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Abstract: Model predictive control (MPC) is a model-based control philosophy in which the current 

control action is obtained by on-line optimization of objective function. MPC is, by now, considered to 

be a mature technology owing to the plethora of research and industrial process control applications. The 

model under consideration is either linear or piece-wise linear. However, turning to the nonlinear 

processes, the difficulties are in obtaining a good nonlinear model, and the excessive computational 

burden associated with the control optimization. Proposed framework, named as model-free predictive 

control (MFPC), takes care of both the issues of conventional MPC. Model-free reinforcement learning 

formulates predictive control problem with a control horizon of only length one, but takes a decision 

based on infinite horizon information. In order to facilitate generalization in continuous state and action 

spaces, fuzzy inference system is used as a function approximator in conjunction with Q-learning. 

Empirical study on a continuous stirred tank reactor shows that the MFPC reinforcement learning 

framework is efficient, and strongly robust. 
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1. INTRODUCTION 

Model predictive control (MPC) is the most popular 

advanced control technique in the process industry [1]. The 

essence of MPC is to optimize, over the manipulable inputs, 

forecasts of process behavior. The forecasting is 

accomplished with process model, and therefore, the model is 

the essential element of the MPC controller. 

Whereas the dynamic behavior of most chemical 

processes is nonlinear, linear models have predominantly 

been used for process control in practice because of the 

difficulty associated with building an accurate nonlinear 

model, either by first principles or by system identification 

techniques [1]. MPC approach determines a sequence of 

actions based on predictions using the system model that 

guarantee stability and certain optimal properties of the 

system in terms of the desired behavior. A model is, however, 

always an approximation of the system under consideration. 

Predictions about the behavior of the system become more 

and more inaccurate when considered further into the future. 

To deal with this, MPC techniques use a rolling horizon to 

increase robustness. The rolling horizon principle consists of 

synchronizing the state of the model with the state of the true 

system at every decision step. At every decision step, the 

MPC agent observes the state of the true system and 

synchronizes the estimate that it has of the state of the system 

with this, and tries to find the best sequence of actions, given 

the updated state. Typically, the agent only executes the first 

action of this sequence. It then observes the system state 

again and finds a new sequence of actions. However, the 

rolling horizon increases computational costs if the horizon 

over which the agent has to determine actions is infinite, 

since at each decision step the MPC agent has to find a 

sequence of actions. A finite horizon is therefore assumed. 

However, because of the limited horizon over which actions 

are considered, the resulting policy may be suboptimal. The 

smaller the control horizon used to reduce on-line 

computation, the more suboptimal the resulting solution may 

become. The MPC algorithm therefore might suffer from the 

dilemma of very high computational requirements vs 

suboptimality. 

However, both the difficulties  obtaining a good model 

of the nonlinear process and the excessive computational 

burden associated with the control optimization, have been 

serious obstacles to wide spread use of MPC in industrial 

implementations. To deal with the issue of modeling 

difficulties, and the dilemma of very high computational cost 

versus suboptimality, a control approach based on learning is 

more adequate. Different model-free learning control 

approaches, useful for process control problems, have been 

proposed in the literature. Anders Stenman [2] presented the 

concept of model-free predictive control, which combines the 

idea of model-on-demand with MPC techniques. They 

estimate the process dynamics locally and on-line, using 

process data stored in the database. However, a drawback of 

their approach is that the performance of the controller 

depends on the quality of the data base, and the controller 

normally requires large computational resources due to the 

nature of the underlying estimation procedure. Lee and Lee 

[3] & Lee and Wong [4] have suggested an MPC approach 

based on approximate dynamic programming (ADP). This 

approach has its roots in the artificial intelligence (AI) 

literature and closely follows the ideas of reinforcement 

learning (RL) [5] and neuro-dynamic programming [6]. This 
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Empirical study on a continuous stirred tank reactor shows that the MFPC reinforcement learning 

framework is efficient, and strongly robust. 

Keywords: Model predictive control, Reinforcement learning, Q-learning. 

1. INTRODUCTION 

Model predictive control (MPC) is the most popular 

advanced control technique in the process industry [1]. The 

essence of MPC is to optimize, over the manipulable inputs, 

forecasts of process behavior. The forecasting is 

accomplished with process model, and therefore, the model is 

the essential element of the MPC controller. 

Whereas the dynamic behavior of most chemical 

processes is nonlinear, linear models have predominantly 

been used for process control in practice because of the 

difficulty associated with building an accurate nonlinear 

model, either by first principles or by system identification 

techniques [1]. MPC approach determines a sequence of 

actions based on predictions using the system model that 

guarantee stability and certain optimal properties of the 

system in terms of the desired behavior. A model is, however, 

always an approximation of the system under consideration. 

Predictions about the behavior of the system become more 

and more inaccurate when considered further into the future. 

To deal with this, MPC techniques use a rolling horizon to 

increase robustness. The rolling horizon principle consists of 

synchronizing the state of the model with the state of the true 

system at every decision step. At every decision step, the 

MPC agent observes the state of the true system and 

synchronizes the estimate that it has of the state of the system 

with this, and tries to find the best sequence of actions, given 

the updated state. Typically, the agent only executes the first 

action of this sequence. It then observes the system state 

again and finds a new sequence of actions. However, the 

rolling horizon increases computational costs if the horizon 

over which the agent has to determine actions is infinite, 

since at each decision step the MPC agent has to find a 

sequence of actions. A finite horizon is therefore assumed. 

However, because of the limited horizon over which actions 

are considered, the resulting policy may be suboptimal. The 

smaller the control horizon used to reduce on-line 

computation, the more suboptimal the resulting solution may 

become. The MPC algorithm therefore might suffer from the 

dilemma of very high computational requirements vs 

suboptimality. 

However, both the difficulties  obtaining a good model 

of the nonlinear process and the excessive computational 

burden associated with the control optimization, have been 

serious obstacles to wide spread use of MPC in industrial 

implementations. To deal with the issue of modeling 

difficulties, and the dilemma of very high computational cost 

versus suboptimality, a control approach based on learning is 

more adequate. Different model-free learning control 

approaches, useful for process control problems, have been 

proposed in the literature. Anders Stenman [2] presented the 

concept of model-free predictive control, which combines the 

idea of model-on-demand with MPC techniques. They 

estimate the process dynamics locally and on-line, using 

process data stored in the database. However, a drawback of 

their approach is that the performance of the controller 

depends on the quality of the data base, and the controller 

normally requires large computational resources due to the 

nature of the underlying estimation procedure. Lee and Lee 

[3] & Lee and Wong [4] have suggested an MPC approach 

based on approximate dynamic programming (ADP). This 

approach has its roots in the artificial intelligence (AI) 

literature and closely follows the ideas of reinforcement 

learning (RL) [5] and neuro-dynamic programming [6]. This 
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approach attempts to solve the stochastic optimal control 

problem through dynamic programming (DP) but only 

approximately and within limited regions of state space. The 

usual barrier of curse-of-dimensionality is alleviated by 

employing closed-loop simulations and function 

approximation. 

An ADP-based data driven control algorithm presented in 

[4], iteratively learns cost-to-go function and maps the state 

to the cost-to-go value. If we map all relevant state and action 

pairs to cost-to-go values, no model would be necessary at 

all. Such a model-less scheme is called Q-learning in the field 

of AI [5]. A model-free learning control (MFLC) approach, 

proposed by S. Syafiie, et. al. [7, 8], is based on 

reinforcement learning algorithms. The MFLC controller 

algorithm, based on the one-step ahead Q-learning look-up 

table, performs reasonably well. However, for continuous 

state space systems, such as in most process control 

problems, the conventional Q-learning framework designed 

for finite Markov Decision Problems (MDP) is not 

appropriate since it is unlikely that exactly same states would 

be visited multiple times. An alternative methodology is 

based on replacing the table with a function approximation 

[9]. This methodology has been quite successful in many 

practical cases, and does not need to use explicitly the table 

of Q-values. 

We propose a novel intelligent control method that is 

based on reinforcement learning, where in the design and on-

line learning is not based on a model; rather can be 

implemented only by evaluative feedback during interaction 

with the plant. Explicit and exact modeling of system 

dynamics is not required; and the machine learning algorithm 

realizes adaptivity to uncertainties, without requiring any 

prior knowledge. RL framework is, in fact, a means to deal 

with issues arising in MPCsystem-model requirement, 

computational complexity, and suboptimality of actions due 

to limited horizon over which actions are considered. A 

model-free predictive control (MFPC) based on RL takes 

decisions on infinite-horizon information, with computational 

cost of a one-step MPC [10]. 

To obtain a MFPC controller, we run RL experiment on 

the plant under nominal conditions (no disturbances) with no 

prior knowledge on the ranges of the PID parameters (trial 

values are used).  The controller is model-free, and it learns 

from interactions with the environment using the values of 

the state variables and the cost signal at each time step. 

Subsequently, controller finds the parameters corresponding 

to steady-state behavior under nominal conditions. 

Simulation studies demonstrate the setpoint tracking and 

disturbance rejection capability of the MFPC controller based 

on RL. Further, to add adaptivity to uncertainties, we 

redesign the RL control scheme with the prior knowledge of 

the expected ranges of parameters for good control 

performance. The redesigned RL provides on-line tuning of 

parameters. 

The proposed MFPC based on RL scheme provides a 

flexible approach to the design of intelligent agents (here, 

PID Controllers) in situations for which both conventional 

and supervised learning methods are impractical or difficult 

to be employed. Unlike conventional methods, the RL 

scheme is not based on approximate model of the plant; it 

gives parameters by on-line interaction with the plant, 

thereby producing results which are expected to be close 

enough to the design if exact model of the plant were 

available. Unlike supervised learning methods, RL can be 

applied to problems where significant domain knowledge is 

either unavailable or costly to obtain. 

We base our analysis and simulations on fuzzy inference 

system (FIS) as a function approximation in RL. The fuzzy 

Q-learning [11] requires some prior knowledge. In case the 

required knowledge is not available or available knowledge is 

not reliable, one can acquire the knowledge using dynamic 

fuzzy-Q [12] learning algorithm. The proposed dynamic 

fuzzy-Q adaptive MFPC controller is very effective for 

complex nonlinear systems, and it doesn’t need any prior 

knowledge to find optimal PID parameters. 
The paper is structured as follows. Section 2 describes 

basics behind model-free predictive control. Section 3 

presents the proposed reinforcement learning controller 

framework, its architecture and the design steps of adaptive 

MFPC controller. Section 4 discusses basics of model 

predictive control. Section 5 gives details of a highly 

nonlinear processthe continuous stirred tank reactor 

(CSTR): its dynamics and controller learning. Section 6 

compares and discusses the empirical performance of set 

point tracking and disturbance rejection for MPC and MFPC 

controllers on the basis of simulation results. Finally in 

Section 7, the conclusions are presented. 

2. MODEL FREE- PREDICTIVE CONTROL 

The basic idea behind the model-free predictive control 

(MFPC) philosophy is to learn action values directly, by trial 

and error, without building an explicit model of the 

environment, and thus it retains no explicit estimate of the 

probabilities that govern state transitions. Reinforcement 

learning (RL) provides a way to build learning agents 

(intelligent controllers) that optimize their behavior in 

unknown environments [13, 14]. In RL, experience is built up 

over time through interaction with the system the agent has to 

control, rather than assumed available a priori (system 

model). The experience is based on the performance 

indicators that give information about how well a certain 

action was in a certain state of the system. The experience is 

also based on the state transitions of the system under actions 

taken. The performance function (value function) is 

approximated by keeping track of the performance obtained 

at each decision step considering the system state, performed 

action, and the resulting system state. At each decision step, 

the value function of the previous decision step is updated 

with experience built up over that previous decision step. By 

accumulating sufficient experience, the agent may accurately 

estimate the true value functionan infinite horizon 

estimation. 

Thus, once the value functions are known well, an RL 

problem reduces to an MPC problem with a control horizon 

of only length one. At the same time, decisions are based on 

infinite horizon information. This takes care of both the 

issues associated with conventional MPC. 

2.1 Learning framework 

RL is a promising technique for adaptive control 

problems, where learning and control are performed 
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approach attempts to solve the stochastic optimal control 

problem through dynamic programming (DP) but only 

approximately and within limited regions of state space. The 

usual barrier of curse-of-dimensionality is alleviated by 

employing closed-loop simulations and function 

approximation. 

An ADP-based data driven control algorithm presented in 

[4], iteratively learns cost-to-go function and maps the state 

to the cost-to-go value. If we map all relevant state and action 

pairs to cost-to-go values, no model would be necessary at 

all. Such a model-less scheme is called Q-learning in the field 

of AI [5]. A model-free learning control (MFLC) approach, 

proposed by S. Syafiie, et. al. [7, 8], is based on 

reinforcement learning algorithms. The MFLC controller 

algorithm, based on the one-step ahead Q-learning look-up 

table, performs reasonably well. However, for continuous 

state space systems, such as in most process control 

problems, the conventional Q-learning framework designed 

for finite Markov Decision Problems (MDP) is not 

appropriate since it is unlikely that exactly same states would 

be visited multiple times. An alternative methodology is 

based on replacing the table with a function approximation 

[9]. This methodology has been quite successful in many 

practical cases, and does not need to use explicitly the table 

of Q-values. 

We propose a novel intelligent control method that is 

based on reinforcement learning, where in the design and on-

line learning is not based on a model; rather can be 

implemented only by evaluative feedback during interaction 

with the plant. Explicit and exact modeling of system 

dynamics is not required; and the machine learning algorithm 

realizes adaptivity to uncertainties, without requiring any 

prior knowledge. RL framework is, in fact, a means to deal 

with issues arising in MPCsystem-model requirement, 

computational complexity, and suboptimality of actions due 

to limited horizon over which actions are considered. A 

model-free predictive control (MFPC) based on RL takes 

decisions on infinite-horizon information, with computational 

cost of a one-step MPC [10]. 

To obtain a MFPC controller, we run RL experiment on 

the plant under nominal conditions (no disturbances) with no 

prior knowledge on the ranges of the PID parameters (trial 

values are used).  The controller is model-free, and it learns 

from interactions with the environment using the values of 

the state variables and the cost signal at each time step. 

Subsequently, controller finds the parameters corresponding 

to steady-state behavior under nominal conditions. 

Simulation studies demonstrate the setpoint tracking and 

disturbance rejection capability of the MFPC controller based 

on RL. Further, to add adaptivity to uncertainties, we 

redesign the RL control scheme with the prior knowledge of 

the expected ranges of parameters for good control 

performance. The redesigned RL provides on-line tuning of 

parameters. 

The proposed MFPC based on RL scheme provides a 

flexible approach to the design of intelligent agents (here, 

PID Controllers) in situations for which both conventional 

and supervised learning methods are impractical or difficult 

to be employed. Unlike conventional methods, the RL 

scheme is not based on approximate model of the plant; it 

gives parameters by on-line interaction with the plant, 

thereby producing results which are expected to be close 

enough to the design if exact model of the plant were 

available. Unlike supervised learning methods, RL can be 

applied to problems where significant domain knowledge is 

either unavailable or costly to obtain. 

We base our analysis and simulations on fuzzy inference 

system (FIS) as a function approximation in RL. The fuzzy 

Q-learning [11] requires some prior knowledge. In case the 

required knowledge is not available or available knowledge is 

not reliable, one can acquire the knowledge using dynamic 

fuzzy-Q [12] learning algorithm. The proposed dynamic 

fuzzy-Q adaptive MFPC controller is very effective for 

complex nonlinear systems, and it doesn’t need any prior 

knowledge to find optimal PID parameters. 
The paper is structured as follows. Section 2 describes 

basics behind model-free predictive control. Section 3 

presents the proposed reinforcement learning controller 

framework, its architecture and the design steps of adaptive 

MFPC controller. Section 4 discusses basics of model 

predictive control. Section 5 gives details of a highly 

nonlinear processthe continuous stirred tank reactor 

(CSTR): its dynamics and controller learning. Section 6 

compares and discusses the empirical performance of set 

point tracking and disturbance rejection for MPC and MFPC 

controllers on the basis of simulation results. Finally in 

Section 7, the conclusions are presented. 

2. MODEL FREE- PREDICTIVE CONTROL 

The basic idea behind the model-free predictive control 

(MFPC) philosophy is to learn action values directly, by trial 

and error, without building an explicit model of the 

environment, and thus it retains no explicit estimate of the 

probabilities that govern state transitions. Reinforcement 

learning (RL) provides a way to build learning agents 

(intelligent controllers) that optimize their behavior in 

unknown environments [13, 14]. In RL, experience is built up 

over time through interaction with the system the agent has to 

control, rather than assumed available a priori (system 

model). The experience is based on the performance 

indicators that give information about how well a certain 

action was in a certain state of the system. The experience is 

also based on the state transitions of the system under actions 

taken. The performance function (value function) is 

approximated by keeping track of the performance obtained 

at each decision step considering the system state, performed 

action, and the resulting system state. At each decision step, 

the value function of the previous decision step is updated 

with experience built up over that previous decision step. By 

accumulating sufficient experience, the agent may accurately 

estimate the true value functionan infinite horizon 

estimation. 

Thus, once the value functions are known well, an RL 

problem reduces to an MPC problem with a control horizon 

of only length one. At the same time, decisions are based on 

infinite horizon information. This takes care of both the 

issues associated with conventional MPC. 

2.1 Learning framework 

RL is a promising technique for adaptive control 

problems, where learning and control are performed 
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simultaneously. Value iteration algorithms directly search for 

an optimal value function, which they use to compute an 

optimal policy. An important and most widely used RL 

algorithm from the value iteration class is Q-iteration (widely 

known as Q-learning), which updates the Q-function (state-

action value function) online, using observed state transitions 

and rewards. Conventional Q-learning guarantees exactness 

to store distinct Q-values of every state or state-action pair. 

Unfortunately, this is impossible for continuous and very 

large or infinite state-action space. Instead, function 

approximations must be used to represent value functions. 

3. REINFORCEMENT LEARNING CONTROLLER 

We consider an adaptive learning system (controller) that 

interacts with its environment (discrete-time dynamical 

system). For each state  1 2, , ,
t t t t

ns s s s  S  (a finite state 

space) of the dynamical system at discrete-time t, there is a 

finite set of possible decisions (control actions), ( )
t

u s  U  

that may be taken by the learning system (controller). The 

index t  represents a stage variable to describe how many 

decisions have thus far been made, where 0,1, 2,t   

3.1 Controller framework 

FIS have been widely adopted as function approximators 

for reinforcement learning problems, in particular in 

conjunction with Q-learning, known as fuzzy Q-Learning 

(FQL). FQL is a RL method to tune fuzzy inference system 

conclusions. FQL is an adaptation of Watkin’s Q-learning 

[15] for FIS, where both the actions and Q-functions are 

inferred from fuzzy rules. In FQL, the fuzzy rules are based 

on the initial knowledge of the designer, and the conclusion 

part of the inference system is adjusted online. However, 

structure identification, such as partitioning the input and 

output spaces and determination of the number of fuzzy rules, 

are still carried out offline and it is time consuming. To cope 

with this difficulty, many researchers have been working to 

find automatic methods for fuzzy system design [11, 16, 17]. 

Dynamic fuzzy Q-Learning (DFQL) proposed in [12] is an 

automatic method, capable of self-tuning FIS based on 

reinforcement signals. The DFQL is an efficient learning 

method whereby not only the conclusion part of a FIS can be 

constructed online, but also its structure can be generated 

automatically. This self-organizing feature makes system 

performance better than that of a conventional fuzzy Q-

learning. DFQL fulfills our objective of model-free and on-

line fuzzy-Q learning control of nonlinear systems. We have 

reformulated this approach to suit our tuning-based PID-

control structure. 

In FIS structure, precondition part (FIS(A)) depends on 

the number of variables in the state vector, and the number of 

fuzzy sets generated dynamically to sense each variable. 

There can be various types of membership functions, e.g., 

triangular, trapezoidal, Gaussian, etc. The N number of rules 

in the FIS rule base are constructed online using aligned 

clustering approach [18]; 
1

( )
n

Ls
N N s


  , where ( )

L
N s  = 

number of fuzzy labels for variable s . The consequent part 

(FIS(B)) of fuzzy inference system adjusts/tunes only the 

conclusion part of the fuzzy rules in an incremental manner, 

as per the concept of FQL specified in [11]. We describe a 

fuzzy Q-learning method based on the TS fuzzy model [19]. 

3.2 Controller architecture 

The architecture of an adaptive controller based on 

dynamic fuzzy Q-learning (DFQL) is shown in Fig. 1. 

 
               Fig. 1 Dynamic fuzzy-Q controller architecture 

Each fuzzy rule ; 1, 2, ,
i

R i N , is a local representation 

over a region defined in the input space, S , constructed 

automatically using online aligned clustering approach [18]. 

It memorizes the quality vector q associated with each set of 

PID parameters, [ ];
c

p v i
k k k k  1,2,… ,c m . c

k  K =

 1 2
, , ,

m
k k k  are m  subsets of possible parameter values 

which PID controller can assume, constructed on the basis of 

prior experience and knowledge. The parameter q  associates 

to each action in
i

R , a quality with respect to the task. The 

fuzzy reasoning applied by FIS is an extension of modus 

ponens with competing actions [19], and in DFQL one builds 

an FIS with competing actions for each rule 
i

R  as follows: 

1

1 1

2

: If  is  and and  is  then  w ith ( ,1)

                                                      or   w ith ( , 2)

                                                                  

t i t i i

i n n

i

R s L s L k k q i

k k q i





            

                                                      or   w ith ( , )
i m

k k q i m

          (1) 

where 
i

j
L  is the linguistic term (fuzzy label) of input 

variable ;  1, 2, ...,
t

j
s j n , in rule ;  1, 2, ...

i
R i N ; and its 

membership function denoted by i

jL
 . The membership 

function is chosen as a Gaussian function. Each input 

variable  ( 1, 2, , )
t

j
s j n   has l  membership functions given 

by 

 
2

2
( ) exp    ; 1, 2, , ;   1, 2, , .

i

jp

t

j jpt

jL

jp

s c
s j n p l


   

 
 
 
 




      (2) 

where i

jpL
  is the p

th
 membership function of 

t

j
s , while 

jp
c  

and 
jp

 are, respectively, the center and width of this 

membership function. The output of the i
th

 rule 

 1, 2, ,
i

R i N  is given by 

 
 

2

1 2 2

11

, , , ( ) exp  ;  1, 2 , , .
i

jp

t
n n

j jpt t t t

i n jL

jj
jp

s c

s s s s p l




   

 
 
  

 


(3) 

Normalized output of the 
th

i rule is 
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 1 2

1

( )
( )   ; , , ,  ; 1, 2, , .

( )

t

t t t t ti

i nN

t

r

r

s
s s s s s i N

s



  








S        (4) 

The quality vector q is used to select PID parameters to 

maximize discounted sum of reinforcements received by the 

controller. Learning system (controller) can choose single set 

of PID parameters i
k  from the controller PID parameters set 

K  in each rule 
i

R  (calculated using Eq. (7)). The global 

continuous PID parameter set ( )
t

k s  for an input vector t
s , 

inferred by the center-of-gravity (COG) method for 

defuzzification, is: 

1

( ) ( ) ( )

N

t t i t

i

i

k s s k s



               (5) 

where i
k  K  is the PID parameter set selected in rule iR . 

The continuous control action ( )
t

u s  for an input vector t
s  is 

the output of PID controller, and this action is given as: 

0

( )
( ) ( ) ( ) ( ) ( )

tt

t t t t t

p v i e

de s
u s k e s k k e s d k s s

dt
     =          (6) 

where, ( )
t

e
s  is the system control error vector obtained 

from the error metric evaluator. In order to explore the set of 

possible PID parameters and acquire experience through the 

RL signals, PID parameters are selected using an 

exploration/exploitation policy (EEP) [5]. We use a pseudo 

stochastic exploration ( -greedy) as in [20]. In -greedy  

exploration, we gradually reduce the exploration (determined 

by the   parameter) according to some schedule; we have 

reduced   to its 90 percent value after every 10 iterations. 

The lower limit of parameter   has been kept fixed at 0.002 

(to maintain exploration). 

We choose a random parameter action set, 
†

i
k  in rule 

i
R  

with -greedy exploration, and a quality maximizing action, 

i
k



 derived as per ( , ) max ( , )
i

b m

q i k q i b



 , otherwise. 

†

( ), w ith -greedy
( )  

otherw ise( ),

i t

i t

i t

k s
k s

k s





 



           (7) 

Then the Q-value for the inferred action ( )
t

k s  is 

†

1

( , ( )) ( ) ( , )

N

t t t i

i

i

Q s k s s q i k



              (8) 

and value of state t
s  is: 

1

( ) ( ) ( , )

N

t t i

i

i

V s s q i k




               (9) 

Under the action ( )
t

u s , the system undergoes transition 

 
1trt t

s s
 , where tr  is the reinforcement received by the 

controller. This information is used to calculate temporal 

difference (TD) [5] approximation error as: 
1

( ) ( , ( ))
t t t

t
Q r V s Q s k s

    . 

The q parameter values and Q-values are updated as 
† †

( , ) ( , )  ( )
i i t

iq i k q i k Q s             (10) 

1
( , ( )) ( , ( )) ( ) ( , ( ))

t t t t t t t

t
Q s k s Q s k s r V s Q s k s


           (11) 

where 0 1    is the discount factor that controls how 

much effect future costs have on current optimal decisions,   

is the learning-rate parameter. 

4. CONTROLLER REALIZATION 

In order to test the validity of the proposed model-free 

predictive controller (MFPC) based on reinforcement 

learning, we use continuous stirred tank reactor (CSTR), a 

highly nonlinear process control problem, as the standard 

benchmark. The system dynamics and controller learning 

details are as follows: 

4.1 CSTR dynamics and control 

The first principles model of the CSTR, the operating 

point data and process parameters are as specified in [22], 

have been used in this simulation study. 

It has been shown that an optimized PID controller is able 

to control the CSTR for certain operating region [22]. It is 

desired to design and simulate an optimized PID controller to 

manipulate the coolant flow rate in CSTR. The equivalent 

discrete-time form of the PID controller is given as: 

1

( 1) ( ) [ ( ) ( 1)]
( ) ( )

2

t

p i s d

i s

e i e i e t e t
u t k e t k T k

T

   
        (12) 

where 
s

T  is the sampling time. 

4.2 Controller learning details 

MFPC controller: In CSTR process control problem, the 

objective is to control the measured concentration of the 

product, C , by manipulating the coolant flow rate, 
c

q . The 

CSTR system has two state variables, namely, the reactor 

product concentration and the reactor temperature. We define 

error as the difference between desired and actual values of 

product concentration, i.e., ( )
d

e t C C  , where dC  is the 

desired value of the product concentration. The reinforcement 

signal is given as 

1,

10,      ( )  < 0.001 mol/

0, 0.001 < | ( )| < 0.005 mol/

t

otherwise

r e t l

e t l




 



        (13) 

In MFPC controller realization, the two state 

variablesthe product concentration and the reactor 

temperature, [ ; ]
t

s C T , were normalized and fed to the 

controller input. Initially, for each state variable, a single 

fuzzy set with Gaussian membership function with zero mean 

and 0.2 standard deviation is used, which results in a single 

rule. Then fuzzy rules are dynamically generated as per the 

method discussed above. 

The parameters for DFQ-learning are: the discount factor 

  is set to 0.8; learning-rate parameter   is set to 0.2, TD 

error factor ( DK ) 50, TD error criterion ( ek ) 1, similarity of 

membership function ( m fk ) 0.25, similarity criterion (  ) 

0.7, -completeness threshold ( dk ) log 2 . Exploration 

level   decays from 0.5 0.002  over the iterations. We 

consider a set of PID parameters: 180 : 10 : 200;pk 

330 : 10 : 350;ik  150 : 5 : 160dk  . We deliberately 
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Under the action ( )
t

u s , the system undergoes transition 
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where 0 1    is the discount factor that controls how 

much effect future costs have on current optimal decisions,   

is the learning-rate parameter. 

4. CONTROLLER REALIZATION 

In order to test the validity of the proposed model-free 

predictive controller (MFPC) based on reinforcement 
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highly nonlinear process control problem, as the standard 
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4.2 Controller learning details 

MFPC controller: In CSTR process control problem, the 

objective is to control the measured concentration of the 

product, C , by manipulating the coolant flow rate, 
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q . The 

CSTR system has two state variables, namely, the reactor 

product concentration and the reactor temperature. We define 

error as the difference between desired and actual values of 

product concentration, i.e., ( )
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e t C C  , where dC  is the 

desired value of the product concentration. The reinforcement 

signal is given as 
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otherwise
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In MFPC controller realization, the two state 

variablesthe product concentration and the reactor 

temperature, [ ; ]
t

s C T , were normalized and fed to the 

controller input. Initially, for each state variable, a single 

fuzzy set with Gaussian membership function with zero mean 

and 0.2 standard deviation is used, which results in a single 

rule. Then fuzzy rules are dynamically generated as per the 

method discussed above. 

The parameters for DFQ-learning are: the discount factor 

  is set to 0.8; learning-rate parameter   is set to 0.2, TD 

error factor ( DK ) 50, TD error criterion ( ek ) 1, similarity of 

membership function ( m fk ) 0.25, similarity criterion (  ) 

0.7, -completeness threshold ( dk ) log 2 . Exploration 

level   decays from 0.5 0.002  over the iterations. We 

consider a set of PID parameters: 180 : 10 : 200;pk 
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introduce deterministic noise of 1% of PID parameters with 

a probability of (1/3), for stochastic simulation. 

MPC controller: For CSTR process control problem, the 

MPC controller is implemented using MATLAB
®
 MPC 

toolbox [21]. The linear state-space model was obtained at 

each sampling instant by linearizing the nonlinear CSTR 

model at the present operating condition. The MPC controller 

controls the deviations in CSTR output concentration from 

set-point with a weight of 3.5 for the corresponding objective 

function term; CSTR output temperature is left un-controlled. 

The MPC controller manipulates the coolant flow rate by 

minimizing the change in manipulated variable with a weight 

of 0.1 for the corresponding objective function term subject 

to hard constraints with 
min

90u  ; 
max

110u  ; 
min

10u   ; 

max
10u  . State estimation is done with the default state 

estimator of MATLAB’s MPC toolbox. Other experimental 

settings are as follows: prediction horizon, 10
p

N  ; control 

horizon 2
c

N  ; sampling time = 0.1 mins. 

5. SIMULATION EXPRIMENTS 

To demonstrate the learning performance via setpoint 

changes and unmeasured disturbances, and robustness against 

uncertainties of adaptive MFPC controller based on RL, 

simulation experiments have been performed on CSTR 

process control problem. MATLAB R2014a has been used as 

simulation tool. 

5.1 Learning performance study 

The CSTR system model has been simulated for single 

episode of 30 min using forth-order Runge-Kutta solver, with 

fixed-step size of 10 msec. The dynamic behavior of the 

CSTR process is not the same at different operating points, 

and the process is, indeed, nonlinear. In order to assess the 

setpoint tracking capability of MFPC, we start the simulation 

at nominal operating point: 0.0836  /C mol l , 440.2 KT  ,

103.41 / min
c

q l ,and setpoint variation in product 

concentration as given in Fig. 2 

 
Fig. 2(a) CSTR process control problem: process output 

 
Fig. 2(b) CSTR process control problem: controller input 

Both the proposed controller MFPC and MPC are able to 

maintain the setpoint at desired value. However, the 

performance of MFPC controller at all the setpoint changes is 

found to be better than MPC controller, as there is no 

overshoot and it settles to setpoint faster. From the simulation 

experiment of a single episode setpoint tracking, we obtain 

PID parameters as [ ]
p i d

k k k k [190.2 339.8 152.35] . 

Simulation studies have been carried out to demonstrate 

the disturbance rejection capability of the proposed MFPC 

controller, by introducing unmeasured disturbance of +20% 

in feed flow rate, at the 20
th

 sampling instant under nominal 

operating point (Fig. 3) 

 
Fig. 3 CSTR process: disturbance rejection performance 

From the disturbance rejection simulation study, it can be 

inferred that the controller MFPC is able to reject the 

disturbance quickly and bring the reactor concentration back 

to the nominal value of the setpoint 

5.2 Robustness study 

In the following, we compare the performance of MFPC 

and MPC controllers under uncertainties. For this study, we 

trained the controller for 20 episodes at steady-state operating 

data under nominal operating point. 

5.2.1 Disturbance in product flow rate (
if

q ) 

We consider a variation in input product flow rate from 

30 l/min to 180 l/min (nominal value 100 l/min), and make it 

to occur at time instant 15 min. Fig. 4 shows the mean square 

error (MSE) vs change in product flow rate, for MFPC and 

MPC controllers. Table 1 tabulates values of MSE for  40% 

variation with respect to nominal value of product flow rate. 

Table 1 MSE comparison of controllers (mol/l) 

(MSE: values shown 5
10

 ) 

Controller if
q  

40 (l/min) 

if
q  

100 (l/min) 

if
q  

160 (l/min) 

MPC 4.135 2.8220 3.712 

MFPC 2.809 0.9718 3.121 

 
Fig. 4 CSTR process: MSE vs product flow rate ( )

if
q  

5.2.2 Disturbance in input product concentration (
if

C ): 

We consider a variation in input product concentration 

from 0.5 mol/l to 1.6 mol/l (nominal value 1 mol/l), and make 

it to occur at time instant 15 min. Fig. 5 shows the MSE vs 

change in product concentration, for MFPC and MPC 

controllers. Table 2 tabulates values of MSE for  40% 

variation with respect to nominal value of product 

concentration. 
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Fig. 5 CSTR process: MSE vs product concentration ( )

if
C  

Table 2 MSE comparison of controllers (mol/l) 

(MSE: values shown 4
10

 ) 

Controller if
C  

0.6 (mol/l) 

if
C  

1.0 (mol/l) 

if
C  

1.4 (mol/l) 

MPC 0.5804 0.28220 0.4037 

MFPC 0.6096 0.09773 0.4356 

5.2.3 Disturbance in input temperature ( ifT ) 

We consider a variation in input temperature from 300 K 

to 400 K (nominal value 350 K), and make it to occur at time 

instant 15 min. Fig. 6 shows MSE vs change in input 

temperature, for MFPC & MPC controllers. Table 3 tabulates 

MSE for temperature variation with respect to nominal value. 

Table 3 MSE comparison of controllers (mol/l) 

(MSE: values shown 5
10

 ) 

Controller if
T  

310 K 

if
T  

350 K 

if
T  

390 K 

MPC 3.601 2.8220 3.304 

MFPC 1.753 0.9773 1.402 

 
Fig. 6 CSTR process: MSE vs input temperature ( ifT ) 

To summarize, the simulation results indicate that MFPC 

controller, tuned using dynamic fuzzy-Q learning, performs 

satisfactorily with no prior knowledge on the ranges of PID 

parameters, and model-free environment. In presence of 

disturbances around the nominal operating conditions, the 

adaptive-structure MFPC controller controls the 

concentration of the product with low value of steady-state 

error in comparison with MPC controller. 

6. CONCLUIONS 

This paper has presented the promising concept of model-

free predictive control (MFPC), which combines the potential 

of RL with established and well-known MPC techniques. The 

MFPC controller algorithm, based on dynamic fuzzy Q-

learning for tuning of PID controller is presented. 

This approach gives a general solution for tuning-based 

PID controllers to nonlinear time-varying systems, simple to 

implement in existing control hardware and easy to design 

without a detailed understanding of plant dynamics. The 

proposed MFPC based on RL scheme provides a flexible 

approach to design of intelligent agents (PID Controllers) in 

situations for which both conventional and supervised 

learning methods are impractical or difficult to be employed. 

Unlike conventional methods, the RL scheme is not based on 

approximate model of the plant; it gives parameters by on-

line interaction with the plant, thereby producing results 

which are expected to be close enough to the design if exact 

model of the plant were available. Unlike supervised learning 

methods, RL can be applied to problems where significant 

domain knowledge is either unavailable or costly to obtain. 

Simulation studies on CSTR show that MFPC controller 

is efficient in learning and performs well under uncertainties. 
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