 1.

It is to be noted that u2 = 2IA − 1. In the second line of
(30), we adjusted the integration limits of the variables in a
particular way to take care of the theta function constraint
in the first line. For instance, to take care of �(α − z1z2),
we can consider z2 < α/z1 for z1, z2,α > 0.

Special case (n = 2): We have ([39], Eq. 6.40)

p(IA) = ln 2
∫ 2IA−1

0

2IA
1 + λ2

P
(

2IA
1 + λ2

− 1, λ2
)

dλ2.

(31)

The outage probability can be written using (10) as

pout(R) =
∫ v1

0
· · ·
∫ vn

0
P (λ1, λ2, . . . , λn) dλn · · · dλ1,

(32)

where

vμ = 2R(1 + λ1)∏μ
j=1(1 + λj)

− 1 = 2R
∏μ−1

j=1 (1 + λj)
− 1.

In (32), we again adopted the strategy of modifying the
integration limits to take care of the theta function in (10).
Another possible expression for the outage probability,
using (30), can be written as

pout(R) =
∫ R

0
p(IA) dIA

= ln 2
∫ R

0

∫ u2

0
· · ·
∫ un

0

2IA
∏n

j=2(1 + λj)
P
(

2IA
∏n

j=2(1 + λj)
− 1, λ2, . . . , λn

)

× dλn · · · dλ2 dIA.
(33)

5.2 Exact results based on Laplace transform approach
The Laplace transform of p(IA) defined in (11) is given by

p̃(s) = L[ p(IA)] (s) =
∫ ∞

0
· · ·
∫ ∞

0

e−s
∑n

j=1 log2(1+λj)P(λ1, . . . , λn) dλ1 · · · dλn.
(34)

We note that

p̃(s) =
∫ ∞

0
e−sIAp(IA) dIA =

∞∑

k=0

(−1)ksk

k!
E
[
Ik
A

]
.

(35)

Thus, we see that the Laplace transform serves as the
moment-generating function (MGF) for IA, since the
moments of IA can be obtained using the coefficients of
powers of s in the series expansion of p̃(s). Using the JPDF
given in (14), we obtain

p̃(s)=Cn

∫ ∞

0
· · ·
∫ ∞

0
�({λ})

n∏

l=1
e−λl/aλnA−n

l (1+λl)
−(s/ ln 2) dλ1· · ·dλn

×det
[
U
(
nB−j+1, nA+nB−j+2;

1
b

+ λk
a

)]

j,k=1,...,n
,

(36)

where we used log2 z = ln z/ ln 2.
With the aid of Andréief ’s integration formula [38], the

above result can be immediately cast in the form of a
determinant
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p̃(s) = n! Cn det[ ηj,k(s)]j,k=1,...,n , (37)

where

ηj,k(s) =
∫ ∞

0
(1 + λ)−(s/ ln 2)λnA−n+k−1e−λ/a

× U
(
nB−j+1, nA+nB−j+2;

1
b

+ λ

a

)
dλ.

The density of IA follows by taking the inverse Laplace
of p̃(s),

p(IA) = L−1{̃p(s)}(IA). (38)

The outage probability follows by taking the inverse
Laplace of s−1p̃(s) [10],

pout(R) = L−1 {s−1p̃(s)
}
(R). (39)

With the above results, we may recover the densities by
performing numerical inversion of Laplace transform as in
[10]. However, we make further analytical progress below
to obtain an alternative expression for the PDF of mutual
information.
Special case (n = 1): Let us consider the n = 1 case. The

density of mutual information can be obtained from (11)
as

p(IA) = C1

∫ ∞

0
δ(IA − log2(1 + λ))e−λ/aλnA−1

× U
(
nB, nA + nB + 1;

1
b

+ λ

a

)
dλ.

This one-dimensional integral can be readily performed
because of the presence of Dirac-delta function and yields
the exact result for n = 1 as

p(IA) =a−nAb−nB


(nA)
(ln 2) 2IA (2IA − 1)nA−1

× exp
(

−2IA − 1
a

)

U
(

nB, nA + nB + 1;
1
b

+ 2IA − 1
a

)

.

(40)

Comparing (40) with (37) evaluated for n = 1, we arrive
at the following inverse Laplace transform identity:

L−1
[∫ ∞

0
λγ e−λ/a(1 + λ)−s/ ln 2 U

(
α,β ,

1
b

+ λ

a

)
dλ

]
(t) =

(ln 2)2texp
(

−
(
2t−1

)

a

)

(2t−1)γU
(
α,β ,

1
b

+ 2t − 1
a

)
.

With this interesting result in our hands, we can use the
convolution property of the Laplace transform and write
an expression for the PDF of mutual information for arbi-
trary n as a (n − 1) fold integral. To this end, we expand
the determinant in (37) and afterwards use the follow-
ing result for inverse Laplace transform of product of n

functions, which follows from the result for product of two
functions [40]

L−1 [̃F1(s)̃F2(s) · · · F̃n(s)
]
(x1) =

∫ x1

0

∫ x2

0
· · ·
∫ xn−1

0
F1(x1−x2)F2(x2−x3) · · · Fn−1(xn−1−xn)Fn(xn) dxn · · ·dx3 dx2,

(41)

where

L−1[ F̃j(s)] (t) = Fj(t), j = 1, . . . , n.

Therefore, with the help of (41) in (38), we obtain the
following expression:

p(IA) = n! Cn (ln 2)n 2x1
∫ x1

0

∫ x2

0
· · ·
∫ xn−1

0

∏

j>k
(2xj−xj+1 − 2xk−xk+1 )

×
n∏

j=1
(2xj−xj+1 − 1)nA−n exp

(

−
(
2xj−xj+1 −1

)

a

)

×U
(
nB−j+1, nA+nB−j+2;

1
b

+ 2xj−xj+1 −1
a

)

× dxn · · · dx3 dx2,
(42)

where x1 ≡ IA and xn+1 ≡ 0.
Special case (n = 2): We have the following explicit

result

p(IA) = a1−2nAb−2nB

(nA)
(nA−1)

(ln2)22IA

∫ IA

0
(2x−2IA−x)(2IA−x−1)nA−2(2x−1)nA−2

×exp
(

−(2IA−x+2x−2)
a

)

U
(

nB, nA+nB+1;
1
b

+ 2IA−x − 1
a

)

× U
(
nB − 1, nA + nB;

1
b

+ 2x − 1
a

)
dx.

(43)

The outage probability, which is the CDF of the mutual
information, can be written as the integral of (42) from 0
to R as

pout(R) =
∫ R

0
p(x1) dx1

= n!Cn(ln 2)n
∫ R

0

∫ x1

0

∫ x2

0
· · ·
∫ xn−1

0
2x1
∏

j>k
(2xj−xj+1 −2xk−xk+1 )

×
n∏

j=1
(2xj−xj+1 − 1)nA−n exp

(
− (2xj−xj+1 − 1)

a

)

× U
(
nB − j + 1, nA + nB − j + 2;

1
b

+ 2xj−xj+1 − 1
a

)

× dxn · · · dx3 dx2 dx1.
(44)

We should remark at this point that for the evaluation
of PDF and outage probability of IA, as far as number
of integrals is concerned, we have not gained anything.
However, the above exact expressions provide an alter-
native route to calculate these quantities compared to
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the expressions derived in the last subsection, where we
adopted the strategy of integrating the JPDF directly.

5.3 Gaussian approximation
The expressions for PDF and CDF presented above use
the JPDF of the eigenvalues or Laplace transform, which
involves the calculation of multiple integrals. A more
straightforward method is to use the Gaussian approxi-
mation that depends only on integrals involving up to two
eigenvalue densities.
The PDF of mutual information can be approximated by

a Gaussian distribution as [10]

p(IA) ≈ 1
√
2πσ 2

IA

exp
(

−
(
IA − μIA

)2

2σ 2
IA

)

. (45)

Correspondingly, the outage probability is given by

pout(R) ≈ 1
2
erfc

⎛

⎜
⎝

μIA − R
√
2σ 2

IA

⎞

⎟
⎠ , (46)

where erfc(·) represents the complementary error func-
tion.
We propose below two approaches to calculate the

mean and variance of the mutual information IA.

5.3.1 Laplace transform based
We can obtain an arbitrary moments of the mutual infor-
mation using the Laplace transform results (34) and (35)
as

E
[
Ik
A

]
= (−1)k

dkp̃(s)
dsk

|s=0; k = 0, 1, 2, . . . . (47)

In particular, the first moment (mean) and the second
moment are obtained by differentiating the determinant-
based expression in (34), and then setting s = 0. We find

μIA = E [IA] = −n! Cn

n∑

μ=1
det

[
η

(μ)

j,k

]

j,k=1,...,n
, (48)

E
[
I2
A
]=n! Cn

⎛

⎝
n∑

μ=1
det
[
ξ

(μ)

j,k

]

j,k=1,...,n
+2

∑

1≤μ<ν≤n
det
[
ξ

(μ,ν)

j,k

]

j,k=1,...,n

⎞

⎠.

(49)

Here,

η
(μ)

j,k =
{− ∫∞

0 log2(1+λ)λnA−n+k−1e−λ/afj(λ) dλ j = μ,
hj,k j 	= μ,

(50)

ξ
(μ)

j,k =
{∫∞

0 (log2(1+λ))2λnA−n+k−1e−λ/afj(λ) dλ j = μ,
hj,k j 	= μ,

(51)

ξ
(μ,ν)

j,k =
{−∫∞

0 log2(1+λ)λnA−n+k−1e−λ/afj(λ)dλ j =μ or ν,
hj,k j 	=μ.

(52)

Here, fj(λ) and hj,k are as in (16) and (18), respec-
tively. The variance of IA can be calculated as σ 2

IA =
E
[
I2
A(W)

]− (E [IA(W)])2. Using the mean and variance
of the mutual information in (45) and (46), we obtain the
approximations for the PDFs of the mutual information
and outage probability, respectively.

5.3.2 Correlation function based
Under this approach, we use the correlation function
expression (19) to obtain the mean and variance of the
mutual information. The μIA can be obtained by averag-
ing over the ensemble ofW as [9]

μIA = E [IA(W)]

= E

⎡

⎣
n∑

j=0
log2(1 + λj)

⎤

⎦

= nE
[
log2(1 + λ1)

]
,

and using the one-point function R1(λ1), this can be
written as

μIA =
∫ ∞

0
R1(λ1) log2(1 + λ1) dλ1. (53)

Similarly, the σ 2
IA can be obtained as [10]

σ 2
IA = E

[
I2
A(W)

]− (E [IA(W)])2

= E

⎡

⎢
⎣

⎛

⎝
n∑

j=1
log2(1 + λj)

⎞

⎠

2
⎤

⎥
⎦− μ2

IA

= E

⎡

⎣
n∑

j,k=1
log2(1 + λj) log2(1 + λk)

⎤

⎦− μ2
IA

= E

⎡

⎣
n∑

j=1
log22(1+λj) +

∑

j 	=k
log2(1 + λj) log2(1 + λk)

⎤

⎦−μ2
IA

= nE
[
log22(1+λ1)

]+n(n−1)E
[
log2(1+λ1)log2(1+λ2)

]−μ2
IA.

(54)

Therefore, with the aid of one-point and two-point
correlation functions (19), this can be written as

σ 2
IA =

∫ ∞

0
R1(λ1) log22(1 + λ1) dλ1

+
∫ ∞

0

∫ ∞

0
R2(λ1, λ2) log2(1+λ1) log2(1+λ2) dλ1 dλ2−μ2

IA .

(55)

We note that while obtaining the exact density requires
evaluation of n − 1 or n-fold integrals, for Gaussian
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approximation, we need to perform up to a twofold inte-
gral. Both the approaches mentioned above can be eas-
ily implemented in symbolic manipulation computational
packages, such as Mathematica. The first approach based
on the Laplace transform is preferable, as it gives the
result in terms of determinants where only some of the
elements involve onefold integrals. The second approach,
on the other hand, involves up to twofold integrals of
determinantal expressions.

6 Numerical results
In this section, we present a numerical example in order
to validate the exact expressions proposed in this work.
We begin with the comparison of results concerning the
eigenvalues of the quotient ensemble, viz., the marginal
density, and probability distributions and densities of the
extreme eigenvalues. Afterwards, we move over to exam-
ine the behavior of the mutual information. As will be
shown, there is a perfect match between the results from
Monte Carlo simulations and the exact results presented
in the preceding sections.
We consider the following scenario. Suppose that user

A transmits with a = 1 (SNRA = nA × a = 4 × 1 = 6.02
dB), and user B transmits with b = 1/3 (SNRB = nB×b =
5×1/3 = 2.21 dB). In Fig. 2, we show the marginal density
of eigenvalues for n = 3, while in Figs. 3 and 4 we display
the probability distributions and densities of the extreme
eigenvalues.
Figure 5 shows the PDF of mutual information for n =

{2, 3, 4}. Notice that as the number of receiving antennas
increases, the μIA also increases. When we double the
number of antennas from n = 2 to n = 4, the μIA goes
from 2.56 to 4.93, almost a twofold increase. This result is
in accordance with the well-known result that the slope of
the curve increases with min(n, nA) [4]. Note also that the

distributions possess Gaussian-like shapes. For compari-
son, we have plotted the Gaussian approximation using
μIA and σ 2

IA .
The outage probability is shown in Fig. 6. Again, by

increasing the number of receiving antennas, the out-
age probability decreases. For example, for a rate of
3 bits/s/Hz, the outage probability is ≈ 90% with
n = 2 antennas and goes down to less than 1% for
n = 4 antennas. An outage probability of 1% allows
a bit rate of 1.2 and 2.1 bits/s/Hz with n = 2 and
n = 3 antennas, respectively. Notice that the Gaussian
approximation is indistinguishable for outage probabili-
ties above 10% for any n. For outage probability of 1%,
the error by using this approximation is less than 0.2
bits/s/Hz.
We show the outage rate as function of a and n in Fig. 7

for 1% of outage probability with 0 ≤ a ≤ 30 dB, n =
{2, 3, 4}, nA = 4, nB = 5, b = 1. Note that the increase in
outage rate is close to linear with a.We used only Gaussian
approximation to show that, for this purpose, this simpler
method presents good results.

7 Conclusions
We considered the quotient ensemble involving two
Wishart matrices. We worked out exact closed-form
expressions for the probability distributions and densi-
ties of the extreme eigenvalues. Afterwards, we derived
exact expressions for the probability density and outage
probability of mutual information of a two-user MIMO
MAC network over block Rayleigh fading channels. These
expressions allow the analytical evaluation of the prob-
ability density and outage beside the current numeri-
cal evaluation methods such as Monte Carlo. The exact
expressions are presented in two different ways, Laplace
transform and by direct integration of joint probability

Fig. 2Marginal density of eigenvalues of the quotient ensemble. The parameters used are n = 3, nA = 4, nB = 5, a = 1, and b = 1/3
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Fig. 3 SF of the smallest eigenvalue (λmin) and CDF of the largest eigenvalue (λmax), as given by (22) and (24). The parameter values are n = 3,
nA = 4, nB = 5, and b = 1/3

density function of eigenvalues coming from the quotient
ensemble.
We showed that the density of mutual information

exhibits a Gaussian-like shape. Therefore, besides the
exact expressions, we derived expressions to evaluate the
mean and variance to invoke the Gaussian approximation
method. This approximation method offers a trade-off
between complexity and accuracy. For outage probabil-
ity, the Gaussian approximation shows excellent match
with the exact results for outages above 10%. For lower
values, the Gaussian approximation error is relatively
small so that we consider the method acceptable due its
simplicity of implementation.

Finally, as an example of an application of the derived
expressions, we evaluated the effect of the number
of receiver antennas in the distribution and outage
probability of the receiver. We noted a twofold increase
in the mean value of mutual information when we double
the number of receiving antennas. On the other hand, the
outage rate increased about three times in the low signal
to noise ratio regime.

Endnotes
1 To avoid any confusion, we have used distinct sym-

bols to represent confluent hypergeometric function with
matrix argument (�) and that with scalar argument (U).

Fig. 4 PDF of the smallest eigenvalue (λmin) and that of the largest eigenvalue (λmax), as given by (26) and (28). The parameter values are n = 3,
nA = 4, nB = 5, and b = 1/3
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Fig. 5Mutual information probability density for n = {2, 3, 4}, nA = 4, nB = 5, a = 1, and b = 1/3

Fig. 6Mutual information outage probability for n = {2, 3, 4}, nA = 4, nB = 5, a = 1, and b = 1/3

Fig. 7 1% outage rate for different a and n = {2, 3, 4}, nA = 4, nB = 5, b = 1/3
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2With exception for the Gaussian approximation case
that will be shown in Section 5.

3 Survival function and cumulative distribution function
are related as SF= 1−CDF.
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