
problem from one of two perspectives: a practical empirical per-

spective or a theoretical perspective. The first offers the benefits of

manageable computational complexity and straightforward inter-

pretation but suffers from a lack of rigor in the modeling of traveler

behavior. The second method provides behavioral rigor at the expense

of computational tractability and relative ease of interpretation.

This paper presents a straightforward approach that utilizes prac-

tical measures of edge activity within a game-theoretic framework.

The basic method of Bell and Bell et al. was adopted, in which a game

is played between a benevolent router and malevolent network tester

(2, 3). The router assigns traffic to the shortest path between its origin

and destination, with multiple shortest paths accommodated in a

straightforward proportional fashion. The tester disrupts edges in such

a way as to maximize the deterioration of the network’s performance.

Computational issues quickly arise as networks approach a practical

size, which has led to most game-theoretic approaches being applied

to single origin–destination (O-D) pairs (2, 3). The issues are centered

on the need to maintain and update all-pairs shortest paths for each

iteration to accommodate the increased costs of edges chosen for dis-

ruption by the router. This issue is exacerbated if the analyst attempts

to have the router make an equilibrium assignment at each iteration,

though equilibrium would provide a more realistic assignment.

This paper presents a game-theoretic network vulnerability model

that builds on the foundation laid by previous work that used games

against malevolent opponents. Here, the consideration of all O-D

pairs was allowed through the introduction of an all-pairs shortest-path

routine, a path membership function for router assignments, and

an entropy function for tester disruptions. The result is a many-to-

many edge-based measure of network vulnerability. This paper begins

with a review of relevant literature and previous relevant studies,

followed by a description of the model and its components. A small

example application is presented to clarify the basic concepts of

the solution method, followed by an application to the well-known

Sioux Falls, South Dakota, network. A summary of the findings and

discussion of the results concludes the document.

LITERATURE REVIEW

Game-theoretic network vulnerability approaches that envision games

between router and demon have been explored in prior studies that

have developed mixed strategy games for vulnerability assessment

(2–4). The structure common to this work is the game between a

router and a tester or demon, in which the router seeks a shortest-path

assignment and the tester seeks to maximally disrupt the network.

Many-to-Many Game-Theoretic Approach
for the Measurement of Transportation
Network Vulnerability

Nicholas E. Lownes, Qixing Wang, Saleh Ibrahim, Reda A. Ammar,

Sanguthevar Rajasekaran, and Dolly Sharma

1

The vulnerability of a transportation network is strongly correlated with

the ability of the network to withstand shocks and disruptions. A robust

network with strategic redundancy allows traffic to be redistributed

or reassigned without unduly compromising system performance.

High-volume edges with limited alternative paths represent system

vulnerabilities—a feature of transportation networks that has been

exploited to identify critical components. A mixed-strategy, stochastic

game-theoretic approach is presented for the measurement of network

vulnerability. This method is designed to incorporate all origins and 

destinations in a network in a computationally efficient manner. The

presented method differs from previous efforts in that it provides a

many-to-many measure of vulnerability and edge-based disruptions

that may not reside on a common path. A game that considers all possible

origin–destination pairs is constructed between a router, which seeks

minimum cost paths for travelers, and a network tester, which maximizes

travel cost by disabling edges within the network. The method of succes-

sive averages is used for routing probabilities, and a weighted entropy

function is employed to compute edge-disruption probabilities. The

method is demonstrated on a small example network and then applied

to the Sioux Falls, South Dakota, network. Results indicate good cor-

respondence with a previous method that used equilibrium assignment

and rapid solution convergence.

Transportation network vulnerability is, unfortunately, a continued

and growing concern across the world due to the increase in attacks

on transportation infrastructure during recent decades. Jenkins and

Butterworth show that between 1920 and 1970 there were 15 attacks

against surface transportation infrastructure, whereas in 2007 alone

there were nearly 120 such attacks that involved the use of explosives

or incendiary devices (1). With constraint resources to protect, harden,

and monitor, surface transportation infrastructure researchers have

looked to build mathematical models that are capable of identifying

which network vulnerabilities are most critical to the security and

robustness of the network. These methods have approached the
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Bar-Noy et al. have shown that the tester’s problem is NP-hard, which

has resulted in the use of different approaches to the tester problem

(5). Among these approaches are the method of successive averages

(MSA) and the introduction of an entropy function to the tester’s

objective, both of which allow for a closed-form solution to the tester

probability (2, 3). Corley and Sha described a conflict situation as

the relationship between a “defender” and an “interdictor” to interpret

the most vital links and nodes in a network—those whose removal

would result in the greatest increase in the shortest-path distance

between two nodes (6). Ball et al. later defined the most vital arc

problem in a weighted network and proved that it is an NP-hard

problem (7 ).

Murray-Tuite and Mahmassani presented a non-zero-sum game

between an evil entity and a traffic management agency to identify

vulnerable edges in a transportation network (8). Reliability was

defined as the existence of a feasible connection between an origin

and a destination, with an acceptable edge-failure probability.

Murray-Tuite described the incorporation of two types of substitution

(method and target) into a methodology to determine a transportation

system’s risk profile (9).

Ukkusuri and Yushimito proposed a heuristic method that incor-

porated a user equilibrium-assignment procedure to assess the

importance of highway transportation networks; this method used

travel time as the primary measure of criticality (10). This work

benefited from the user equilibrium-assignment procedure, which

gave results that the researchers acknowledged were counterintuitive

yet correct. The procedure ranked edges based on a criticality function

that was derived from the difference in system travel time when a

particular edge was removed. This approach allowed a comprehensive

treatment of single edge removals; however, the problem size would

grow exponentially if combinations of multiple edges were considered

for removal. Latora and Marchiori proposed a method to identify

critical edges based on the difference in shortest paths between

baseline and disrupted networks, which was similar in structure to

the method put forward by Ukkusuri and Yushimito but without

an equilibrium-assignment component (11). Scott et al. developed

a systemwide approach to identify critical links and evaluate network

performance; the approach considered network flows, link capacity,

and network topology, although the method was not optimization or

game based (12).

Hollander and Prashkar reviewed game-theoretic approaches in

transportation analysis (13). They described four categories of

applications: games against a demon (tester), games between travelers,

games between authorities and a single traveler, and games between

all travelers and an authority. More recently, in an extension to

robust rail network design, Laporte et al. proposed a game against a

demon in which travelers could be served by the rail network or the

complementary network (14).

The work presented in this paper seeks to add to the existing liter-

ature by proposing a straightforward methodology for assessing the

vulnerability of transportation networks that incorporates all O-D pairs

in such a manner as to facilitate rapid computational times for near real-

time applications. This simple method will be used as a foundation for

later works that incorporate more realistic travel dynamics.

GAME-THEORETIC APPROACH TO VULNERABILITY

In this paper, it is assumed that there are two opponents in a non-

cooperative zero-sum game with symmetric information: the router,

a benevolent player who seeks the shortest paths for all travelers, and
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an evil tester, who tries to disable edges in the network to maximally

disrupt network performance. Inelastic demand is assumed and con-

gestion effects are not incorporated. A directed graph G = (N, E),

where N is the set of nodes and E is the set of edges, represents the

transportation system, with the corresponding notation described

in Table 1. It is assumed that failed edges increase travel time pro-

portional to a constant β, which is large enough to present a severe

cost to travelers while maintaining a connected network. In this

manner, algorithmic problems of a disconnected network are avoided,

as is the problem of estimating demand changes due to network

disruptions—an important and relevant problem, but outside the

scope of this work.

The objective of the game between the router and the tester is

represented by a minimax formulation, as shown in Equation 1.

Minimax problems have been shown to be NP-hard, and, as previously

discussed, the tester objective is itself an NP-hard problem. Bell has

stated that the minimax problem decomposes into two constituent

problems, provided certain assumptions hold true (2). This decom-

position approach is used in this paper, and the constituents are

referred to as the “router problem” and “tester problem.”

subject to

h a ek e k ep

kp K p
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TABLE 1 Notation Index

e ∈ E Edge e belongs to set of edges E.

i ∈ N Node i belongs to set of nodes N.

p ∈ P O-D pair p belongs to set of O-D pairs P.

kp ∈ Kp Shortest path kp between O-D pairs p belongs to set of shortest
paths Kp.

θ Tester confidence parameter

β Failed edge penalty weight

n Iteration counter

� Sufficiently small convergence criterion

hkp Path choice probability between O-D pair p

ae,kp Parameter that takes value 1 if e ∈ kp and value 0 otherwise

dp Travel demand between O-D pair p

CF
e Cost of edge e in failure scenario F

C −
e Cost of edge e in a normal state

C +
e Cost of edge e in a failed state

Sn
e Statistical expected (s-expected) cost of edge e at iteration n

xn
e Edge-use probability differential of edge e at iteration n

ρn
e Probability the tester disables edge e at iteration n

γ n
e Probability the router chooses edge e at iteration n



where

V = objective function value representing the measure of network

vulnerability,

γ = edge-choice probability, and

ρ = tester edge-failure probability.

The router and tester problems present formidable challenges.

Equation 1 is presented as an edge-based formulation, whereas most

previous work has used a path-based model. A definitional constraint

is provided that links paths and edges. The edge-based formulation

simply makes this link explicit. However, a path-based router decision

is still assumed and employed in the solution to the router problem,

meaning that path enumeration is still an issue. As has been mentioned,

the tester problem has been shown to be NP-hard (5).

SOLUTION APPROACH

The many-to-many network vulnerability model contains two basic

phases centered on the two players. In the first phase, the router

identifies the shortest paths based on the tester’s previous failure

strategy through the use of the statistical expected (s-expected) cost

of each edge (Se
n ). In the initialization phase, the network failure

probability is assumed to be equal across all edges. The MSA is

applied to update the edge-choice probability (γ e
n) (15). The MSA

is a heuristic; therefore, the solution obtained cannot be guaranteed

to be optimal. In the second phase, assuming perfect information, the

tester identifies a strategy of edge disruption to induce the maximum

cost to network travelers (ρe
n). The game continues until the change

in the objective function [V(γ, ρ)] falls below a critical threshold.

The critical steps in this process are shown below:

Step 0. Initialize the network.

Step 1. Update the edge costs (Ce
F,n) under failure scenario ρe

n.

Step 2. Calculate the s-expected edge costs (Sn
e).

Step 3. Identify the shortest path or paths (kp ∈ Kp) for each O-D

pair (p).

Step 4. Calculate the edge-use probability differential xe
n for each

edge (e).

Step 5. Update the edge-use probability γ e
n using the MSA.

Step 6. Calculate the tester edge-failure probability (ρe
n+1).

Step 7. Update V n(γ, ρ).

Step 8. If V n(γ, ρ) − V n−1(γ, ρ) < �, stop. Otherwise, go to Step 1.

Initialize Network

The preliminary step of initializing the network sets the initial

conditions for the proposed procedure. The initial tester probability

is uniformly distributed across the network ; the

initial router probability is set to zero (γ e
0 = 0 ∀e); and the failed-state

penalty, tester confidence parameter, and convergence criterion

(β, θ, and �, respectively) are assigned. Lastly, the value of the

objective function (V 0 = 0) is set.

Update Edge Costs

Edge costs are treated as binary parameters, with each edge having

a normal and failed state. It is assumed that the failed-state cost is

directly related to the free-flow or normal condition travel time through

the failed-state penalty coefficient (β), as shown in Equation 5.

ρe E e
1 1= ∀( ),
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β is defined as equal to 10, although other values can be explored,

as suggested by Bell et al. (3).

Calculate s-Expected Edge Costs

The assumption of perfect information allows the router to update the

expected costs of the network, based on knowledge of the tester’s

previous strategy. The s-expected cost is updated with Equation 6.

If the tester will fail an edge (e) with probability ρe
F,n−1 = 1, then the

cost of the edge is its failed-state cost (C e
+). If the tester will fail an

edge (e) with probability ρe
F,n−1 = 0, then the s-expected cost will be

its normal-state cost (C e
−).

Identify Shortest Paths

The shortest path or paths (kp ∈ Kp) for all O-D pairs (p) in the network

are identified through the use of the previously updated s-expected

costs. Ahuja et al. have described a generic, pseudopolynomial

all-pairs shortest-path problem and the Floyd-Warshall algorithm, a

polynomial implementation of the generic algorithm (16). For this

specific implementation, an all-pairs shortest-path implementation was

adopted that was based on Djikstra’s algorithm for path enumeration

at each iteration.

Calculate Probability Differential

In this step, the edge-use probability differential (x e
n ) is introduced

and calculated. This parameter allows the router to assign traffic

proportional to the shortest paths in the network of which e is a

member.

This method accommodates the existence of multiple shortest paths

between an origin and a destination through the inclusion of 1/ �Kp �
in the expression, by which an O-D pair with multiple shortest paths

will have an equivalent probability differential across each of the

paths. In baseline networks this is rarely a problem; however, the

proportional s-expected costs coupled with the MSA updating of

router probability may make this a more significant concern in later

iterations.

Update Edge-Use Probability

The MSA is applied to update the edge-use probability through the

use of the probability differential (xe).
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Calculate Edge-Failure Probability

To calculate the edge-failure probability, Bell et al. proposed the intro-

duction of an entropy function to the tester’s level of this problem (3).

With a weighted entropy function, the tester’s problem has an explicit

solution that is unique in edge-failure probability. The modified

objective function is shown in Equation 9, with the explicit solution

shown in Equation 10.

The parameter θ has been called the aggressiveness of the tester

but could also be interpreted as the confidence of the tester in its

strategy. As θ increases, the tester’s strategy coalesces around a

small number of links. If θ decreases, the strategy is less focused

on a small set of edges. In fact, as θ goes to zero, the link-failure

probability approaches the initial value 1/ �E � . As θ goes to infinity,

the solution tends to that of Equation 1 (3). The introduction of the

entropy function results in a heuristic for the tester problem in that

the chosen strategy will no longer be the worst possible, but some-

thing approaching the worst possible, depending on the confidence

or aggressiveness of the tester.

RESULTS

The method described will be demonstrated in three applications.

The first is a small hypothetical network designed to provide basic

intuition and understanding of the methodological components. The

other two applications use the Sioux Falls network, with full O-D

data, as well as O-D data for comparison with an equilibrium-based

method (10). Figure 1 depicts the small example network; it contains

four nodes and six edges, with an edge identifier and edge cost noted

in parentheses next to each edge. Table 2 provides associated O-D

data dp.

Tables 2 through 4 provide information about the example problem

as it proceeds through two iterations. Table 2 provides O-D data

and a summary of the shortest-path cost through each of the two

iterations. Table 3 provides edge cost, s-expected edge cost, edge-use

probability, and edge-failure probability when the tester confidence

(θ) equals 0.5. Table 4 presents the same information as Table 3, but

with θ equal to 10.

ρ
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This method is presented as many-to-many, or for all O-D pairs,

so at any given iteration the shortest path (or paths) for every O-D

pair is being considered. The progression of the shortest-path cost

can be seen in Table 2. In the first iteration, the tester’s link-failure

probability is equal for all edges, so the router simply chooses 

the free-flow shortest path for all O-D pairs. Table 3 shows that

Edge a is the only edge that is not a member of a shortest path. Its

use probability is therefore zero, along with its failure probability

essentially being zero. At the end of the first iteration, the router

has chosen an edge-use strategy, which, in turn, has led to the

tester’s edge-failure strategy. Note that Σeγ e
n > 1, which is due to

Edges b and f being members of two shortest paths. The simple

modification γ a
n + γ b

n/2 + γ c
n + γ d

n + γ e
n + γ f

n/2 = 1 yields the

expected result: unity.

During the second iteration, the edge costs and s-expected costs

are updated according to the link-failure probabilities. This causes a

1

3

2

4

(b, 3)

(e, 1)

(f, 3)

(d, 1)

(a, 5) (c, 4)

FIGURE 1 Example network (edge identifier, edge cost).

TABLE 3 Edge Probability and Failure Probability for � � 0.5

1st Iteration 2nd Iteration

e C −
e Sn

e γ n
e ρe

n+1 Sn
e γ n

e ρe
n+1

a 5 5 0 0.001 5.036 0.214 0.371

b 3 3 0.429 0.490 16.237 0.214 0.044

c 4 4 0.143 0.014 4.496 0.286 0.531

d 1 1 0.286 0.003 1.030 0.286 0.007

e 1 1 0.143 0.002 1.015 0.143 0.004

f 3 3 0.429 0.490 16.237 0.214 0.044

TABLE 4 Edge Probability and Failure Probability for � � 10

1st Iteration 2nd Iteration

e C −
e Sn

e γ n
e ρe

F, n Sn
e γ n

e ρe
F, n

a 5 5 0 ≈ 0 5 0.214 ≈ 0

b 3 3 0.429 0.5 16.5 0.214 0.5

c 4 4 0.143 ≈ 0 4 0.286 ≈ 0

d 1 1 0.286 ≈ 0 1 0.286 ≈ 0

e 1 1 0.143 ≈ 0 1 0.143 ≈ 0

f 3 3 0.429 0.5 16.5 0.214 0.5

TABLE 2 Shortest Paths

1st Iteration 2nd Iteration

O-D Pair (p) dp Kp Cost of Kp Kp Cost of Kp

(1, 2) 1 b–e 4 a 5

(1, 3) 1 b 3 a–d 6

(1, 4) 1 b–f 6 a–c 9

(2, 3) 1 d 1 d 1

(2, 4) 2 d–f, c 4 c 4

(3, 4) 1 f 3 e–c 5
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for comparison with Ukkusuri and Yushimito are given in Table 5; the

full application has 552 O-D demand pairs, equivalent to the number

used by LeBlanc (17 ).

Table 5 illustrates the effect of tester confidence. As θ goes from

one to 10, the tester (as displayed through edge-failure probabilities)

focuses the strategy on a progressively smaller set of links. When θ
equals 10, the tester’s strategy comprises only six edges. Qualitatively,

there is a good degree of correspondence between the strategies at

the three levels of tester confidence, especially among the edges

with the highest failure probability. There is also a high degree of

correspondence between the method presented in this paper and

previous work (10).

The method presented in this paper was run on the medium demand

scenario from Ukkusuri and Yushimito, in which the authors measured

the criticality of a link by reporting the percentage increase in system

travel time with the removal of a particular link (10). The five most

critical edges found by Ukkusuri and Yushimito are all near the top

of the tester’s strategies, and throughout the list there is a high degree

of agreement between the two methods. Figure 2 depicts the origins

and destinations of the trips used in constructing this comparison.

Unsurprisingly, many of the critical edges cluster around the origins

and destinations, as this is where the travel is concentrated. The

critical edges found by Ukkusuri and Yushimito cluster around the

origins and destinations somewhat more than the game-theoretic

edges. This is illustrated by the boldfaced edge numbers in Table 5,

shift in the shortest path, and Edge a no longer has a zero probability

of selection by either the router or the tester.

The comparison between Tables 3 and 4 in this simple example

demonstrates the effect of tester confidence or aggressiveness. In

Table 3, in which θ is equal to 0.5, the tester’s strategy is spread

more widely among the six edges. The focus is Edge c, but Edges

a, b, and f receive nontrivial attention after two iterations. When

confidence is increased (i.e., θ = 10), the tester’s strategy becomes

much more rigid, focusing only on Edges b and f, regardless of a

shift by the router. This rigidity is partially explained by the use of

parameter β, which severely penalizes any edges with a nonzero

probability of failure.

NETWORK APPLICATIONS

Figure 2 depicts the well-known and well-studied Sioux Falls network.

Although this network bears little physical resemblance to Sioux Falls

today, the network and its associated data have been used in a wide

variety of network analysis studies.

The Sioux Falls network has 24 nodes and 76 edges. This paper

will present results on the Sioux Falls network in two ways: (a) a

comparison between the method presented in this paper and the

findings of Ukkusuri and Yushimito (10), and (b) an application of

the method presented in this paper that uses the traditional O-D data,

which encompasses a larger number of nodes. The reduced O-D data
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28 43
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FIGURE 2 Sioux Falls network (dashed squares � origins for Table 5;
dashed diamonds � destinations for Table 5).
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the network, with the router concentrating less on particular links clus-

tered around limited origins and destinations than in the example

application in Ukkusuri and Yushimito (10).

Each application of this method will produce useful results relative

to the particular application. That is, a failure probability of 12% in

Table 6 cannot be compared to a failure probability of 25% in Table 5.

Failure and usage probabilities are a measure of the probability that the

tester or router, respectively, would include the edge in their strategy.

These numbers can be used to give a relative degree of criticality

within a particular example but offer no broad comparative measure

across applications. Figure 3 shows the results from Table 6 in graph-

ical form, with the boldest lines representing “high criticality” edges

with failure probabilities greater than 5%, dashed lines representing

edges with failure probabilities greater than 1% and less than 5%,

and gray lines representing “lower criticality” edges with failure

probabilities less than 1%. In this application, the highly critical edges

are clustered in the middle, around Node 10, which is the highest

activity node in the network in terms of O-D demand. Both directions

of edges between node pairs are coded identically in Figure 3. This is

probably because this method does not consider congestion effects,

only the number of shortest paths an edge is a member of and the

relative activity of those paths.

which show the edges that were not incident to either an origin or

destination.

The equilibrium method presented by Ukkusuri and Yushimito

has a substantial number of nonincident edges in the critical set, though

they tend to be clustered lower on the list than in the game-theoretic

approach. This may be caused by the tendency of the game-theoretic

approach with a low θ to spread a strategy over a larger number of

edges, regardless of the appropriateness of the assignment. This loss

in assignment realism is the price paid for the relatively quick solution

time of the proposed algorithm, which has a convergence criterion

of � = 0.00001.

Table 6 provides vulnerability results for the Sioux Falls network

with the 552 nonzero demand pairs. Here, the tester’s strategy is

much broader, which makes sense given that every node is now an

origin and a destination. When θ is higher, the tester appears to have

more confidence in the higher-ranking edges and less confidence in

the edges on the lower end of the list.

The link-use percentages are much smaller than those in Table 5.

The link-use probability is updated through the probability differen-

tial (xe
n ), which is a measure of the proportion of O-D demand that

might pass through a link. In the case of the full O-D matrix and its

results in Table 6, the demand is spread much more evenly throughout

TABLE 5 Tester Confidence or Aggressiveness and Comparison with Ukkusuri and Yushimito (10)

Ukkusuri & 
θ = 0.5, Iter. = 9114, RT= 63.5 s θ = 1, Iter. = 3442, RT = 23.0 s θ = 10, Iter. = 5049, RT= 40.3 s Yushimito (10)

Edge No. Failure (%) Use (%) Edge No. Failure (%) Use (%) Edge No. Failure (%) Use (%) Edge No. Critical (%)

4 31.51 27.15 4 34.08 24.66 4 34.78 23.20 39 80.34

6 13.97 29.87 39 16.62 29.03 39 20.55 28.87 4 71.78

12 13.96 29.87 6 15.69 28.88 6 17.66 28.83 75 67.87

39 10.99 28.67 12 15.65 28.88 12 16.87 28.82 64 50.02

20 4.93 32.88 36 5.23 17.43 36 8.32 19.10 20 46.23

7 4.74 24.46 20 2.89 32.87 64 1.81 18.84 16 42.96

2 2.98 22.14 2 2.87 24.64 1 30.43

64 2.89 14.66 7 2.68 24.47 2 26.19

75 2.62 28.67 64 1.95 15.78 60 20.17

36 2.60 14.31 32 0.91 17.42 50 19.09

32 1.27 14.31 75 0.91 29.03 7 17.61

68 1.18 14.01 29 0.16 17.43 54 16.08

16 0.95 32.88 68 0.11 13.25 37 12.65

9 0.70 29.87 16 0.11 32.87 6 11.02

29 0.62 14.31 9 0.05 28.88 26 9.02

37 0.47 17.24 37 0.03 17.25 12 7.84

60 0.35 11.42 60 0.02 11.78 9 7.79

38 0.33 14.83 38 0.01 14.47 3 7.71

50 0.20 11.55 68 4.63

56 0.18 8.20 76 4.61

18 0.18 16.08 72 4.48

35 0.17 7.73 30 4.06

65 0.14 14.01 52 3.99

1 0.14 4.51 32 3.84

47 0.07 2.77 10 3.30

All other failure < 0.07% All other failure < 0.01% All other failure < 0.01%

NOTE: Iter. = iteration; RT = run time; No. = number.
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FIGURE 3 Full O-D results with tester failure probabilities.

TABLE 6 Full O-D Matrix Vulnerability Results

θ = 1, Iter. = 84, RT = 0.704 s θ = 5, Iter. = 335, RT= 2.95 s θ = 10, Iter. = 72, RT = 0.63 s

Link No. Failure (%) Link (%) Link No. Failure (%) Link (%) Link No. Failure (%) Link (%)

48 5.34 6.83 27 12.04 4.01 27 12.27 3.69

29 5.28 6.80 32 11.88 4.00 32 12.01 3.69

27 3.68 4.72 43 10.21 3.29 43 11.86 3.07

32 3.63 4.69 28 9.98 3.28 28 11.71 3.07

28 2.92 3.55 29 5.98 4.66 40 6.23 4.45

43 2.92 3.55 48 5.94 4.66 34 6.17 4.44

46 2.42 6.47 46 4.82 6.07 46 5.73 5.90

67 2.40 6.44 67 4.69 6.05 29 5.68 4.42

22 2.20 3.69 22 4.27 3.59 48 5.66 4.42

47 2.20 3.69 47 4.26 3.59 67 5.46 5.89

40 1.81 4.13 40 4.00 4.46 22 4.29 3.48

34 1.79 4.10 34 3.89 4.45 47 4.25 3.48

45 1.77 5.43 45 1.99 5.48 45 1.75 5.51

57 1.77 5.43 57 1.98 5.48 57 1.62 5.48

49 1.57 7.54 74 1.07 3.80 74 0.76 3.92

52 1.57 7.54 39 1.06 3.80 39 0.76 3.92

33 1.43 2.36 56 0.91 3.72 23 0.69 3.12

36 1.43 2.36 60 0.91 3.72 13 0.64 3.10

74 1.41 3.50 15 0.78 3.64 15 0.32 3.70

39 1.41 3.50 12 0.75 3.62 56 0.30 3.69

26 1.38 4.61 36 0.53 2.30 12 0.28 3.67

25 1.37 4.58 33 0.52 2.29 60 0.27 3.67

12 1.36 3.41 23 0.52 2.75 36 0.17 2.37

15 1.36 3.41 13 0.50 2.74 10 0.17 2.37

13 1.29 2.63 10 0.43 2.23 31 0.16 2.36



CONCLUDING REMARKS

This paper presents a many-to-many method for the estimation of

the vulnerability of transportation network components. The method

adopts a game-theoretic framework and applies heuristics to solve

both levels of the problem. The heuristics utilize practical measures of

edge utilization and cost but do not provide an equilibrium assignment.

The method solves the transportation network vulnerability problem

rapidly on a small network, producing results that correspond well

with an equilibrium-based methodology.

There are numerous challenges in the future for this, or any, method

that provides a network vulnerability measure. Application to large

networks presents substantial challenges, especially if on-demand

applications (in emergency situations, for example) are to be pursued.

The edge penalty function is relatively simple and can be improved,

as can the probability differential metric, perhaps by incorporating

the relative capacity of the paths. Ultimately, a method that combines

the strengths of both the game-theoretic and equilibrium-assignment

approaches should provide the level of reliability and realism that

this important topic deserves. To this end, the work presented in this

paper describes a straightforward method for the incorporation of

all O-D pairs that could be applied on-the-fly in applications where

the response to changes in the network needs to be coordinated in

near real time. The authors are currently engaged in further devel-

opment of the method, maintaining the computational efficiency while

improving the realism by adding congestion effects.
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