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Abstract

This article introduces a number of methods that can be useful for examining

the emergence of large-scale structures in collaboration networks. The study
contributes to sociological research by investigating how clusters of research

collaborators evolve and sometimes percolate in a collaboration network.

Typically, we find that in our networks, one cluster among the leading ones

eventually wins the growth race by percolating through the network, span-

ning it and rapidly filling up a significant volume of it. We show how this

process is governed by the dynamics of cluster growth in the network.When

operating in a percolating regime, this class of networks possesses many

useful functional properties, which have important sociological implications.
We first develop the methodological tools to perform a study of the intrinsic

clustering process. Then, to understand the actual large-scale structure
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formation process in the network, we apply the theoretical methods to

simulate a number of realistic scenarios, including one based on actual data

on the collaboration behavior of a sample of researchers. From the per-

spective of social science research, our methods can be adapted to suit the

application domains of many other types of real social processes.

Keywords

network analysis methods in sociological research, large-scale structure

formation in collaboration networks, cluster evolution and percolation

Introduction

Work on the sociology of knowledge has demonstrated that research creativity

often becomes a necessary consequence of a social system of researchers work-

ing in collaboration with one another (Uzzi and Spiro 2005). Access to ideas,

information, and other resources through this system provides the supporting

foundation that enriches a researcher’s creativepotential. Furthermore, acquain-

tance, far or near, weak or strong,with individuals through this network helps to

build a researcher’s social capital (Burt 2000;Coleman1988).Thus, researchers

connected to one another in a networked environment share ideas, thoughts, and

research questions, make use of complementary research methods and tech-

niques, and produce interconnected influence on one another (Moody 2004).

In an early stage of the development of this network, budding ideas and

thoughts are primarily confined to small, cohesive groups of clusters1 of

researchers, largely disconnected from one another (Durkheim 1984; Moody

andWhite 2003). However, over time, as disjoint clusters begin to be bridged

up, the complete network tends to exhibit evidence of broader patterns of

interdisciplinary connectivity. This is produced primarily by the mixing of

different classes and types of ideas which are exchanged between researchers

in small clusters which had largely been isolated from one another before the

bridges were formed between them.

The mixing of diverse research ideas, thoughts, and problems by the

researchers is highly facilitated when large-scale connectivity is established

through the bridging of many of the disjoint clusters that constituted the net-

work at some initial time. This process helps to eventually bring about a coop-

erative behavior among the researchers in the network. The underlying cluster

evolution dynamics governs the specific linkage patterns that result from the

joining of the clusters. The process in question works in the following way.
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At some initial time (say, t ¼ ti), the network consists merely of a small num-

ber of tiny, and largely isolated, groups of clusters.2 Over time, new research-

ers join the network, and some of the existing clusters become connected to

one another through internal bridging links. Viewing the network at the micro

level at a specific future time (t¼ tf), it seems reasonable to envisage three pos-

sibilities for determining the fate of every new researcher that is added to the

network in course of time: (1) the new researcher remains in the network as an

isolate for a long time, (2) the researcher, who joined as an isolate, subse-

quently connects to an existing cluster, and (3) the researcher joins directly

as a part of one of the existing clusters in the network.

On the one hand, the dynamics of the underlying social process creating the

networked collaboration system governs the formation of its large-scale struc-

tures; and, on the other, the structure itself influences the dynamics for sustain-

ing the network over time (Giddens 1979). As large-scale structures start to

emerge through the formation of cluster linkages, communication channels

open up for the researchers in the individual clusters, serving asmeans for build-

ing their social capital (Burt 2000; Coleman 1988; McFadyen and Cannella

2004). Earlier studies have explored such processes in many different types

of networks. Important ones include interorganizational networks (Gulati and

Gargiulo 1999; Powell et al. 2005), innovation and knowledge networks (Ahuja

2000), public health networks (Provan, Beagles, and Leischow 2011); biotech-

nology industry networks (Walker, Kogut, and Shan 1997), social science col-

laboration networks (Moody 2004) and so on. The problem of the formation of

large-scale structures of epidemiological networks driven by underlying social

forces has also been investigated (Moore and Newman 2000).

For the present work, it is important to be clear at the outset that we do not

intend to investigate specific mechanisms responsible for cluster evolution in

collaboration networks.3 Rather, we concentrate our attention on the beha-

vioral aspects of the emergence of the large-scale structures in such net-

works, given whatever underlying mechanism is ultimately responsible for

the intrinsic evolutionary processes at play in the networks. Adopting this

viewpoint, we address the following issues in this article: (1) In a practical

situation, how can one track the evolution of competing clusters in the net-

work? (2) Given the existence of an underlying growth mechanism, how can

one parametrize the dynamics of local connectivity between researchers in

the network? (3) With this parametrization, how can one characterize

large-scale structure formation in the network? This article develops the rel-

evant methodological tools to perform this analysis and demonstrates how

the techniques can actually be applied in practice to a class of collaboration

networks of researchers in two countries: India and the United States.
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The Case of Collaboration Coauthorship Networks

It is frequently the case that only a small number of researchers come to dom-

inate the arena of specialized research work by producing a disproportio-

nately large number of novel ideas and solutions (Crane 1972). A creative

mixing of diverse ideas and an emergent consensus among researchers

depend on the overall connectivity of their collaboration network (Moody

and White 2003). The issue in question has a dual aspect. On the one hand,

the highly connected, star researchers in their cohesive clusters render the

network highly vulnerable to breakdown, since their removal catastrophi-

cally disconnects the clusters (Allison, Long, and Krauze 1982). On the other

hand, collaborative brokers, though not necessarily star researchers them-

selves, generate large-scale connectivity, and ideas are more likely to spread

through them over the entire network (Fleming, Mingo, and Chen 2007). For

the network, this typically signifies a small world (Watts 1999), which influ-

ences the behavior of researchers by modifying the network’s large-scale

topology. Thus, it enables ‘‘creative material in separate clusters to circulate

to other clusters as well as to gain the kind of credibility that unfamiliar mate-

rial needs to be regarded as valuable in new contexts, thereby increasing the

prospect that the novel material from one cluster can be productively used by

other members of other clusters’’ (Uzzi and Spiro 2005:449). Local clusters

contain specialized knowledge or resources, but their bridging through inter-

mediaries enables the specialized elements to be circulated and mixed, giv-

ing the opportunities for generating novelty and innovation in the connected

part of the full network. Today, many innovative research works and discov-

eries have increasingly resulted from the efforts of this kind (Paruchuri 2010;

Shrum, Genuth, and Chompalov 2007). It has frequently been the case that

collaborating researchers produce more novelty and innovation in research

than do single researchers by individual efforts (Kotha, George, and Srikanth

2013). Empirical work also indicates that collaborative research publications

have higher citations on the average (Kotha et al. 2013). The social force act-

ing between researchers is now, almost universally, accepted to be the most

critical component of research collaboration4 (Acedo et al. 2006). Admit-

tedly, the primary objective of research collaboration is the pursuit of new

knowledge and the creation of many innovative capabilities (Fleming et al.

2007). Nevertheless, on the practical side, research collaboration also creates

new social pathways, enabling researchers to extend their domains of profes-

sional contacts and research circles (Ahuja 2000). The social force binding

the researchers within exclusive groups of contacts helps to build a personal

relationship network, based on the mutual trust and like-mindedness of the
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individuals, their sharing of ideas, and their complementary technical skills

in research (Bozeman and Corley 2004).

The research collaboration scenario studied in this work is realized

through the coauthorship network, in which the collaborative activities of

researchers culminate in the publishing of one or more scholarly articles in

peer-reviewed journals and conference proceedings (Acedo et al. 2006;

Barabási et al. 2002; Ghosh and Kshitij 2014; Ghosh, Kshitij, and Kadyan,

2015; Newman 2001). Although this type of network has been studied for

quite some time now, there is rather limited behavioral investigation of clus-

ter evolution in it. The present article contributes to the understanding of this

specific evolutionary process and investigates the practical question concern-

ing the possibility of whether large-scale connectivity exists in the network

through the study of network percolation.

Empirical Setting and Data

As mentioned before, we investigate in this study the network structures of

collaborative works of researchers, created by the inclusion of a sample of

researchers through their coauthored papers in peer-reviewed journals and

conference proceedings. We select the growing field of management and

information, including related areas of information technology and econom-

ics (designated collectively by MGMT). We built our networks using biblio-

metric data from Elsevier’s SciVerse (Scopus) and Thomson Reuters’ Web

of Science (WoS) electronic databases. The indexed data were retrieved from

the databases using the condition that a researcher is based in a certain coun-

try, such as India or the United States in the present case, if they work in an

institution in that country. However, it is perfectly possible as well as allow-

able that one or more coauthors of a researcher may be based in an institution

in another country. Research specialization areas included in our data sets are

searched within the primary subdisciplines of MGMT including, for instance,

management information systems, operations management, operations

research, finance, accounting, organizational behavior, strategy, managerial

and information economics, and so on. We extensively build separate net-

works in this way for two countries: India and the United States.

Theoretical Questions, Research Methods,

and Computational Details

This section presents the primary theoretical questions and the concerned

research methods employed in this work. The related computational details
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used to carry out numerical simulations are also provided. Most of the com-

putations are performed by executing fast numerical routines in C and Java.

For a few computations, the Pajek software package (version 4.04) is used

(Batagelj and Mrvar 2015).

Network Characterization

Our model characterizes a collaboration coauthorship network as a one-mode

projection of an affiliation network, in which researchers are connected to

one another through their common membership in research projects or

groups. Of these instances, we consider only those cases where this connec-

tion has been formally established through the common presence of these

researchers in coauthored papers published in peer-reviewed journals and

conference proceedings. A one-mode projective network of this type having

size n with dichotomous collaborative association between pairs of research-

ers is represented by an n � n adjacency matrix A with elements Aij ¼ 1 if

researchers i and j are the coauthors of a paper and Aij ¼ 0 otherwise

(Barabási et al. 2002; Ghosh and Kshitij 2014; Ghosh et. al 2015; Newman

2001). In a more general setting, it is possible to incorporate the strengths of

collaborative coupling between pairs of researchers into the network struc-

ture (Ghosh et al. 2014). However, for the primary purpose of investigating

the problem of large-scale structure formation in the network, in this work we

leave out this additional complication and consider the simpler dichotomous

network instead.

Cluster-tracking Procedure

In a social network, cluster growth is intrinsically a competitive process. The

primary theoretical question in this regard pertains to the issue of global dom-

inance of one or more clusters in the competition for growth. For example, in

an interorganizational network, a group of organizations may form a large

cluster through their local supply-chain connections. Initially, this process may

start through collusion of a few firms by forming only a small clique. Eventu-

ally, this small initial group may emerge as a fully functional cartel that comes

to control and dominate the entire consumer market in a few years’ time.

It has been found empirically that, when one of the clusters in the network

starts growing, it tends to swamp all others smaller than it in size and begins

to fill a significant volume of the entire network (Callaway et al. 2000;

Newman and Watts 1999). This cluster is a large subset of researchers that
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are all connected to one another through intermediate collaborative ties.

When such a large cluster persists in the network, the complete network oper-

ates in the percolating regime. The ratio p ¼ Largest cluster size
Full network size

serves as the

order parameter for the concerned percolation problem. Empirically, a large

value of p signals a percolation transition, being the onset of the formation of

the giant cluster in the network. Numerically, p goes from a small value to a

large one at the transition threshold at which the giant cluster forms

(Newman and Watts 1999).

In empirical studies, the threshold values have been determined for many

different types of collaboration coauthorship networks (Newman 2001;

Newman and Watts 1999). For example, in biomedical research, p is close

to 93 percent for the MEDLINE (MEDLINE is the U.S. National Library

of Medicine bibliographic database for journal articles in life sciences and

biomedicine.’’ For reference, please see http://www.nlm.nih.gov/pubs/

factsheets/medline.html) database; in astrophysics, it is about 89 percent for

the Los Alamos e-Print database; in condensed matter physics, it is about

85 percent for the Los Alamos database; in theoretical high-energy physics,

it is approximately 71 percent for the Los Alamos database; in computer

science, it is roughly 57 percent for the Networked Computer Science Tech-

nical Reference Library database (Newman 2001). MGMT collaboration

coauthorship networks in India and the United States have p values lying

typically in the range of about 60–70 percent (Ghosh and Kshitij 2014). Col-

laboration coauthorship networks in cancer research in India have p values

lying in the range of 83–96 percent (Kshitij, Ghosh, and Gupta 2015).

To witness cluster formation and growth patterns in the networks, we

employ, as our first strategy, an empirical method of individually tracking

a selected sample of the leading clusters over the entire window of study

from 2000 to 2011 (inclusive) in time increments of one year5 and then plot-

ting the values of p against time. Thus, at time t ¼ 0, we start our observa-

tional recording by putting labels on all of the individual clusters in a sample

of the leading clusters in the network (the top five clusters in increasing

orders of size, for example). Subsequently, at each increment of one year

(t ¼ 1, 2, . . . ), we record the sizes of the previous clusters. As the process

unfolds in time, some of the previous clusters merge together to form new

clusters of increasingly larger sizes. A few of the initial clusters may remain

essentially isolated from the rest of the clusters in the network and show only

minimal growth, if at all. Depending on their initial size, these clusters may

be in or out of the growth race at subsequent times and eventually by the time

our clock stops ticking at a predetermined time (in our case, t ¼ 11).
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Additionally, entirely new clusters6 may join the competition and oust some

of the previous ones from the race. The method is of great practical utility:

first, it allows us to visualize how some of the clusters exhibit a tendency

to percolate; and second, it helps us to specifically locate at what points of

time the cluster size begins to grow significantly in the network. As another

matter, if two large clusters merge to give rise to a very large cluster, it is also

possible to locate the individual researchers that serve to bridge the previ-

ously disconnected clusters in the network.

Collaboration Willingness

Given an underlying growth mechanism at play in the network, now comes

the important theoretical question as to how one can parametrize the

instances of local connectivity among the different actors in the network.

In the context of our collaboration network constructed using cross-

sectional data over a specific window of time, this is, in effect, a snapshot

of a dynamical process in which many of the existing isolated clusters of

researchers in the network are continuously bridged by means of new con-

nections formed in the network. Also, concurrently, many new researchers

are entering the network by collaborating and coauthoring papers with

researchers who are already established in collaborative research. The

growth of clusters in this way is an evolutionary process.

Since the practice of collaboration has a major social underpinning, an

important social indicator in this regard is the collaboration willingness of

a researcher in the network. This measure can be operationalized in terms

of an average probability that a certain researcher selected at random will

be willing to collaborate in order to form new connections with other

researchers in the network. If the researcher is averse to starting any further

collaboration beyond what is involved in their present collaboration circle,

then the researcher will not serve as a source to form new links with which

to generate cluster growth in the network. In other words, there is no further

flow of resources through the researcher into directions previously unex-

plored in collaboration. On the other hand, a researcher’s willingness to form

new collaborative ties cannot increase indefinitely. As collaborative research

work demands a definite commitment in time, resources, and creative energy

on the part of a researcher, it may become increasingly burdensome for the

researcher to collaborate beyond a certain number of collaborative research

connections.7 Besides, when research collaboration is of interdisciplinary

nature, there is a mixing of diverse types of knowledge, ideas, and expertise

(Cummings and Kiesler 2007). Coordination in the form of management of
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interdependencies among research activities becomes essential in this prac-

tice (Malone and Crowston 1994). A very high engagement in collaborative

activities is the likely cause of complex coordination problems in research.

This indicates, therefore, that there must exist a threshold, y, to cut off

increasing collaborative activities of researchers.

The actual number of collaborators of a researcher also governs the

collaboration willingness. In our model, we represent this parameter by

o(k, y) and investigate its behavior to see how it governs cluster growth in

the network in a number of practical scenarios. Finally, we perform Monte

Carlo simulations of a situation based on centered values of perceived colla-

boration willingness that a sample of researchers have revealed to us in a

recent survey of research collaboration practices and strategies in India.

Cluster Growth and Distribution

A very important theoretical question bears on the issue of large-scale struc-

ture formation in a social network. Considering this question in the context of

our collaboration network, at some initial time in the history of growth of a

network of this type, there are many isolated clusters of research collabora-

tion with only very few connections among the clusters of comparatively

large size. The individual clusters are unevenly distributed in size, but it fre-

quently transpires that among the various clusters present at a particular time,

there is a leading one having the largest size.8 As the large-scale collabora-

tion structure unfolds, the clusters in the network continue to grow in size by

forming intercluster bridges as well as by the addition of new researchers to

the existing networked system.

As collaborative ties are thus being formed, it commonly becomes over-

whelmingly probable that a new link will emerge in the direction of one of

the larger clusters in the network. The reason is that, probabilistically, the

larger clusters already enjoy the benefits of higher connectivity, resulting

in an attractive force drawing new collaborative links toward themselves.

Among the existing larger clusters, there is already a competition to grow

in size and win. In most situations involving a social process, only one or two

large clusters show excessive growth, quickly swamping all others in the net-

work. This phenomenon has a strong socioculturally directed force as its

driver, and it is not the result of a purely stochastic growth mechanism

(Capocci et al. 2006).

A researcher can be connected to an existing large cluster through one or

more of their first-order neighbors. This is obvious if such a neighbor is

already a member of this large cluster. Contrariwise, it becomes impossible
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for a researcher to connect to a large cluster if the neighbors are not them-

selves members of the set of one of the large clusters in the network or if they

themselves exhibit unwillingness to form any further collaborative ties. In

any case, at a certain stage of growth, if a researcher already has k collabor-

ating connections, then the probability that the person is willing to collabo-

rate at this degree value is given by Pðk; yÞ ¼ pðkÞoðk; yÞ. The generating

function for this distribution can be written as jðz; yÞ ¼
P1

k¼0
Pðk; yÞzk

(Callaway et al. 2000; Newman, Strogatz, and Watts 2001). Additionally,

< o > ¼ jð1; yÞ ¼
P1

k¼0
Pðk; yÞ is the average level of collaboration

willingness in the network. Sociologically, <o> accounts for the mean pro-

portion of researchers in the network that are willing to start new collabora-

tive activities. The largest cluster in this case consists of a certain fraction p

of the researchers in the entire network given by pðyÞ ¼ jð1; yÞ � jðx; yÞ,
where x is the largest cluster exclusion probability of a randomly selected

researcher in the network.

In a situation where a researcher has a prospective neighbor in a small

cluster, the focal researcher remains outside the largest cluster in the net-

work, because that neighbor is still not a member of the largest cluster. Addi-

tionally, if the concerned neighbor of the focal researcher is unwilling to

collaborate, then the focal researcher has no way of connecting to the

largest cluster through the neighbors of that neighbor.9 At the present

level of k collaborators of the neighbor, the probability that the focal

researcher fails to make an entry into the largest cluster can be calculated

as 1� oðk þ 1; yÞ þ oðk þ 1; yÞxk , where the xk-term arises from the con-

sideration of the second-order neighbors of the focal researcher or the

first-order neighbors of the selected neighbor. The selected neighbor of the

focal researcher has a collaborator distribution given by kp(k) (Newman

2003). The probability distribution that this neighbor is willing to collaborate

at this degree value is given by the generating function cðz; yÞ ¼
1
m

P1

k¼1
kpðkÞoðk; yÞzk�1; where m is network’s average degree. A compari-

son with the previous equation yields a polynomial equation for x thus:

x ¼ 1
m

P1

k¼1
kpðkÞ½1� oðk; yÞ þ oðk; yÞxk�1�; where m ¼

P

k
kpðkÞ is the

average number of collaborators in the network. Finally, expanding the indi-

vidual terms on the right-hand side of the above x equation, we obtain the

following result10: x ¼ 1� cð1; yÞ þ cðx; yÞ. The solution for x obtained

from this equation can be directly inserted into the expression for p (y) given

above to obtain the size of the largest cluster in the network. Note that the x

equation is actually polynomial equation of large order, whose real roots,
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lying in the range (0, 1)11 are obtained numerically in the simulations

described below.

Collaboration Willingness Scenarios

It is clear that different functional characteristics of cluster growth will result

in the network for different functional forms representative of o(k, y). To this

end, we examine several scenarios to get a behavioral picture of cluster

growth in the network. Starting with a simple scenario, we incrementally

improve it by incorporating more realistic complexities into it, and finally,

we perform Monte Carlo simulations, bootstrapped on actual values of per-

ceived collaboration willingness of researchers obtained from a recent survey

of researchers in MGMT in India.

Scenario 1. In this scenario, we model o(k, y) as a 0 � 1step function as fol-

lows: o(k, y)¼ 1 for k < y and o(k, y)¼ 0 for k � y. Thus, before reaching

the threshold, a researcher is perfectly willing to collaborate, but this will-

ingness cuts abruptly off to zero as soon as the threshold is crossed. In real

situations, however, this type of willingness perception profile is a bit unna-

tural, since it is not usually the case that a researcher becomes entirely

unwilling to collaborate immdiately as their current number of collabora-

tive ties crosses a definite threshold. We investigate the behavior of cluster

growth and, in particular, the formation of the largest cluster as the para-

meter y is varied over a range of degree values. Admittedly, a researcher’s

collaboration willingness behavior is hardly ever so abrupt in reality. Nev-

ertheless, the scenario itself serves as a valid check to see if our model, at

least qualitatively, shows the correct behavior of growth and evolution in

this case.

Scenario 2. In this scenario, researchers’ willingness profile is modeled as

o(k, y)¼ 1. For k < y and oðk; yÞ ¼ exp � k
y
þ 1

� �

. For k� y. Thus, research-

ers are perfectly willing to build new collaborative connections with other

willing researchers with their present degrees rising up to y, but after this

threshold is crossed, their willingness does not fall abruptly to 0, as in the

previous scenario, but declines exponentially by an amount given by the frac-

tion by which k exceeds y This scenario is much more realistic than the pre-

vious one, since it accounts for a rapid, but not abrupt, drop of willingness

after the threshold is crossed. Most researchers in real life are likely to

behave in this way. For example, a research advisory faculty can take only

a limited number of doctoral students to work on research problems over a
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fixed period of time. This is true not just with student collaborators but with

the researcher’s other coworkers as well. Basically, when a researcher’s

threshold capacity to do collaborative work is exceeded, it becomes

increasingly difficult for the person to spend the necessary energy and time

in any new collaborative endeavor, and coordination as well as manage-

ment problems invariably arise. However, since the threshold is actually

a researcher’s perception of the physical and intellectual capacity to colla-

borate, given the present number of collaborative ties, the willingness func-

tion falls exponentially fast as this threshold is crossed, and it does not

abruptly drop to zero.

Scenario 3.Here, the willingness profile has the form oðk; yÞ ¼ k
y
for k < y and

oðk; yÞ ¼ exp � k
y
þ 1

� �

for k � y. This scenario is even more realistic than

the previous one. A researcher’s willingness behavior beyond the threshold is

the same as in scenario 2, but for the range of k values less than the threshold,

it is perhaps unrealistic to simply assume (as in the previous two scenarios)

that the researcher is perfectly willing to collaborate uniformly at all levels of

k. Perhaps, it is more natural to suppose that the focal researcher’s willing-

ness function increases linearly12 as he or she succeeds in building new col-

laborative ties with other researchers.

In an analysis of the large-scale structural topology of the MGMT net-

works, we empirically found the degree distributions to be truncated

power laws (Ghosh and Kshitij 2014). To model the present scenario for

numerical computations, we implement such a distribution as possessing

a general analytical form pðkÞ ¼ k�ae�
k
t

Lia e�
1
t

� �, where a is the exponent and t is

the cutoff of the power law. The function Lis (z) in the denominator of

the above expression is the polylogarithm function13 of order s and argu-

ment z defined by LisðzÞ ¼
P1

n¼1
zn

ns
(Abramowitz and Stegun 1965; Cvijović

2007). Incorporating the willingness function for this scenario into the x equa-

tion obtained above yields, after some nontrivial algebraic manipulations, the

following exact equation: x ¼ 1� 1

myLia e�
1
t

� �

Py�1

k¼1
k2�að1� xk�1Þe�

k
t�

1

mLia e�
1
t

� �

P1

k¼y
k1�a 1� xk�1

� �

e1�
1
y
þ1

tð Þk where m is the average degree of the

network. Although the equation looks rather formidable at first sight, it is

straightforward to implement computationally and solve numerically as a

polynomial equation in x. Similarly, with the above distribution for p(k) and

the functional form for o(k), some amount of algebraic manipulations
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yield the following p equation: p ¼ 1

yLia e�
1
t

� �

Py�1

k¼1
k1�að1� xkÞe�

k
t�

1

mLia e�
1
t

� �

P1

k¼y
k�a 1� xk

� �

e1�
1
y
þ1

tð Þk .With regression-fitted values of the

parameters a and t in the empirical degree distributions, it is now straightfor-

ward to obtain the functional form of the order parameter p as a function of the

collaboration threshold y.

Scenario 4. This scenario is a generalization of scenario 1. In this case, the

willingness profile has a two-parameter (y, g) distribution as follows:

oðk; y; gÞ ¼ 1

e
k�y
g þ1

, where g � 0. When g ¼ 0, the distribution is a step func-

tion: For k > y, o vanishes and for k < y, o is unity. The function cuts

abruptly off at k ¼ y. At a finite g, the distribution becomes fuzzy over a

length of the order several g. At very high values of the degree, k – y >> g,

and the distribution has the asymptotic form given by o * e
y�k
g . In spirit

as well as in implementation, this scenario is different from all of the pre-

vious ones: rather than directly examining the large-scale growth charac-

teristics with the threshold y, we investigate here how the order parameter is

impacted by the values of g for a fixed value of y. Physically, g is an adversity

determinant, which measures the lack of idealness of the environment for col-

laboration. The ideal, albeit nonpractical, situation occurs at g ¼ 0, when

each researcher in the network is willing to build new collaborative ties

all the way up to the maximum capacity determined by the threshold

level but stops completely once this threshold is crossed. As g starts to

increase from 0, the situation becomes increasingly nondeal, in which

researchers exhibit unwillingness to forge any new collaborative ties

much before the threshold capacity is reached. This behavior is possibly

due to a number of exogenous factors not inclusively accounted for in the

perceived collaboration willingness profile. For example, a researcher’s

current work pressure, in the form of administrative duties, teaching load,

and so on, that is not directly related to research activities may contribute

to a lack of eagerness to collaborate any further. Also, in some cases,

researchers’ geographical isolation or their lack of conference and work-

shop participation might constrain researchers to grossly limit collabora-

tive activities.14The onset of this tendency to prematurely reduce collaboration

willingness is controlled in an aggregative manner by the adversity parameter

g in our simulations.

Using the same analytical form of the general degree distribution pertain-

ing to our model as used in the previous scenario, the x equation in the
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present case can be shown to assume the form x ¼ 1� 1

mLia e�
1
t

� �

Py
*

k¼1
k1�a

e�
k
t

e
k�y

*

g þ1

ð1� xk�1Þ, where y
*

is a predetermined fixed value of y (in this work,

y
*

¼ 0:5 ymax). Now, with regression-fitted values of t and a, the above poly-

nomial equation can be numerically solved for x, where 0 � x � 1. This

solution, say �x, can then be substituted into the corresponding p equation,

which, after some mathematical manipulations, can be shown in this case

to reduce to the following form: pðgÞ ¼ 1

Lia e�
1
t

� �

Py
*

k¼1
k�a e�

k
t

e
k�y

*

g þ1

ð1� �x
k
Þ.

A plot of p(g) for different values of g then exhibits the functional behavior

of the order parameter against the adversity parameter of the model.

Since rising adversity in research environment discourages researchers

to forge new collaborative ties in the network, the order parameter should

exhibit a gradual, nonlinear decline with increasing adversity.

Scenario 5. In this final scenario, we perform Monte Carlo simulations to

obtain a distribution of o centered on the actual values of perceived colla-

boration willingness reported by a sample of researchers from the India net-

work. The computational procedure employed to perform these simulations

is described as follows.

Based on the last three years’ (2010–2012 inclusive) collaboration

engagements of a sample of 23 researchers in India working in the MGMT

field, data for their perceived collaboration willingness are collected through

survey questionnaires and semistructured interviews. Empirical degree dis-

tributions of their coauthorship network are computed based on the above

window of time.15 Employing the bootstrap procedure (Efron 1993; Mooney

and Duval 1993), we assume that this data set is the real population giving the

true values of the parameters of the model. Using the full range of unique

degree values (ki, i ¼ 1, . . . , s) in this data set and the corresponding values

of the perceived collaboration willingness,16 we fit a cubic spline interpo-

lated polynomial to get a functional profile of o using the s data points in the

sample (Press et al. 1992). Employing this willingness profile and the corre-

sponding p(k) from the network, we compute ptrue, the true value of the order

parameter.

Next, we select s degree values ki, i¼ 1, . . . , s from the sample uniformly

at random with replacement. In this selection, because of the replacement

procedure, a fraction of the degrees from the actual set will be repeated. For

each such ki, we do not take the corresponding o(k) directly from the actual
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set. Instead, each value is selected such that it is accurate to within a preas-

signed measure of tolerance. The value of this tolerance parameter is gener-

ated by drawing a real random number from the range [0, 1]. If this number

lies within a small range of+Z, where Z is the tolerance parameter, centered

on the actual sample value, then we select the point and use it as the corre-

sponding oZ(k), otherwise we reject it and draw again.17 We repeat this pro-

cedure for all the s degree values from the data set to generate an entire

manifold of simulated o values. Using this set, we then fit a cubic spline

interpolated polynomial for oZ and compute p1 as above. We then repeat

the above steps r times18 to generate the sample of p as follows: p1, p2, . . . , pr.

This synthetic data set is used to obtain the sampling distribution of p. The

entire procedure is repeated for different values of the tolerance parameter Z.

A summary of the metrics and parameters used in the present work

appears in Table 1.

Table 1. Summary of Metrics and Parameters.

Quantity Symbol Explanation

Degree k Number of direct collaborating coauthors of a
researcher

Order parameter p A measure of the proportion of total network
volumeoccupied by the leading cluster in network

Collaboration
threshold

y Maximum number of collaborators a researcher is
willing to collaborate with (may depend on time
window in a general situation). When this
threshold is crossed, the collaborative activities
of a researcher are grossly reduced

Collaboration
willingness profile

o(k,y) A distribution function for the perceived
collaboration willingness of a researcher that
depends on the current number of collaborators
and the collaboration threshold

Mean collaboration
willingness

<o> Mean proportion of researchers in network that
are willing to start new collaborative activities

Giant cluster exclusion
probability

x Leading cluster exclusion probability of a randomly
selected researcher in network

Adversity parameter g A measure of the lack of nonidealness of the
environment for collaboration. In a general
situation, it represents environmental adversities
limiting the growth of a social movement

Tolerance parameter Z An acceptance bound for bootstrapped Monte
Carlo simulated values for selecting the profile
distribution of o(k)
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Name-resolution Algorithms

Our data samples collected from Scopus and WoS are of unequal total vol-

ume because of coverage variations in the databases. Furthermore, the jour-

nals and the published conference proceedings indexed in these databases

have different listing styles and arrangements of author names that appear

in the papers. The exact value of the total number of authors cannot, there-

fore, be precisely estimated. Following Newman (2001), we employ two sep-

arate algorithms to address the issue: (1) computing a first initial (FI) limit:

an author in a paper is identified only by their last name and the FI and (2)

computing the all initials (AI) limit: an author is identified by their last name

and AI. The FI method underestimates the total count of author names when

it identifies two authors as one individual. By contrast, the AI method over-

estimates when it identifies one author as two if their initials are listed differ-

ently in different papers. However, the complete interval (FI, AI) can

statistically capture the actual number of authors in the data sets. It is impor-

tant to realize that, in this work, we regard an author as simply an actor in the

concerned network and not as a person having a specific identity to be

revealed by network analysis.

We still have to cope with the problem of duplicate author names in the

data. For example, there might be a situation in which the U.S.-based colla-

borator of an India-based researcher was included in the India network; how-

ever, this collaborator’s primary network would truly be the U.S. network.

These problems notwithstanding, the algorithms do include all the relevant

cases of author names in the designated interval. The possibility of a bias exists

in this type of estimation procedure, but a redeeming feature is that, the bias

affects both the India and the U.S. networks to the same degree as well as

in the same direction. A number of other methods for author name disambigua-

tion also appear in the research literature (Kang et al. 2009; Milojević 2013).

Results

Cluster Tracking

In Figures 1–4, we display the growth of the five leading clusters over the

entire period of study from 2000 to 2011 (inclusive) in time increments of

one year for the Scopus and WoS networks of India and the United States.

The specific internal details of the actual cluster evolution patterns exhib-

ited in the figures are shown in Table 2. In the Scopus India network (Figure

1), at t ¼ 0 (year 2000), there are five clusters, rather small in size and

labeled a1, . . . , a5. Figure 1 shows that, in this network, the largest cluster
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Figure 1. Five leading clusters (Scopus, India).

a1

b1

c1

d1

e1

f1

g1

h1

i1
j1

k1

l1

a2

b2 c2
d2

e2 f2
g2

h2
i2 j2

k2 l2

a3 b3 c3 d3
e3 f3 g3

h3 i3 j3 k3 l3

a4
b4 c4 d4

e4 f4 g4
h4 i4

j4 k4 l4

a5
b5

c5 d5 e5 f5 g5
h5 i5

j5 k5 l5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

O
rd

e
r 

p
a

ra
m

e
te

r 
(π

)

Time

Figure 2. Five leading clusters (Web of Science, India).
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(#1) has propagated over time as (a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1). The

letters, a, b, . . . ,1 indicate the names given to the cluster for the years 2000,

2001, . . . , 2011. The b1cluster in 2001, for example, has formed out of the

a1 cluster of year 2000, plus some other clusters (which could even be a sin-

gle node, considered as a cluster) that has jointed a1 in this period. The sym-

bol x stands for a smaller cluster or a group of clusters in the network, which

are not one of those that constitute the set of the top five considered in the

evolution process. Similarly, in 2003, the d1cluster has formed out of the c1,

c2, c4, c5 clusters of 2002 plus some other clusters not from the top five set.

Running the picture backward in time, c1 of 2002 is the b1 of 2001 plus x, c2
is of 2001 plus x, c4 is b4 of 2001 plus x, and finally, c5 is b5 of 2001 plus x.

The other clusters (2, 3, 4, and 5) have not performed well in the competi-

tion for growth; they have been swamped by cluster 1 in almost all the peri-

ods from 2000 to 2011.19

In the Scopus India network as well as in both of the Scopus andWoS U.S.

networks, there is a predominantly leading cluster. It is clearly the winner in

2011, swamping in size all the remaining four in the growth race. In the WoS

India network, it is almost a similar situation, although in this case the other
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Figure 3. Five leading clusters (Scopus, U.S.).
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four clusters (2, 3, 4, and 5) were observed to have put up a more promising

competition than that exhibited by the corresponding clusters in other three

networks. It is important to note that, in the figures, the order parameter p is

plotted against time (in years), and it is possible for p to decrease from one

year to another in a situation in which the largest cluster’s size has not

increased in proportion to the overall size of the full network. This can hap-

pen, for example, if many small, isolated clusters have formed in the network

over the concerned period, without the largest cluster scaling proportionately

in size so as to show a clear increase in p. The benefits and implications of

tracking the growth and evolution of the large clusters in the network for for-

mulating research policies will be discussed in the next section.

Cluster Growth Dynamics

A researcher’s perceived willingness to collaborate is what gives rise to the

possibility of the leading cluster in the network to percolate. The first four

scenarios described in the previous section combine ways to mathematically

specify this distribution by starting with a simple case (scenario 1) and
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Figure 4. Five leading clusters (Web of Science, U.S.).
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incrementally incorporating more realistic complexities into the model. The

idea is to see what kinds of cluster evolution patterns emerge from their exe-

cution. As we see in this section, the results of most of these simulations have

realistic features, in one form or another, that can be used to explain cluster

evolution behavior in simple situations. This knowledge is of great value in

model building. However, in major practical applications, not one but rather

a combination of these features are expected to contribute, most frequently,

in a nontrivial way to the cluster-building process. Scenario 5 is a realistic,

albeit limited, case based on real willingness data collected from a small

sample of researchers.

Scenario 1. Scenario 1 depicts a situation in which a researcher’s collaboration

willingness drops abruptly to zero right after their current number of collabora-

tive ties crosses a threshold. Although rather unrealistic in practice, the scenario

is theoretically intuitive and serves as a toy example to validate the behavior of

cluster growth and evolution in our model. In Figure 5, we plot the order para-

meter p against different values of the collaboration threshold y for all four net-

works considered in this study. Qualitatively, all the graphs exhibit similar

behavior. Initially, small values of y yield small values of p, as a network is

largely fragmented at this stage. However, with y increasing subsequently, p

rises steeply, as more and more clusters are joined to form a large cluster in the

network. This phenomenon is caused by a ‘‘probabilistic attraction’’ mentioned

earlier, where an increasing number of clusters (including isolates) exhibits a
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Figure 5. Order parameter against willingness threshold in scenario 1.
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tendency, on the average, to connect to the leading cluster in the network.When

the threshold becomes moderately high, the clusters are already well formed in

the network, and the p curve reveals a saturation plateau, its rate of increase

becoming smaller with further increase of y.

Figure 6 shows the behavior of p with the mean collaboration willingness

<o>. As mentioned earlier, <o> gives the mean proportion of willing candi-

dates available for new collaboration. When it is small, there are few

researchers in the network willing to start new collaboration. Therefore, the

probability of formation of new connections among the currently existing

isolated clusters is small, and the corresponding p value is small on the aver-

age. With more researchers willing to collaborate, the order parameter rises

sharply. Alternatively, it is possible to look at the scenario in terms of a clus-

ter breakdown process, leading to a loss of connectedness in the collaboration

network. Thus, as higher and higher fractions of researchers become unwill-

ing to form collaborative ties, the giant cluster begins to fall apart. In Figure

6, the decline in the value of p is seen to be the sharpest for average willing-

ness lying in the range of (0.7, 0.9). Among the four networks, the fall is most

rapid for the India WoS and the U.S. Scopus networks.

Scenario 2. In this scenario, every researcher in the network is perfectly will-

ing to build new collaborative ties before they reach their threshold willing-

ness. However, as this threshold is crossed, researchers may still be

somewhat willing to collaborate, but this willingness falls very sharply (but
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continuously) with their current degrees in the network. From an initially

fragmented network, the order parameter rises very sharply from a very small

value as the threshold is made higher and higher. With every researcher in the

network perfectly willing to start new collaborations, the isolated clusters are

bridged very quickly. Subsequently, as large values of y are reached, the

increase of p slows down. However, even at a large threshold, p does not

decrease. This is due to the fact that a significant contribution (o ¼ 1) to

p comes from the low end (k < y) of the willingness function, over and above

the large contribution to it that comes from the p(k) distribution for small k.

This behavior, seen in Figure 7, is very similar to what was found in scenario

1. The qualitative behavior for a sudden drop in willingness in scenario 1 and

an exponential drop in the present case is not significantly different.

In Figure 8, we show p against the mean collaboration willingness <o>.

This behavior is also similar to that in scenario 1. As <o> increases, isolated

clusters are bridged, and a large-sized cluster starts to form in the network

quite rapidly. Alternatively, with a functional large cluster operating in the

network, if <o> starts to decrease as previously willing researchers become

unwilling to form new collaboration and are effectively removed from the

network, the large cluster begins to fall apart, and p drops very sharply.

Scenario 3. Figures 9 and 10 exhibit the simulation results of this scenario.

Initially, the network is largely fragmented, populated primarily by isolates
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and, perhaps, some small-sized clusters. For a specific value of the threshold

y, as the willingness to form new collaborative ties increases linearly with the

current degree of a researcher, there is an increasing probability that previ-

ously disconnected clusters will be bridged through one or more of these new

ties formed in the network. On an average, a particular researcher willing to

form new collaborative ties with others in the network is highly likely to be
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connected to one or more of the network’s large-sized clusters. This bridging

process continues until the threshold is crossed, after which collaboration

willingness falls exponentially fast, and the size of the order parameter

increases very slowly, if at all.

When y is set to high values, researchers may remain willing to forge new

collaborative ties even at large values of their current degrees. However, the

actual degree distributions of the MGMT networks are not perfect power

laws but have finite cutoffs. Therefore, most of the degrees in the network

are confined to intervals around the mean degree (which is rather small), and

there are only very few researchers with really large degrees in all our

MGMT networks for both countries. When the threshold is set to a high

value, there is then a negligible contribution to the order parameter from the

distribution’s tail. With increasing threshold, p therefore declines. The par-

ticular value of y that signals the onset of this decline is unique to the topo-

logical structure of the network. These values are 4, 8, 7, and 7 for the WoS

India, Scopus India, WoS U.S., and Scopus U.S. networks, respectively. This

behavior of p is clearly visible in all four of our MGMT networks in Figure 9.

This is in sharp contrast to the behavior exhibited by scenarios 1 and 2 above,

in which there is always a uniformly large contribution to p from the low end

of the distribution (k < y);where p(k) is relatively high ando¼ 1 consistently

throughout this range. In this case, p does not decrease even at high values of
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the threshold, although its rate of increase becomes increasingly smaller,

which characterizes the saturation plateau seen in the figure.

The behavior of the average collaboration willingness (i.e., the average

fraction of researchers who are still willing to collaborate), given by

< o > ¼
P1

k¼0
pðkÞoðk; yÞ, is characterized in this case by a slow fall

of <o> with increasing y. The fall pattern is unique to the specific topology

of a network. The y values are 2, 5, 4, and 3 for the WoS India, Scopus India,

WoS U.S., and Scopus U.S. networks, respectively. For small values of will-

ingness, the network is largely fragmented, consisting primarily of isolates

and small clusters. As <o> increases, the probability of bridging links among

the disjoint clusters also increases, and a large cluster begins to take shape.

The dynamics of this process determines whether or not the leading cluster

percolates in the long run.

On the other hand, in a cluster dissolution scenario, as the willingness

threshold decreases from a high value with previously willing researchers

now becoming unwilling to collaborate on the average, they and their asso-

ciated ties are effectively removed from the network, and p immediately

starts to decline. Figure 10 exhibits the simulation results pertaining to this

behavior. In all our networks in this scenario, the order parameter initially

declines almost linearly as mean willingness falls in the network, but even-

tually a catastrophic breakdown of large-scale connectivity is observed.

This is a unique characteristic of this scenario, in that the initial rate of

decline of p with decreasing <o> is much slower than what was encoun-

tered in the previous two scenarios. For example, the average decline rate

in the linear portion of the curve is about 80 percent steeper in scenario 2

than in scenario 3.

Scenario 4. In this scenario, Figures 11–14 show the behavior of growth

shrinkage of the giant cluster with rising adversity values for fixed colla-

boration willingness thresholds. As we hypothesized before, in all of the

four cases displayed, the trend in the fall of the order parameter with

increasing adversity is quite clear. Overall, the decline is nonlinear: for ini-

tially low values of adversity, the order parameter declines slowly, but

thereafter, its fall is somewhat close to linear. The average fractional per-

centage drop in p per unit increase in adversity is small: about 4 percent for

WoS India, 3 percent for WoS U.S., 1 percent for Scopus India, and 2 per-

cent for Scopus U.S. Note that the maximum values of the threshold are all

different in the four cases. We also keep well away from the asymptotic

regime realized at very high values of the degree by limiting our simula-

tions to a range below 50 percent of ymax.
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Scenario 5. The results of the bootstrapped Monte Carlo simulations pertain-

ing to scenario 5 are exhibited in Figure 15 for the Scopus and WoS India

networks. The figure shows the order parameter p plotted against the willing-

ness tolerance Z centered on the actual data points, which are a set of values

of actual researchers’ perception of collaboration willingness, conditioned on
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their last three years’ engagements in collaborative research activities. For

both Scopus and WoS, the average fractional change in p per unit tolerance

starting from Z ¼ 0.1 is close to about 1 percent. Thus, in both cases, p does

not appear to be overly sensitive to increasing tolerance limits, which sig-

nifies that the structure of the giant cluster is robust against limited variations
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Figure 13. Order parameter against adversity for fixed willingness threshold in
scenario 4 (Web of Science India).

0.55

0.65

0.75

0.85

1 2 3 4 5 6 7 8 9 10 11 12 13

O
rd

e
r 

p
a

ra
m

e
te

r 
(π

)

Adversity parameter (γ)

θmax=26

Figure 14. Order parameter against adversity for fixed willingness threshold in
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in assessing the willingness profile of actual researchers. In consequence, if

the existing giant cluster fills a significant volume of the entire network, then

this result indicates that the network possesses a highly desirable resilient

structure, in which the giant cluster remains in place even when there are

some deviations in the practical fulfillment of researchers’ actual collabora-

tive engagements.

Discussions of Results

Utility of Cluster Tracking

In this work, we examined the problem of large-scale structure formation and

growth in collaboration coauthorship networks, which are driven by an

underlying process of socioprofessional interactions among research colla-

borators. In a sociological study of the structure formation process in this

type of network, the cluster-tracking method is an excellent utility for indi-

vidually recording the temporal growth of some of the leading clusters in the

network starting from some initial instant of time. This knowledge is useful

for ascertaining how the network eventually approaches a stage in which it

operates in the percolating regime containing a fully operational giant clus-

ter. The specific points in the developmental phases of this cluster at which

important links form between this cluster and previously disconnected clus-

ter sets are also crucial elements contributing to the study of the ongoing

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

O
rd

e
r 

p
a

ra
m

e
te

r 
(π

)

Willingness tolerance (η)

Scopus

WoS

Figure 15. Order parameter against willingness tolerance in scenario 5 (Scopus and
Web of Science India).

30 Sociological Methods & Research

 at Monash University on November 17, 2015smr.sagepub.comDownloaded from 



growth process in the network. The particular researchers that constitute

these critical connectivity points in the giant cluster possess high values of

betweenness (irrespective of whether they possess high degrees).20

In almost all of the networks we studied over a 12-year window of time,

the final giant cluster emerged as a consistently clear winner in the race for

growth, dwarfing the next four clusters by a wide margin. This points to the

predominance of a largely connected community of researchers in the net-

works that grew considerably bigger and bigger over time through the addi-

tion of new entrants to the research fields as well as existing researchers from

other smaller clusters in the networks. Interestingly, in the WoS India net-

work, although the final giant cluster was once again the clear winner, the

next four clusters also exhibited some competitive growth. This network is

much smaller in size than the other three and is also of more specialized cate-

gorization of fields in the WoS electronic database.

Willingness Profile and Large-scale Structure Formation

Rather than focusing on the underlying mechanism of structure formation

(the why), we concentrated our attention in this study on the sociological

aspects of the problem (the how) by looking at the dynamics of how clusters

connect to one another through internal bridging links that form between

them in course of time. The primary observable in this dynamics is what

we have modeled by means of the willingness profile distribution, which

is a measure of a researcher’s perception of their eagerness and capacity

for forging new collaborative ties with other willing researchers in the

network. Unlike a causal mechanism that begets large-scale cluster growth,

the willingness function is not a mechanistic device per se. Instead, it

is a manifestation of an underlying sociological characteristic of the actors

in the network. The entire unfolding process, at an aggregate level, is

stochastic.

After ascertaining the existence of a definite giant cluster in each of the

networks under study, we performed numerical simulations in a number of

different scenarios to try to understand the characterization of the process

of large-scale structure formation in the networks. In this regard, cleverly

devising a willingness profile distribution function is the key to successfully

approximating the actual pattern of cluster evolution in the networks. The

scenarios we formulated to do this job capture different aspects of this beha-

vior. Starting from a simple scenario, we incrementally built more realistic,

albeit complicated, scenarios that approximate the actual growth of the giant

cluster in the real networks.
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In the settings of scenarios 1 and 2, each researcher in the network has a

willingness profile in which there is perfect willingness to collaborate up to

the level of the threshold y, independent of the current local collaboration

ties of researchers. This makes the order parameter p grow with progres-

sively higher values of y. The scenarios, however, differ in their individual

patterns of decline of the willingness after the threshold is crossed. As p

reaches saturation, the decrease in willingness, independent of whether it

is abrupt or smooth, does not cause the order parameter to drop signifi-

cantly, although its growth rate visibly slows down, and it may ultimately

become negative at very large values of y. This type of behavior is vastly

different from the one that arises from a willingness profile that depends

on the current degree values of collaborators below the threshold level. The

simplest case pertaining to this characteristic behavior is modeled in sce-

nario 3 by a profile that is linearly increasing with degree below the thresh-

old. The order parameter cannot saturate in this case but rapidly falls off

immediately as the threshold is crossed.

It is important, in particular, to compare these three scenarios with sce-

nario 5, which is a bootstrap Monte Carlo realization of a sample of willing-

ness profiles based on actual data obtained from a sample of researchers from

the India network. The bootstrap results show that the order parameter is not

much affected by limited deviations in the actual willingness profiles of

researchers. Thus, when the giant cluster occupies a considerable fraction

of the network’s volume, its large-scale structure is robust against errors

made in assessing the probabilities of researcher’s willingness to undertake

new collaborative activities. This result is reassuring, since the actual assess-

ment of these probabilities depends on subjective elements arising out of

researchers’ current perception of collaboration willingness that projects into

a future state of the network.

In this simulation, one can conceive of two independent cases: (1) resam-

pling of actual data points (used in this work), and (2) resampling of actual data

points as well as inclusion of intermediate points from the profile. There is a

conceptual difference, however, between the two cases. If we consider only the

first case, then we are not supposed to use any willingness values between the

sample points. Given that we use only these points when computing p, the pro-

file function, strictly, contains no information about the values in between. The

function might take any form whatsoever between the sample points and we

would never know these values, since these intermediate points did not exist

in the sample in the first place. Nevertheless, if a willingness profile is reason-

ably smooth, with nomajor irregularities between sample points, then knowing

the values at the sample points only is sufficient to get a picture of the general
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shape of the profile. For some of the intermediate points not present in the sam-

ple, the p(k) values as well as the corresponding o(k) values may be found to

be high. The x value obtained as a root of the polynomial equation for such a

point makes the p value larger in this case. For example, we may write

pð0Þ ¼
P

k
pðkÞoð0ÞðkÞ �

P

k
pðkÞoð0ÞðkÞxkð0Þ and pðeÞ ¼

P

k
pðkÞoðeÞ

ðkÞ�
P

k
pðkÞoðeÞðkÞxkðeÞ for two-order parameters corresponding to Z ¼ 0

and Z ¼ e, respectively. Then, pðeÞ � pð0Þ ¼
P

k
pðkÞ½foðeÞðkÞ�

oð0ÞðkÞg � foðeÞðkÞxkðeÞ � oð0ÞðkÞxkð0Þg�. For the intermediate points not in the

sample,oð0ÞðkÞ ¼ 0. In this case, pðeÞ > pð0Þ for all k values, because xkðeÞ < 1.

For the original resampled points, however, pðeÞ > pð0Þ holds only for those k

values for which oðeÞðkÞ � oð0ÞðkÞ > oðeÞðkÞxkðeÞ � oð0ÞðkÞxkð0Þ. This depends

on the specific values of x, where the corresponding polynomial equations in

the two cases make a zero crossing in the interval [0, 1]. In practical situations,

all we can get are a finite number of sample points and not really a nice con-

tinuous function; for this kind of data, our method of using the spline interpo-

lation works comfortably well.

Scenario 4, by contrast, examines an altogether different sociological

aspect of research collaboration. Rather than focusing on the variations in

threshold level, it examines the behavior of p for different values of adversity

in the research environment for a fixed value of the threshold level. A

researcher works in an environment that is frequently constrained by a num-

ber of external factors, which include, for instance, teaching responsibilities,

administrative duties, student advising as well as various personal obliga-

tions. The effects of these factors on the freedom to do collaborative research

are aggregated into the adversity parameter in our model. With no adversity

present (an ideal situation), the willingness profile is a step function with a

uniform maximum value all the way up to the threshold level. With increas-

ing influences of external factors, the profile is moderated by the adversity

parameter, causing the order parameter to exhibit a growing shrinkage. How-

ever, on account of the nonuniform decrease in the profile around y, the

decline of the order parameter becomes generally nonlinear.

This type of behavior is exhibited, almost uniformly, by all four of the net-

works studied in this work; it can therefore be regarded as a general feature of

these networks. Although we have modeled only the average adversity in this

work, it is possible as well as useful to extend the model by disaggregating

the entire effect into separate, individual influences of all external con-

straints, resulting in different adversity levels at which researchers perform
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collaborative research activities in the prevailing research environment of an

institution or a country. This model, albeit more realistic, is a little harder to

conceptualize and formulate; however, its numerical implementation should

be straightforward.

Sociological Implications

As mentioned earlier, the evolution of clusters in a research collaboration

network is a result of an intrinsically competitive dynamics, although the

underlying process, per se, may not necessarily be generated by a purposive

social force. Two centrality measures commonly contribute to growth in this

regard—the degree and the betweenness of the researchers. In the context of

collaboration, influential researchers who are collaboratively associated with

many others in the network play the role of attractors or star performers,

drawing existing as well as new researchers toward them. The underlying

association is one of cumulative advantage (Allison et al. 1982; Merton

1957; Simon 1955), which helps to enlarge the ego-centered clusters of these

researchers over time. On the other hand, collaborative brokers, surrounded

by structural holes, become influential as well by dint of their high between-

ness values (Fleming et al. 2007). Even possessing low degree centrality in

some cases, these researchers serve to bridge previously disconnected clus-

ters, thereby enlarging the average cluster size in the network (Moody and

White 2003; Reagans and McEvily 2003).21 These two processes are simul-

taneously at play in most common cases of evolution. Using our cluster-

tracking algorithm, we found that both these processes contribute heavily

to the evolution of the leading cluster, causing it to eventually cross the per-

colation threshold. Thus, even in a network with a highly fragmented topol-

ogy at some initial time (which is the case with all our networks in this

study), a small number of clusters is seen to grow quickly in time. Finally,

if the network enters the percolating regime, there is one clear winner.

Although there are a number of models of cluster evolution in a social net-

work, it is frequently unclear as to what constitutes the fundamentalmechan-

ism of growth in a particular social context. Commonly, not one but multiple,

highly interlinked processes contribute. Instead of adopting this mechanistic

approach, we have focused our attention in this work on a behavioral aspect

of evolution through a researcher’s perceived willingness to collaborate,

which is the manifestation of a researcher’s socioprofessional attitude toward

collaborative research activities (Powell et al. 2005). This not only engages a

researcher in the excitement of doing research through the mixing of diverse

domains of knowledge and technical expertise available from collaborators,
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it also opens up new channels for them to build their social capital (McFa-

dyen and Cannella 2004; Walker et al. 1997). The existence of a giant cluster

is a precondition for ensuring the necessary large-scale connectivity needed

to build and expand this capital. In our present approach to cluster evolution,

the clusters, as units of analysis, do not evolve through the imposition of a

predefined set of rules. Rather, they evolve adaptively as researchers connect

to one another based on their willingness to collaborate. We are, therefore,

not concerned about whether specific ideas or schools of thoughts will get

passed on over time through cohesive embedding in local groups through star

performers or otherwise but about the search, flow, access, and the mixing of

ideas in a collaboration context. Importantly, only when a network operates

in the percolating regime, these benefits can be reaped. For example, the

accessibility and the flow of information and resources benefiting a

researcher is restricted in practice to investigating whether the network’s per-

colating cluster, if it exists, possesses the small-world property (Watts 1999).

Although cohesion and group embeddedness are important structural charac-

teristics, their actual impact on a collaboration network’s large-scale connec-

tivity is neither transparent nor particularly relevant to the present context.22

Our first three scenarios are based on the assumption that the willingness

profile, under ordinary circumstances, depends on the number of present col-

laborators of a researcher as well as on their maximum capacity to collabo-

rate. This assumption does not take into account the presence of the external

environment in which a researcher performs collaboration research. In sce-

nario 4, we made the additional assumption that the work environment can

also influence a researcher’s willingness profile distribution. Thus, subject

to the constraint imposed by the collaboration threshold, a congenial or sup-

portive work environment may go a long way to enhance a researcher’s col-

laborative activities above what is normally possible in a neural environment.

Conversely, a nonsupportive environment, often realized through institu-

tional pressures for productivity, growth, and functionalism; rapid technolo-

gical changes; and constraints in the funding situations, may reduce

collaborative activities to a level below what is ordinarily achievable in a

neutral environment (Lieberson and Lynn 2002; Shrum et al. 2007). The

adversity parameter models this situation in an aggregate way. Our simula-

tions based on the assumed profile supports this hypothesis. However, in the

current context, the effect is incorporated into the profile only in an aggregate

way. This approach, therefore, must be regarded only as an approximation,

which does not allow the collaboration environment to be subdivided into

components for which identifiable sources of adversity can be modeled

separately.
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Conclusions, Limitations, and Future Directions

In this work, we introduced techniques in sociological research methods to

perform a behavioral analysis of cluster formation, growth, and percolation

in social networks. The methodology and the techniques can be applied to

a wide variety of research problems in which specific domains are sociolo-

gical research. The accompanying numerical metrics are utilized to explore

as well as to confirm the validity and applicability of many observational

variables of practical significance. We specialized in a cross-country, com-

parative study of the emergence of large-scale structures in collaboration,

coauthorship networks of researchers by investigating the growth and evolu-

tion patterns of the clusters in these networks. Assuming the existence of

some underlying social force that is responsible for growth in these networks,

we adopted a behavioral perspective to examine how some small-sized, iso-

lated clusters at an early instant of time grow in size through the merging of

multiple such clusters, as crucial intercluster bridging links are formed sub-

sequently between them. Typically, one cluster among the leading ones may

eventually win the growth race by percolating through the network, spanning

it and filling up a significant volume of it. Our findings in this direction of

investigation contribute to a better understanding of the dynamics of cluster

growth and evolution in social networks and should stimulate future research

to integrate the actual causal mechanisms for network growth and the socio-

logical manifestation of large-scale structural patterns in these networks.

This study, at its present stage, has a few limitations that offer fruitful

opportunities for future research in this area. First, it is important to realize

that the methods introduced in this work apply to a specific research problem

at an aggregate level. In other words, the final outcome pertains to the struc-

ture of an entire network (hence, a large community, organization, or soci-

ety). It is not the study, per se, of an ego-centered group. Of course, it is

the individual dynamics that underlies the fundamental mechanism responsi-

ble for the social attraction among individual actors mentioned earlier in the

article. In this work, we have assumed its existence as providing the back-

ground of the cluster formation process and coarse-grained over the individ-

ual interactions. In the spirit of an agency-structure integration problem, we

will show, in a future work, how to make this connection between the micro

and the macro structures of social interactions.

Next, we note that the willingness parameter, which contributes to the

formation of bridging links between disconnected clusters, has a subjective

element built into its actual phenomenological assessment. It actually is the

perception of a researcher of their willingness to collaborate at the present
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time or in the near future, given their current involvement in collaborative

research activities. Thus, two researchers with comparable present involve-

ment in collaboration research may possess widely dissimilar perceptions of

future research interests. Researchers also vary widely in their individual atti-

tudes toward research. For example, there are researchers who intend to build

large collaboration groups, although they may not personally undertake a sig-

nificant amount of research activities themselves. Rather, they tend to play the

role of collaborative brokers, bringing other researchers together to collaborate

through their critical intermediation. The collaboration willingness of these

individuals is usually high and does not depend significantly on the current

level of their research involvement. By contrast, some researchers who already

have high current involvement may attempt to grossly reduce, or at least

limit, their future collaborative activities and consequently exhibit low levels

of willingness. To obtain accurate results useful in simulation works, large data

sets containing a wide distribution of the willingness measure must be used. In

the absence of a known distribution of population values of willingness, the

Monte Carlo bootstrap procedure used in the present work is a useful para-

metric estimation technique. However, since our current data set is rather

small, the statistical assessment of the order parameter is not highly accurate

at this stage. Also, we could only employ a small set of primary data collected

from researchers in India to witness the behavior of the order parameter.

Besides enlarging this set in the future, it is also necessary to obtain primary

willingness data from researchers in the United States. In the absence of this

component, our cross-country comparative analysis must therefore be

acknowledged to have remained only partially complete. At this time, our

work is under way to make this assessment more robust.

To simplify our analysis in this work, we made use of a constant colla-

boration threshold. In reality, it is conceivable that the threshold depends

on the time. The resulting simulations will have further complications in this

case. Even more importantly, we have assumed in scenarios 1–4 that all

researchers behave in the same way with respect to the individual capacities

to shape their collaborative activities. In practice, there certainly are devia-

tions from this behavior. Besides, we have not considered past history of col-

laboration, the availability of collaboration resources, and the homophily on

various demographic and geographic dimensions.23 However, it is also

important to note that the network operating in a percolating regime has char-

acteristics that are not dependent on specific initial conditions pertaining to

group embeddedness, local cohesion, and homophily.

Finally, we have considered the adversity parameter only at an aggregate

level. In this sense, it is only a single parameter that represents all manners of
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external difficulties encountered by researchers in their collaboration

research engagements. In reality, there could be many sources to limit their

collaborative activities. The individual impacts of the separate sources on the

order parameter are expected to contribute at different levels. The aggrega-

tion philosophy is, therefore, only an approximation. Computationally, it is

straightforward to disaggregate the general effect and incorporate the sepa-

rate sources into an empirical willingness profile analysis. However, it is

quite difficult to perform an appropriate conceptual assessment of the indi-

vidual effects of all the sources that contribute to the difficulties encountered

in collaboration research.

Ongoing work at this time involves incorporating these enhancements into

the present model. Primary data collection from researchers based in the

United States is also in active contemplation.
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Notes

1. A cluster, also called a network component, is a connected set of actors in the

network. The term cluster is usually used in the context of percolation problems

in networks (Albert and Barabási 2000; Callaway et al. 2000).

2. A single actor as an isolate in the network is also a cluster in our view.

3. There are a number of important earlier studies of the growth mechanisms in

social networks (Albert and Barabási 2000).

4. This is true of most works of collaboration. There are a few exceptions, however.

For example, a paper published in Elsevier’s journal Physics Letters B (Compact

Muon Solenoid [CMS] 2012) on the CMS) collaboration experiment at the Large

Hadron Collider to detect the Higgs boson has listed about 2,893 authors from
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63 different countries of the world. The social relevance of these types of

extremely large collaboration projects is unclear (Newman 2001).

5. Still shorter periods using data over four or six months are theoretically possible,

but, unfortunately, the listings of the journals in the actual databases are incom-

pletely indexed over such short periods.

6. These clusters were not one of the initial clusters in our fixed sample at previous

instances of time.

7. In recent survey interviews of researchers in India, we have found that many

researchers, especially those who hold permanent faculty positions in various

institutions in India, also have to perform a number of administrative functions.

Most of these researchers have expressed concerns to us to the effect that, it

frequently becomes difficult for them to balance administrative duties with

collaborative research (and teaching) activities.

8. There may be more than one in rare cases.

9. These, then, are the second-order neighbors of the focal researcher.

10. Callaway et al. (2000) have found similar results by the use of secondary gener-

ating functions.

11. The root of this equation is actually a probability, which is restricted to this range.

12. The linear function is the simplest behavior used as a first approximation to the

functional form. Other empirical functions or parameter-dependent functional

forms may also be used.

13. For nonintegral s, the polylogarithm function is referred to as the Jonquière

function (Maximon 2003).

14. As we have noted in a number of interviews of a subset of researchers in India,

the unavailability of sufficient research funds in recent years prevents many

researchers from attending national and, especially, international conferences,

which provide worthwhile opportunities for researchers to come into contact with

other researchers to start new research collaboration projects.

15. The coauthorship bibliometric data were first collected from the Scopus and

WoS databases for this period. Subsequently, the electronic data were confirmed

and validated directly through interviews of the selected sample of researchers.

16. For all researchers having the same degree value in the network, we take the

average of the values of their perceived collaboration willingness as the repre-

sentative willingness value for that degree.

17. If the o value obtained in this way falls beyond the upper and lower bounds of the

[0, 1] probability range, we reject the point and draw again.

18. In the actual program implementation, we used r ¼ 10,000.

19. It is important to recognize that our networks, and hence the clusters in them,

have been built by fixing a specific window of time and using cross-sectional

data which are sectionally segmented over short periods of one year and
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subsequently pieced together. To a certain extent, therefore, cluster formation in

a network of this type depends on the initial clock time (here, the year 2000), and

a particular configuration of clusters in a network at a certain period of time may

be the result of a particular historical accident. Be that as it may, the tracking

technique we employ here does not depend on the initial time, but different clus-

ters may have different temporal predominance if clocks are started off at differ-

ent initial instants of time.

20. In this article, although we have desisted from identifying by naming individual

researchers who serve as the endpoints of the bridging links, it is easy to do so in

any specific practical application of the cluster-tracking procedure.

21. Using search criteria based on fields or specialization areas within MGMT, we

have found through cluster tracking that many of these bridging connections are

due to interdisciplinary research work within MGMT (particularly in the U.S.

networks); for example, researchers working in finance have collaborated and

published with researchers in organizational behavior or strategy.

22. We investigated these structural effects in earlier papers (Ghosh and Kshitij

2014; Ghosh, Kshitij, and Kadyan 2015).

23. We thank a reviewer for pointing out this limitation to us.
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