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For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation,

the foundational concepts of “magnetic reconnection” may require deep revisions because, in the

larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more

general fields (one for each plasma specie) that are weighted combination of the electromagnetic

and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two

different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and

the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F

description, a Connection Theorem is readily established; we show that, for each specie, there exists

a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently

remains, forever, connected to the flow. This field is an expression of the unification of the electro-

magnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by

itself, is not connected in the first place, its reconnection is never forbidden and does not require any

external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be

interpreted simply as a consequence of the preservation of the dynamical structure of the unified

field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful

Connection Theorem; a general and exact field does not exist, which remains connected to the bulk

plasma flow. It is also shown that the helicity conservation and the existence of a Connected field

follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm’s law

with a physical velocity. This new perspective, emerging from the analysis of the post MHD phys-

ics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

Published by AIP Publishing. https://doi.org/10.1063/1.5021492

I. INTRODUCTION

Magnetic reconnection in a charged fluid is one of the

most investigated processes in literature. In the simplest

case, this energetic event consist in the diffusion and recon-

nection of magnetic field lines; the latter caused by plasma

resistivity. The study of magnetic reconnection is of funda-

mental importance since it can occur at different scales and

in different situations spanning laboratory, astrophysical, and

general relativistic plasmas.1,2

For a deeper understanding of the reconnection process

(the subject of an enormous number of papers), one must

necessarily begin with identifying the physical quantity that

is expected to remain connected during the system evolution.

This is determined by a Connection Theorem (CT). The first

formulation of such a CT was worked out by Newcomb3 in

1958. It was demonstrated that in an ideal magnetohydrody-

namical (MHD) plasma (obeying an ideal Ohm’s law), two

fluid elements connected by a magnetic field line at some

given time, will remain connected for all subsequent times,

i.e., the plasma moves with just the right transport velocity

that preserves the magnetic connections. This conservation

law for the magnetic field lines is one of the most important

ideas in plasma physics; the magnetic field emerges as a

topological field whose characteristic identity is preserved

by the constrained dynamics. It is only when these con-

straints are violated, that the magnetic field lines can recon-

nect and may, in the process, locally annihilate the field. The

most common example is when one invokes plasma resistiv-

ity that breaks the ideal Ohm’s law.

Connection Theorems (CTs) (mathematical formulation

of the concepts of connection and reconnection of fields) have

been derived in dissipation-less systems of greater generality

where physics is much more general than the original non-

relativistic MHD.4–8 Pegoraro, for instance, showed that for an

ideal relativistic MHD plasmas, there is a preserved connec-

tion,4 where the connected field is the magnetic field. Similar

CT can be extended to include general relativistic effects.6

However, for more complicated plasma systems, the proofs

for CTs are not straightforward. On the other hand, there was

a major transformation in the general theory when, formulat-

ing the fully covariant dynamics of hot relativistic fluids,

Mahajan9 demonstrated that the mathematical structure of the

non-relativistic MHD (epitomized in the induction law with an

ideal Ohm’s law) was, quite strictly, maintained for the much

more encompassing larger dynamics. The effective fields in

the larger dynamics are a combination of the magnetic and

thermal-vortical fields (see Ref. 10 for a detailed account)

implying what has been called the magneto-fluid unification.

In fact, each component of the plasma obeys its own ideal

Ohm’s law [see Eq. (35) of Ref. 9 or Eq. (39) of Ref. 10 for
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explicit expressions]. Consequently, each fluid has its own

frozen-in effective field. For example, in an electron–ion

plasma, the total canonical vorticity (circulation) of the ion

plasma

Bþ
mi

e
r� ficiuið Þ (1)

(with the nonrelativistic limit Bþ ðmi=eÞr � ui) is frozen in

the ion fluid. Here, B is the magnetic field, mi is the ion

mass, e is the electron charge, u is the velocity, c is the kine-

matic relativistic factor, and f, denoting thermal enthalpy,

can be viewed as a “thermal c.” Besides, the exact equivalent

field, the total canonical vorticity of the electron plasma, is

frozen in the electron fluid

B�
me

e
r� feceuið Þ (2)

(with the nonrelativistic limit B� ðme=eÞr � ue).

The basic message of the Electro–Vortic (EV, a more

covariant expression for the magneto-fluid) formulation10 is

that the plasma evolution equations do not discriminate

between the electromagnetic and the thermal-vortical forces

(Maxwell equations, of course, do) and what is frozen-in

in a non-dissipative dynamics is the magnetic part of the

Electro–Vortic field, but not either of its contributing parts.

Although Ref. 9 had worked out the basic structure of the

very general non-dissipative fluid dynamics of charged par-

ticles, it did not explicitly derive the pertinent Connection

Theorem (CT), or explore the consequences for reconnection.

The CT theorems for the larger dynamics were explicitly

derived in Refs. 7 and 8 exploiting the unified antisymmetric

Electro–Vortic tensor (the version in Ref. 9). Since these con-

nection theorems identify the connected fields to be more gen-

eral than the conventional magnetic field, one must be ready

to revise our ideas about the reconnection process invoked

often to explain the local destruction of the magnetic field.

In fact, a simple example of the new paradigm is given in

Ref. 11 that studies a non-relativistic non-ideal collisionless

electron–ion plasma keeping both ion and electron inertia;

it was shown that magnetic reconnection is a consequence

of the conservation of the canonical circulation flux
Ð

½B
�ðme=eÞr � ue� � ds. Since the total canonical vorticity can-

not change its topology, the increase in the electron fluid vor-

ticityr� ue leads to the reconnection of magnetic field lines.

In this paper, we would like to advance an alternative

mode of thinking. Since the concept of reconnection makes

sense only for those fields that were in some way connected,

it is not meaningful to talk about magnetic reconnection in a

dynamics more encompassing than the ideal non-relativistic

MHD; the only exception is the inertialess Hall MHD, where

the magnetic field is still frozen in the electron fluid, and

therefore, magnetic reconnection in the electron fluid is an

acceptable concept. For the general dynamics, the magnetic

field lines become somewhat fictitious; it is the lines of the

generalized field that have fidelity because they are con-

nected to the streamlines of one of the fluids. The concept

of the generation/destruction of the magnetic field should

be replaced by the generation/destruction of the “magnetic”

component (EVm) of the EV field. The changes in the

strength and character of the magnetic field are reflective of

the energy transformations between the Electromagnetic and

the Thermal–Vortical parts as the system evolves respecting

the appropriate constraints (like the generalized helicity con-

servation for each species of the plasma); magnetic topology

is not the dictator of changes, but it is the topology of EVm

that undergoes a change in response to, say, dissipation.

This view point was developed in detail in relation to the

so-called problem of seed magnetic field generation in a

dissipation-less plasma.10 Reconnection and magnetic field

generation are the two aspects of the same phenomenon, and

both are forbidden by the same topological constraints in the

non-relativistic MHD. For the larger, more realistic dynam-

ics, conceptual rethinking is necessary as the magnetic field

is but a part of the unified EV field.

Before proceeding further, it is important to explicitly

define some of the terminologies used in the rest of this paper.

The Electro-Vortic formalism, in its original form, deals, sep-

arately, with equations of motion of each fluid constituting a

plasma; the dynamic variables are the four-velocities of the

individual fluid in addition to the electromagnetic fields. For

a standard electron-ion or electron-positron plasma, such a

formulation will be referred to as a two-fluid (2F) variable

system. The alternative formalism, where the two species are

combined in what may be called one-fluid (1F) variables (the

four-current and the mass flow four-velocity) is more famil-

iar, primarily because of highly studied systems such as the

non-relativistic MHD and Hall MHD. Amongst other things,

this paper will attempt to show how the 1 and 2F formalisms

may expose different aspects of the physics of the plasma.

The 2F approach of Refs. 9 and 10 has clearly demon-

strated that the magnetic part of the individual Electro-Vortic

field (EVm) is frozen in the respective fluid (the plasma could

have more than two constituents). The necessary and suffi-

cient condition for constructing a connection theorem for B,
the magnetic part of the EV field, is the existence of an ideal

Ohm’s law of the form10,12

Ek þ uk � Bk ¼ 0; (3)

where E and u are, respectively, the electric part of the EV

field and the three vector part of the four velocity pertaining

to the fluid k. Thus, the lines of Bk (and not the magnetic field

B) are continually tied to the streamlines of its constituent

“ideal” fluid, and each fluid has its own connection theorem.

One of the questions we explore in this paper is that

whether any additional independent connection theorems

exist, for instance, in a 1F set-up. We will still attempt to, for-

mally, construct a CT (and the conservation of the circulation

flux) for a two component (ion–electron) one-fluid plasma

evolving under the most general relativistic dynamics of

Refs. 9 and 10. One must, however, be prepared to encounter

inherent problems with this project. When one mixes the two

fluids for a 1F description, a new composited velocity must

be assigned to the total fluid. Thus, an ideal Ohm’s law (that

may pertain to a general fluid) must be of the form (3), with

the new E and B obeying an equivalent Faraday law. These

constraints may be difficult to fulfill.
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It is worth stating here that the formalism developed

contains, as its limiting cases, almost all non-relativistic and

relativistic models of dissipation-less isotropic fluids studied

so far, including the relativistic MHD.12–14

We will, however, first dwell on the 2F formalism of the

ElectroVortic field.

II. GENERAL PLASMA EQUATIONS

The main steps in the Electro-Vortic formalism of the

covariant relativistic dynamics of a perfect isotropic charged

fluid, developed in Refs. 9 and 10, may be summarized as

follows. The essence of the dynamics is contained in the con-

servation law for each fluid

@� T
l�
fluid þ T

l�
EM

� �

¼ 0; (4)

where T
l�
fluid ¼ hUlU� þ pgl� is the energy-momentum tensor

of the fluid, with enthalpy h and pressure p, a four-velocity

Ul in a Minkowsky spacetime gl� , and T
l�
EM is the energy-

momentum tensor of the electromagnetic field.16 Equation

(4) for each fluid is equivalent to

@� hUlU�ð Þ þ @lp ¼ qnFl�U�; (5)

where q is the electric charge of the particle, n is the density,

and Fl� is the electromagnetic field tensor. Also, each plasma

specie obeys its own continuity equation

@l nUlð Þ ¼ 0 : (6)

The Maxwell equations,

@�F
l� ¼ 4p

X

i

qiniU
l
i ; (7)

provide the closure (where the sum is over all the species).

Equations (5), (6) (for all species), and (7) complete the

plasma dynamics.

A. Antisymmetric unified form of plasma equations

It is rather remarkable9,10,15 that plasma equations can be

written in terms of fully antisymmetric tensors; this requires

casting the fluid forces (Vortical–Thermal) in electromag-

netic clothing. We can define a fully antisymmetric fluid ten-

sor field as

Sl� ¼ @l fU� þZ@�rð Þ � @� fUl þ Z@lrð Þ; (8)

in complete analogy with the electromagnetic field tensor

Fl� . The antisymmetric tensor (8) contains the relativistic

thermal and fluid properties of the plasma. Here, f ¼ h=mn
is the enthalpy density per mass m, which depends on the

plasma temperature T. The scalar entropy density r, related

to the other thermodynamical quantities by

T@lr ¼
1

n
@lp� m@lf ; (9)

is conserved along the flow lines

Ul@lr ¼ 0 : (10)

Lastly, the scalar quantity Z is related to the plasma temper-

ature, and it satisfies

Ul@lZ ¼
T

m
: (11)

Making use of all these exact properties, the entire

dynamics becomes unified and is expressible in terms of the

weighted Electro–Vortical field (EV) tensor

Ml� ¼ Fl� þ
m

q
Sl� ¼ @l

P
� � @�

P
l; (12)

which signifies the weight of the fluid (through the mass m)

and electromagnetic forces (through charge q). It is con-

structed as the four curl of the generalized potential

P
l ¼ Al þ

m f

q
Ul þ

mZ

q
@lr : (13)

The plasma dynamical equation (5) may now be written ele-

gantly and succinctly as

qnU�M
l� ¼ 0 : (14)

This equation is a profound expression of the fact that the

fluid and the electromagnetic forces can be treated at par and

are formally unified in the EV. Any general theorem on this

dynamics, therefore, must involve only the EV field and not

just the electromagnetic part. The EV field Ml� is a fully

antisymmetric tensor of the second-rank (a generalization of

the electromagnetic tensor Fl�).

In fact, the structure of (14) readily reveals the funda-

mental features of the fluid dynamics through the logical

chain:

(1) The three vector (and the only independent) component

of (14) is nothing but an ideal Ohm’s law for the given

fluid (repeated for convenience with the species index k

suppressed)

E þ u� B ¼ 0; (15)

with the obvious identification [Ei ¼ M0i;Bi ¼ Mjk

with i, j, k cyclic] for E and M the electric and magnetic

parts of the EV field.

(2) Since an ideal Ohm’s law implies the connectivity of B
with the fluid velocity field u, a Connection theorem for

the individual fluid is an ineluctable consequence of the

dynamics controlled by (14). This implicit result was

explicitly demonstrated for several variations in Refs. 4,

5, 7, and 8.

(3) The EV unification, thus, not only establishes the con-

nectivity, it also gives full expression for the generalized

field B that is connected to the flow field of the given

fluid. One could, of course, trivially express the con-

nected B in terms of the 1F variables, the magnetic field,

the current, and the mass flow, remembering, however,

that B is connected to the given fluid and not to the mass

motion.
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(4) Within the idealized dynamics, the connectivity (exis-

tence of a CT) is trivially guaranteed. When some non-

ideal effects are introduced to violate it, it is the lines of

B for each fluid that reconnect; the reconnection of the

lines of the magnetic field is not even a meaningful prop-

osition since these lines were never connected to the

flow streamlines. It is only in the simplest MHD models

that B � B, and magnetic reconnection is a meaningful

concept. In fact, if the concept of reconnection is to

be meaningfully studied in dynamics more general than

MHD, we must embrace these new composite fields.

B. Relativistic two-fluid plasma in one-fluid (1F)
variables

We will now manipulate the EV formalism pertaining to a

two species plasma of opposite charged elements with masses

mþ and m�. The positive and negative charged fluids, labelled

by the symbolsþ and –, respectively, obey

enþU�þM
l�
þ ¼ 0 ;

�en�U��M
l�
� ¼ 0;

(16)

where e is the elementary charge. Let us now go over to the

1F variables, the (total) mass flow plasma four-velocity Ul,

and the four-current Jl

U
l ¼

1

q
mþnþU

l
þ þ m�n�U

l
�

� �

;

Jl ¼ enþU
l
þ � en�U

l
�;

(17)

whereq ¼ mþnþ þ m�n�, with the inverse relationship

U
l
6
¼

nUl

n6
6

m7J
l

emn6
; (18)

where now n ¼ q=m is the effective plasma density (m

¼ mþ þ m�Þ. We notice that, by using individual continuity

Eqs. (6), we find a composite conservation law for the mass

flow velocity

@l nUlð Þ ¼ 0 : (19)

The 1F formulation is facilitated by introducing two

composite tensors: the first

Zl� ¼
1

2
Ml�

þ �Ml�
�

� �

¼
1

2e
mþS

l�
þ þ m�S

l�
�

� �

(20)

appears to be a purely fluid tensor (Fl� is missing), while the

second

Dl� ¼
1

2
Ml�

þ þMl�
�

� �

¼ Fl� þ
1

2e
mþS

l�
þ � m�S

l�
�

� �

(21)

is a mixed tensor related to both kinds of forces. By con-

struction, these antisymmetric tensors can be put as

Zl� ¼ @lY� � @�Yl; Yl ¼
1

2
P

l
þ �P

l
�

� �

;

Dl� ¼ @lP� � @�Pl; Pl ¼
1

2
P

l
þ þP

l
�

� �

;

(22)

in terms of four-potentials. In particular,

Pl ¼ Al þ
j1

2e
nUl þ

j2

2e2
Jl

þ
1

2e
mþZþ@

lrþ � m�Z�@
lr�ð Þ; (23)

with

j1 ¼
mþfþ

nþ
�
m�f�

n�
;

j2 ¼
mþm�

m

fþ

nþ
þ

f�

n�

� �

:

(24)

With the preceding definitions, the addition and subtrac-

tion of the two Eqs. (16), lead to

J�D
l� þ 2neU�Z

l� ¼ 0; (25)

2neU�D
l� þ J�Z

l� ¼ 0; (26)

where [Dl ¼ ðmþ � m�Þ=m]

Ul ¼ U
l �

Dl

2ne
Jl (27)

may be viewed as some effective velocity which is not the

velocity of the mass flow. Equations (25) and (26) expressed

in terms of 1F plasma variables (as distinct from the individ-

ual fluid variables) form the dynamical system that we ana-

lyze. It is easy to notice that Eq. (25) is the generalization of

the corresponding MHD equation of motion, whereas Eq.

(26) is to be identified with a general form of Ohm’s law.

For the convenience of the reader, we show in Appendix A

that Eqs. (25) and (26) reduce to the well-known non-relativ-

istic MHD limits.

We must realize that for the time being, we have lost the

succinctness and formal elegance of the original description.

We will now explore whether this 1F formulation teaches

us something new and whether it helps us to relate, more

directly, with earlier studies.

III. EXAMINING THE POSSIBILITYOFAGENERAL

CONNECTION THEOREM

The generalized dynamics contained in (26)

U�D
l� ¼ C

l; (28)

where

C
l �

1

2en
J�Z

�l (29)

does not have the form of an ideal Ohm’s law. The presence

of a nonzero C
l on the r.h.s. of (28) makes it resemble a

“resistive” Ohm’s law. The thermal-vortical features of Z�l=
2en provide an effective tensorial resistivity that does not
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vanish in general. Therefore, for this fluid with a velocity U� ,

there is no connection theorem for the magnetic component

of Dl� . A more formal demonstration, following the proce-

dure developed in Refs. 7 and 8, is displayed in Appendix B.

Under very specific conditions, some non-ideal effects

can be put in the form of a general gauge fields allowing a

unified form of the CT.12 However, the general lack of a CT

for the composite field Dl� (notice that the special case of

C
l ¼ 0 reduces the system to its MHD limit) implies that it

cannot remain frozen-in into the plasma for all times; the

field lines associated with the “magnetic” part of Dl� can

change their topology; the field can be created, annihilated,

or reconnected through the effective resistivity introduced

by C
l. The field Dl� , therefore, is not a restraining anchor

and is a poor substitute for individual unified tensors Ml� to

describe the plasma dynamics.

One can conclude then that any attempt to construct new

and exact conventional physically meaningful Connection the-

orems (that freeze appropriate generalized fields in the mass

flows) will not succeed. Physically meaningful Connections

of this class are already described in Section II A; only

B6i ¼ eijkM6
jk are frozen in the two fluids moving, respec-

tively, with velocities u6.

Despite this setback, there may be some value in pursu-

ing the project of finding some restricted class of plasma

dynamics where a Generalized Connection Theorem (GCT)

may exist, i.e., we may find a composite field frozen in a

fluid transported by a velocity that does not correspond to

either the single fluid or the mass flow velocities. Such a for-

mal exercise is executed in Appendix C where we have

worked out conditions under which the field Dl� may be

connected to a “fluid” transported by a rather complicated

“velocity field.”

IV. THE HELICITY PERSPECTIVE

Since an ideal Ohm’s law provides a necessary and

sufficient condition both for a conserved helicity and for

the existence of a Connected field, we could earn a different

perspective on the physical content of Sec. III via a discus-

sion on the conserved helicities of the system. As mentioned

previously, each fluid (in the 2F plasma formalism) has an

independent conserved helicity. Our experience in Sec. III

suggests that in the 1F formalism, we may not find a con-

served helicity characteristic of the composite fluid.

For each fluid specie, one may construct a helicity four-

vector9,10,17

Kl
6
¼ P�6M

l�
6
; (30)

where Ml� ¼ �l�abMab is the dual of the EV field (12), and

Pl is the four-potential (13) for each specie. It can be readily

shown that the helicity four-vector for each fluid Kl
6
is con-

served, i.e., it is divergence free

@lK
l
6
¼ 0; (31)

if and only if (14) is satisfied. A profound consequence is the

conservation of the generalized helicity for each fluid

H6 ¼ hK0
6
i ¼ hA6 � r � A6i; (32)

where h i ¼
Ð

d3x, and A6 ¼ A6m6f6c6v6=e6m6Z6
rr6=e. In this way, the conserved helicities H6 pertain to

the individual fluids. The generalized fields r�A6 ¼ B6

ðm6=eÞr � ðf6c6v6Þ6ðm6=eÞrZ6 �rr6, therefore, stay

connected or frozen in its respective fluid.

When one goes to a 1F description, these conserved hel-

icities must pertain because the essential features of a

dynamics do not change just because we chose to write the

equations differently. It is certainly true that out of the two

conserved helicities, we could construct any two linearly

independent combinations or alternatively, and because of

Eq. (31), we could construct any linear combination of the

helicity four vectors (Kl ¼ aKl
þ þ bKl

�) that will still lead

to a conserved helicity. We will find, however, that such a

combination will not have the structure of Eq. (30). Let us,

for instance, examine the conserved helicity four-vectors,

Kl
1 ¼ ðKl

þ þKl
�Þ=2 and Kl

2 ¼ ðKl
þ �Kl

�Þ=2. After some

straightforward algebra, these four vectors are expressible in

1F variables

Kl
1 ¼

1

2
P�D

l� þ Y�Z
l�ð Þ ;

Kl
2 ¼

1

2
Y�D

l� þ P�Z
l�ð Þ ;

(33)

where D
l� ¼ �l�abDab and Z

l� ¼ �l�abZab are the dual of

the fields (21) and (20), respectively. It is equally straightfor-

ward to show that both helicity four-vectors (33) are con-

served only if Eqs. (25) and (26) are valid. Anew, the two

resultant conserved generalized helicities

H1;2 ¼ hK0
1;2i; (34)

expressed in 1F variables, are simply the linear combinations

of the two single fluid helicities. However, Eq. (33) is not of

the form Eq. (30); it is only the latter that links a conserved

helicity with a connected field. Since there is no conservation

theorem involving D
0i ¼ �0ijkDjk, the field Dij does not

remain connected.

V. IMPLICATIONS FOR RECONNECTION

Having shown that the only fields that remain connected

during fluid transport (frozen-in condition) are the general

fields Ml�
6

corresponding, respectively, to the positively and

negatively charged components of the plasma, one must

wonder about the implications of this result for the highly

investigated reconnection process.

This enquiry must be made in the backdrop of our dem-

onstration that we could not find any new field that remains

connected during the transport via a physically meaningful

velocity like the bulk plasma motion. The special case of

C
l ¼ 0 leads to connected fields that are simple limits of

Ml�
6
. One could invoke a different transport apart from the

natural one (velocity of the individual fluid and the bulk

velocity) and find a connected field (as it is performed in

Appendix C) but such a procedure, though mathematically

possible, does not lead to any additional understanding that
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is not contained in the rigorously and naturally connected

fields Ml�
6

(in fact it is their magnetic components that are

frozen-in)

Since the ElectroVortic field Ml�
6
, a unified combination

of the electromagnetic and thermal-vortical forces is consider-

ably more complicated than Fl� , and the connected field is,

commensurately, more complicated than the magnetic field.

Thus, barring the simplest models (MHD and hall MHD), the

magnetic field is not the central variable in the physics of

reconnection because it is not the field that was connected in

the first place. What replaces the magnetic field is the mag-

netic component ðEVmÞ of the generalized ElectroVortic field

(Bi ¼ Mjk with i, j, k cyclic) that does, indeed, remain con-

nected in the ideal dynamics of a hot relativistic plasma.

Naturally, the EVm associated with either plasma specie differs

more and more from the magnetic field Bi as the plasma

description departs further from MHD. At some stage, the con-

ventional subject of magnetic reconnection may not remain a

legitimate pursuit.

Since the magnetic field is not connected in a general

plasma, the field lines can reconnect (destroying the field in

some region) without any aid from resistive or other external

processes; magnetic field annihilation is allowed in the ideal

dynamics. In the exactly opposite scenario, magnetic field can

be created (from zero value) without an external seed, entirely

within an ideal dynamics.10 The evolution of the magnetic

component of the generalized ElectroVortic field and of the

magnetic field will be determined by a comparison between

their available energy. In Ref. 14, in the non-relativistic

regime, it was shown that “magnetic reconnection” was possi-

ble if large gradients of the electron plasma fluid velocity or

density are achieved, in agreement with numerical results of

Ref. 11. This is a very important problem for Hamiltonian

reconnection.14 In our work, the relevant magnetic component

of the generalized ElectroVortic field for each fluid is B ¼ B

þðmf=qÞr � ðcuÞ þ ðc=qnÞrp� u. Since large gradients

of relativistic fluid velocity or relativistic pressure (and their

associated energy) will make the nonmagnetic part to be large

(even larger than the magnetic part in some cases), large

changes in magnetic energy (including the conventional mag-

netic reconnection) are possible consistent with the conserva-

tion of the helicities determined by the magnetic component

of the generalized ElectroVortic field. Even when large gra-

dients are available, the ability of a given plasma state to shed

its magnetic energy to flow or thermal energy is dictated by

the value of the plasma helicity invariants (32) and the elec-

tromagnetic helicity invariant

Hþ ¼ hAþ � r � Aþi;

H� ¼ hA� � r � A�i ;

HEM ¼ hA � Bi :

(35)

It was shown in Ref. 18 that the destruction of magnetic field

is catastrophically possible (though the magnetic field is not

connected) while maintaining the invariants of the system.

This can occur in an unstable state where flow energy domi-

nates over magnetic energy, and thus, the system goes through

a catastrophe, converting much of its magnetic energy into

flow energy.18 The dynamics of such transformations in a

fully relativistic plasma will be explored in the future work.

The ElectroVortic formulation, emphasizing the “union”

of electromagnetic and thermal-fluid forces, forces us to have

a new look at the classical fields of magnetic reconnection

and magnetic generation. Strictly speaking, ideal dynamics is

perfectly capable of dealing with changes in the magnetic

field (including field topology) that can be caused by its inter-

action with the thermal-vortical fields without invoking any

additional forces. Perhaps, when dealing with the physics

regimes beyond MHD, one must first emphasize the internal

processes that convert electromagnetic into vortical-thermal

energy and vice versa.

APPENDIX A: NON-RELATIVISTIC MHD LIMIT

Equations (25) and (26) can be shown to have the known

non-relativistic MHD limits. For m� � mþ (Dl � 1), and

constant densities nþ 	 n� 	 n, the plasma velocity

U
l � U

l
þ þ

m�

mþen
Jl � U

l
þ ;

Ul
� � U

l �
1

en
Jl

(A1)

is essentially that of the massive fluid. Also, in this limit, all

the thermal-inertial effects are neglected (J�Z
l� � 0 and

J�D
l� � J�F

l�), and thus, Eqs. (25) and (26) become simply

J�F
l� þ 2neU�Z

l� ¼ 0; (A2)

U�D
l� �

1

2ne
JlF

l� ¼ 0 : (A3)

Thus, the momentum equation (A2) becomes

nmþU
�@�U

l � J�F
l� � @lp; (A4)

with p ¼ pþ þ p�. This equation reduces to its well-known

non-relativistic MHD limit

nmþ @t þ v � rð Þv ¼ J� B�rp; (A5)

as Ul ! ð1; vÞ, and Jl ! ð0; JÞ. Similarly, Ohm’s law (A3)

is now

U� �
1

2en
J�

� �

Fl� �
mþ

2e
U

�@�U
l � 0 : (A6)

By using (A4), we get

U� �
1

en
J�

� �

Fl� þ
1

en
@lp� � 0; (A7)

which simplifies to the standard non-relativistic limit

Eþ v� B�
1

en
J� Bþ

1

en
rp� � 0 : (A8)

APPENDIX B: CONNECTION EQUATION FOR FIELD
D

lm

We apply the operator eabkfeabcl@
c to Eq. (28), where

el�ab is the Levi-Civita symbol; we obtain
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d

ds
Dkf ¼ @kU�D

f� � @fU�D
k� � @k

C
f þ @f

C
k; (B1)

where d=ds ¼ Ul@l is the covariant convective derivative

along the proper time s defined by the transported velocity

Ul. As any plasma element is transported by a four-velocity

Ul, we can introduce the spacelike event-separation four-

vector dll ¼ x0l � xl between two different elements of the

plasma4,5,7,8 that fulfill

d

ds
dll ¼ dl�@�U

l : (B2)

Now, we can calculate the variations of the four-vector

dlkD
kf. Using Eqs. (B1) and (B2), we find

d

ds
dlkD

kf
� �

¼ � dlkD
k�

� �

@fU� þ dlk @f
C
k � @k

C
fð Þ : (B3)

Analogous to an ideal MHD,4,5 when the CT is valid, it

tells that if dlkD
kf ¼ 0 initially, then it will remain so for

subsequent times. However, when more general physical

effects are included into the one-fluid plasma dynamics, and

the plasma is transported with velocity Ul, Eq. (B3) predicts

that it is not possible to fulfill the CT, as thermal and kine-

matic quantities introduce source terms, referring to the last

two terms in (B3). This only can occur when C
l ¼ 0 in ideal

dynamics.

APPENDIX C: A POSSIBLE GENERALIZED
CONNECTION THEOREM

The most simple generalization that can be performed

requires to define the plasma transportation four-velocity as

Ul þ K
l, as composed by the generalized fluid velocity (27),

and a velocity field K
l that allow us to prove the GCT.7,8

The velocity field K
l must contain information of the ther-

modynamical properties of the plasma.7,8 Notice that if Kl

can be casted as

C
l ¼ K�D

�l; (C1)

in such a way that Eq. (28) may be written as

ðU� þ K�ÞD
l� ¼ 0 : (C2)

Thus, when the plasma is transported with velocity U� þ K� ,

the field Dl� remains connected. This can be computed simi-

larly, to the previous case. A GCT can be obtained by calcu-

lating the variations of dlkD
kf. We obtain

d

ds
dlkD

kf
� �

¼ � dlkD
k�

� �

@f U� þ K�ð Þ: (C3)

Thereby, Eq. (C3), epitomizing a GCT, is a generalization of

the CT for the non-ideal MHD plasmas. The previous idea is

analogous to the one discussed in Refs. 7 and 8. The substan-

tial content of GCT is that if dl�D
�l vanishes initially, then it

will always remain so into the streamlines of the plasma flow

with a generalized four-velocity Ul þ K
l. The connected

field is not the magnetic field, but the more general structured

field (21) that contains information about the plasma itself.

These models reduce to the previous known limits of Refs. 7

and 8.

The GCT (C3) is well-defined, and it is very sensitive to

the behavior of Kl ¼ ðK0;KÞ. Defining D0i ¼ Ei and Dij

¼ �ijkBk, the time and spatial components of the Eq. (C1) are

�K � E ¼ C
0;

K0E � K� B ¼ C;
(C4)

that are consistent with the constraint KlC
l ¼ 0. Solving the

above equations, we can find the time and spatial components

of Kl. From Eq. (28), we have the constraint UlC
l ¼ 0 that

allows us to obtain that C0 ¼ U � C=U0. Therefore, the solu-

tions are

K0 ¼
C � B

E � B
;

K ¼ �a E � bB þ d E � B;
(C5)

where

a ¼
C � ðE � BÞ

jE � Bj2
;

b ¼
U � Cþ aU0jEj2

U0E � B
;

d ¼
C � E � K0jEj

2

jEj2jBj2 � jE � Bj2
:

(C6)

Nonetheless, there is a problem with this procedure. The

four-velocity K
l does not correspond to any of the recogniz-

able flow fields—either of the individual fluids or that of the

mass motion. We can see in (C5) that Kl depends on compo-

nents of the field Dl� . Therefore, it is not an independent

velocity of the fluid.
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