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Abstract. Aeroelastic systems with freeplay nonlinearity can exhibit a wide 
variety of qualitatively different dynamical responses such as limit cycle 
oscillations and chaos in the pre-flutter regimes. Consequently, the 
bifurcation scenario in an aeroelastic system with freeplay nonlinearity 
under uniform flows have received considerable attention in the literature. 
However, in reality flows are far from deterministic and often possess a 
small temporal random fluctuations about a mean value. Input flow 
fluctuations have the potential to alter the stability and give rise to atypical 
routes to flutter. Indeed, recent studies have shown that under flow 
fluctuations the aeroelastic systems loses its stability via a regime of 
oscillations called intermittency. Further, it is observed that the presence of 
cubic hardening nonlinearity and input flow fluctuations with predominantly 
long time scales can give rise to “on-off” type intermittency. This dynamical 
behaviour is attributed to type of nonlinearity and relatively short time scale 
for the system to stay and exhibit distinct dynamics. Extending the 
mechanism of intermittency route to flutter in aeroelastic systems with other 
prominent types of nonlinearities, such as, freeplay have however, received 
minimal attention in the literature. The present study devotes itself to 
investigate the response dynamics of an airfoil with freeplay nonlinearity 
subjected to long time scale input flow fluctuations. 

1 Introduction  
The topic of aeroelasticity is a multidisciplinary study focussing on the interplay between 
fluid, structural and inertial forces. The mutual interaction between aerodynamic forces and 
the structural motion often results in harmful aeroelastic oscillations called flutter [1]. This 
dynamical instability arises when the incoming flow speed is greater than a critical value of 
flow speed. In such a situation, the airfoil displays violent oscillations that can either cause 
abrupt structural failure or an accumulation of fatigue damage. Estimating the onset of these 
detrimental flutter oscillations therefore is an important step in the design of aerospace 
structures. Identification of flutter regimes, especially, in the ubiquitous presence of non-
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smooth nonlinearity (such as freeplay) is not a trivial task [2]. Indeed, in the presence of 
freeplay nonlinearity, it has been observed that nonlinear responses such as limit cycle 
oscillations (LCOs), period doubling and chaos [3,4]. Consequently, one resorts to 
performing a bifurcation analysis to investigate the stability characteristics of such nonlinear 
systems.  

Another difficulty that arises in identifying unstable oscillatory regimes is the randomly 
fluctuating nature of the input wind. These fluctuations alter the stability regimes [5,6] and 
also give rise to atypical routes to flutter [7,6]. Despite the necessity to incorporate flow 
fluctuations, studies on bifurcation characteristics of freeplay aeroelastic systems have by 
and large devoted minimal attention to the same. The present study addresses this concern. 
This study devotes itself to investigate the response dynamics of an airfoil with free play 
nonlinearity subjected to long time scale input flow fluctuations. A pitch-plunge airfoil with 
a freeplay nonlinearity in the pitch degree of freedom is considered. A linear aerodynamical 
formulation accounting for the unsteady wake effects via Wagner function formulation is 
considered. The fluctuating flow is modelled using a representative sinusoidal term with 
frequency terms varying randomly with time. With the mean flow speed as the bifurcation 
parameter, a response analysis is carried out and the route(s) to flutter are identified. 
Subsequently, a stochastic bifurcation analysis is undertaken to characterize these pre-flutter 
responses in both qualitative and quantitative paradigms. 

The organization of this paper is as follows. Section 2 describes the mathematical model 
of the airfoil and the flow fluctuations. The results obtained are discussed in Section 3. The 
salient conclusions that emerge from this study are summarized in Section 4.  

2 Mathematical model 
The airfoil is modelled as a “typical section” – implying a rigid flat plate consisting of two 
degrees of freedom, namely, pitch and plunge. Flexibility in these degrees of freedom are 
incorporated by attaching translational and torsional springs at the elastic axis. It is assumed 
that the pitch possesses a non-smooth form of nonlinearity called freeplay and is modelled as 
a bilinear stiffness. The incoming flow is considered to be linear and attached. The resulting 
aerodynamic forces are modelled with a dependency on both the airfoil motion and the wake 
effects via an unsteady aerodynamic formulation. The resulting governing equations of 
motion are as follows: 

 𝜖𝜖′′ + 𝑥𝑥𝛼𝛼𝛼𝛼′′ + 2𝜁𝜁𝜖𝜖
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Here 𝑀𝑀(𝛼𝛼) is the restoring moment due to torsional spring, 𝛼𝛼 is nondimensional pitch angle 
and 𝛿𝛿 is freeplay length. The freeplay length 𝛿𝛿 =.0087 is fixed for all our numerical 
simulations. 

3 Stability analysis under deterministic flow 

3.1 Nonlinear bifurcation analysis 

The numerical bifurcation analysis is done for bilinear structural nonlinearity under 
deterministic free stream velocity. As predicted earlier by [3], the system exhibits wide 
variety of dynamical phenomenon well below linear flutter speed. Indeed, when U<Ucr a 
plethora of dynamical responses are observed. For example, at U =3 the airfoil exhibits 
chaotic motion as shown in Figs. 1 (a) and (b). Increasing U to 4, a period doubling cascade 
is observed (see Figs. 1 (c) and (d)). Further increasing the flow speed such that U =5, 
sustained LCOs are encountered, and the corresponding phase plots and time histories are 
shown in Figs. 1 (e) and (f). It is worthwhile to note that only representative time histories 
and phase plots are shown in Fig 1 for the sake of brevity. A finer resolution of the input flow 
speed results in another set of distinct dynamics that shows dependency on the initial 
conditions. However, the present study focuses only on the broad dynamics that are possible 
in a base-line, freeplay aeroelastic system for comparison against the stochastic dynamics. 
The authors recommend the interested readers to refer [3,8] for excellent discussions on 
bifurcation scenarios in aeroelastic systems with freeplay nonlinearity. 

3.2 Stochastic response analysis 

So far an investigation into the bifurcation scenarios in the deterministic system was carried 
out.  

 
 

 

                                                                                        

  

 

 

 

Fig. 1. (a,b) Phase portrait and time response of chaotic response at U=3, (c,d) phase portrait and time 
response period doubling at U=4, and (e,f) phase portrait and time response limit cycle oscillation at 
U=5. 
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Next, the input flow is considered to be a randomly time varying parameter modelled as 
a long time scale fluctuation. The details of the fluctuation model can be found in [7]. Once 
again the time responses are obtained by using a fourth order Runge Kutta algorithm. With 
mean flow speed as the bifurcation parameter, sample cases of time histories are shown in 
Fig 2.  

 

 

 

 

    

 

 

 

 

 

 

 
Fig. 2. Phase plots and time responses for Um = 4.4 (a,b), 4.97 (c,d) and 5 (e,f). 

At Um = 4.4, the response shows a switching between a period doubling to LCO and to 
another period doubling attractor in a random fashion (see Fig. 2a). Such an alternation 
between qualitatively distinct dynamics can be attributed to the presence of randomly 
fluctuating bifurcation parameter (here the flow speed). Indeed, the flow speed is time 
varying with scales of fluctuation that are much larger than the system time scale. This 
permits the flow speed to go back and forth into different attractor regimes in an 
unpredictable fashion. The ability of long time scale flow fluctuations to manifest distinct 
switching between attractors have been investigated by Venkatramani et al. [7]. It is worth 
pointing out that such stochastic responses are a signature of a noise induced phenomenon 
called intermittency. A typical noise induced intermittency is known to possess “on” and 
“off” states – characterized in terms of sudden periodic oscillations amidst near rest states. 
Such responses have been reported in the literature [8,7]. However, an underlying 
requirement for “on-off” type intermittency is the presence of supercritical Hopf bifurcation 
in the baseline, deterministic aeroelastic system (as in the presence of cubic hardening 
nonlinearity). Given the non-smooth nature of nonlinearity considered in the present study, 
wherein, the deterministic system possesses multiple attractors, it is unsurprising that a 
switching between two or more attractor regimes is observed. A rudimentary observation 
would indicate that the nature and strength of the noise would exacerbate the extent of switch 
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over between these attractor spaces. However, it would be premature to comment on the same 
without carrying out a systematic investigation. 

Increasing the mean flow speed further to 4.97, it is observed that a switching between 
qualitatively distinct regimes still persists (see Fig. 2b). However, the underlying attractor 
regimes are distinct from those observed in Fig. 2a. Here, an alternation of the dynamics 
between an LCO attractor and period doubling exist. Note that this response is an intermittent 
switching as well. Next, Um = 5 one can observe a large amplitude periodic response with 
varying amplitudes (see Fig. 2c). In other words, such responses possess LCOs that are of 
relatively higher amplitudes interspersed amidst a lower amplitude LCO. From the parlance 
of stochastic dynamical systems, these responses are a signature of a random LCO [5]. From 
an engineering perspective, these responses indicate the onset of oscillatory instabilities in 
the stochastic aeroelastic system. Once the stochastic responses are obtained it becomes 
imperative that any comments on the bifurcation characteristics would involve a stochastic 
bifurcation analysis. As a first step, we carry out a Phenomenological or P-type bifurcation 
analysis. This involves tracking the topological changes in the structure of the joint 
probability density function (j-pdf) of the state variables as the bifurcation parameter is 
varied. For a clearer visualization, the two dimensional section of the j-pdfs are shown in 
Fig.6 in terms of the contour plots. The contour plots correspond to those time histories 
shown in Fig. 5. It is pertinent to note that a visual inspection of these contour plots clearly 
reveal a topological change in their structure. Such a change is an indication of a P-bifurcation 
occurring in the aeroelastic system with freeplay nonlinearity excited with stochastic wind. 

 

 

 

 

 

 

Fig. 3. Contour plots corresponding to Fig. 2. 

4 Concluding remarks 
A pitch-plunge airfoil with free Play nonlinearity in the pitch is investigated in the presence 
of randomly fluctuating wind. The deterministic bifurcation analysis revealed that the pre-
flutter response possess a wide spectrum of nonlinear responses such as chaos, period 
doubling and LCOs. The introduction of fluctuating flows were observed to give rise to 
intermittent switching between LCOs and period doubling in a random fashion. Such 
responses were a signature for intermittency and were observed to presage the random LCOs. 
The stochastic responses were further discussed in terms of P-bifurcation concepts. It would 
be interesting to investigate the stochastic bifurcations in terms of quantitative measures such 
as Shannon entropy and Largest Lyapunov exponent. These investigations can provide 
deeper insights and are to be taken up in future.  
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