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Abstract: Bit error rate (BER) and channel capacity are two important metrics to assess the performance of free-space optical
communication (FSOC) systems. Due to the fading of the optical signal owing to the atmospheric effects, these two quantities
behave as random variables. Most of the studies in this direction have focused on the calculation of only the average of these
quantities. However, since the complete information about a random variable is encoded in its distribution, it is more informative
to examine the latter itself. In this work, the authors derive exact probability density function (PDF) expressions for the BER and
the channel capacity for an arbitrary irradiance model. In particular, they investigate these exact results for log-normal, gamma-
gamma, and K distributions. For the BER analysis, they focus on the binary phase shift keying and quadrature phase shift
keying modulation schemes. The authors' analytical reults are found to be in conformity with Monte Carlo simulations. The exact
PDFs of the BER and the channel capacity reveal that there are several instances when the average is unable to capture the
actual behaviour of these quantities, and therefore one must be careful in drawing conclusions based on the first moment only.

1 Introduction
Free-space optical communication (FSOC) has generated
considerable interest in recent times due to tremendous advantages
it offers over radio-frequency communications [1–3]. This includes
enhanced bandwidth, low power consumption, inexpensive and
compact equipment, and greater security against eavesdropping.
However, the atmospheric turbulence results in the fading of the
optical signal, thereby degrading the performance of the
communication systems.

There are several statistical models describing the atmospheric
turbulence which quantify the irradiance of FSOC channels in a
given turbulence scenario. A few prominent examples are the log-
normal distribution [4–6], the K distribution [4, 5, 7–9], and the
gamma-gamma distribution [4, 10–12]. The log-normal model
applies to the case of relatively weak turbulence, whereas the K
distribution has been found to describe the strong turbulence
regime. Gamma-gamma distribution can be used in a wide range of
turbulence conditions, ranging from weak to strong.

Once the behaviour of the irradiance is described by one of the
appropriate fading models, the next logical step is to evaluate
certain quality of service (QoS) measures to assess the performance
of the communication system. Bit error rate (BER) and channel
capacity are two such very important metrics [4, 13–15]. As a
consequence of the stochastic nature of the optical signal, these
quantities behave as random variables. Typically, investigation
involving these measures remains restricted only to their respective
averages (first moments) [4, 13–27]. However, since the full
information concerning a random variable is encoded in its
distribution, the average values may not capture the true behaviour
of these metrics. The study of higher-order statistics of the above
metrics beyond the first moment has been scarce, especially in the
context of FSOC [28, 29].

In this work, we derive exact probability density function (PDF)
expressions for the BER and the channel capacity. Our expressions
are applicable to any fading model for the irradiance. However, for
our analysis, we focus mainly on the log-normal, gamma-gamma,
and K distributions. Interestingly, unlike the exact expressions for
the averages, which contain higher transcendental functions like
Meijer G [15, 16, 19, 25], our exact expressions for the PDFs
involve relatively simple special functions. By evaluating these
results we find that there are several instances when the PDF is not

‘localised’ around the average value and, instead, is rather
dispersed. Consequently, the average is unable to capture the actual
behaviour of the BER and channel capacity random variables, and
necessitates computation of higher-order moments and PDF.

The presentation scheme in this paper is as follows. In Section
2, we outline the conventional channel model used for FSOC.
Section 3 summarises three of the very popular PDFs for modelling
the signal fading, namely, the log-normal distribution, the gamma-
gamma distribution, and the K distribution. In Section 4, we
present our exact result for the BER PDF. The exact result for the
channel capacity PDF is presented in Section 5. While our exact
results hold for an arbitrary irradiance model, we focus on the log-
normal, gamma-gamma, and K distributions for our analysis in
Sections 4 and 5. Moreover, for the BER analysis we consider the
binary phase shift keying (BPSK) and quadrature phase shift
keying (QPSK) modulation schemes. Finally, we conclude in
Section 6 with a brief summary of our work.

2 Channel model
The communication channel for the optical signal is assumed to be
memoryless, stationary, and ergodic, with independent and
identically distributed intensity fast fading statistics. Within this
statistical model, the received signal y is given by [13, 15]

y = ηIx + n, (1)

where η is the effective photo-current conversion ratio of the
receiver, I is the normalised irradiance, x is the transmitted signal,
and n is the white Gaussian noise with zero mean and variance
N0/2. The instantaneous electrical signal-to-noise ratio (SNR) can
be defined as [6, 14],

γ = (ηI)2

N0
. (2)

The average SNR is defined as γ = (η E [I])2/N0, where E [ ⋅ ]
represents the expected or average value [6, 14]. It should be noted
that, as per this conventional definition, γ ≠ E [γ] = (η2 E [I2])/N0.
The signal reaching the receiver is faded on account of
encountering turbulence. Consequently, I is modelled using one of
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the appropriate fading models [4, 6] as briefly discussed in Section
1.

3 Distribution models for the irradiance
In the following, we consider the log-normal, gamma-gamma, and
the K distribution models for the irradiance, which are very popular
distributions for describing the effects due to atmospheric
turbulence in FSOC.

3.1 Log-normal distribution

In the case of a relatively weak turbulence, the light intensity
fading may be modelled as a log-normal random variable [4, 6].
The corresponding PDF is given by [4, 11, 19]

f (I) = 1
2π σI

exp − (ln I + σ2/2)2

2σ2 1(0, ∞), (3)

where ‘ln’ represents the natural log (base e), and σ2 is the log
irradiance variance which depends on the channel's characteristics
[14, 19]. Moreover, 1D is the indicator function which signifies
that the PDF is zero outside the domain D. We note that in the
above expression the irradiance is normalised, so that E [I] = 1
and, consequently, γ = η2/N0.

3.2 Gamma-gamma distribution

The PDF for the gamma-gamma irradiance is given by [4, 10]

f (I) = 2(αβ)(α + β)/2

Γ(α)Γ(β) I(α + β)/2 − 1Kα − β 2 αβI 1(0, ∞), (4)

where Γ(z) is the gamma function and Kν(z) is the modified Bessel
function of the second kind [30]. In this case also, the average
irradiance is E [I] = 1. The two parameters α and β are decided by
the atmospheric conditions [12, 20]. In case the optical radiation is
assumed to be a plane wave, these parameters are given by [12, 20]

α = exp 0.49σl
2

1 + 1.11σl
12/5 7/6 − 1

−1

, (5)

β = exp 0.51σl
2

1 + 0.69σl
12/5 5/6 − 1

−1

. (6)

Here σl
2 = 1.23Cn

2k7/6L11/6 is the log irradiance variance, L is the link
range, k = 2π /λ is the wave number with λ being the wavelength,
and Cn is the refractive index structure parameter which, for a
horizontal link, is assigned a value Cn

2 = 5 × 10−13m−2/3. Due to the
presence of two parameters, gamma-gamma distribution has been
found flexible enough to describe a wide range of turbulence
conditions rather well, ranging from weak to strong [4, 10]. When
either of the parameters α or β is unity, (4) reduces to the K
distribution, which is discussed below.

3.3 K distribution

The K distribution has the PDF given by

f (I) = 2α(α + 1)/2

Γ(α) I(α − 1)/2Kα − 1 2 αI 1(0, ∞) (7)

and, as can be seen, is a special case of the gamma-gamma
distribution obtained for β = 1 in (4). In the limit α → ∞, it
becomes a negative-exponential (e−I) distribution. The K
distribution is used to model strong turbulence conditions [5, 7,
10]. The corresponding theoretical predictions have been found to
exhibit an excellent agreement with the experimental data [9].

4 Bit error rate
Noise, interference, distortion or bit synchronisation errors lead to
undesirable alteration in the received bits of a data stream over a
communication channel. BER is a QoS measure that indicates the
number of bit errors per unit time.

There are several modulation schemes which are employed to
transmit the optical signal in the FSOC [3, 20, 31–33]. The ON–
OFF keying (OOK), in both the non-return to zero (NRZ) and
return to zero (RZ) encodings, is one of the conventional
techniques [33]. Another very important modulation scheme is L-
pulse position modulation (L-PPM), where M binary bits are
transmitted as a single light pulse in one out of L = 2M possible
time slots with remaining slots being empty [32]. BPSK and QPSK
are two of the most popular methods in phase shift keying (PSK)
[3, 20, 33]. Pulse amplitude modulation (PAM) is yet another
prominent modulation technique where information bits are
encoded in the amplitude of the signal [3, 20].

The signal dependent BER in the above mentioned modulation
schemes can be expressed in a unifying manner as [27]

ℬ(I) = 1
a erfc γ1/2

b

= 1
a erfc ηI

b N0
= 1

a erfc γ1/2 I
b ,

(8)

where erfc(⋅) is the complementary error function [30], and the
values of parameters a and b are compiled in Table 1. 

The PDF of the BER can be calculated as

pB(B) = ∫
0

∞
δ(B − ℬ(I)) f (I) dI

= π1/2ab
2γ1/2exp[ − (erfc−1(aB))2]

× ∫
0

∞
δ I − b

γ1/2 erfc−1 aB f (I) dI .

(9)

In deriving the above result, we used (8) for ℬ(I) and the
following property of the Dirac delta function [30]:

δ(ϕ(x)) ≡ ∑
i

δ(x − xi)
ϕ′(xi)

. (10)

Here xi are the simple roots of the equation ϕ(x) = 0. In this case,
B − ℬ(I) = 0 yields the root as I = (b/γ1/2) erfc−1 aB . The delta-
function integral can now be performed easily to yield

pB(B) = π1/2ab
2γ1/2 exp (erfc−1(aB))2

× f b
γ1/2 erfc−1 aB 1(0, 1/a) .

(11)

Using the above general expression, we can deal with any fading
model with the corresponding PDF of the irradiance given by f (I).
For instance, for the log-normal, gamma-gamma, and K
distributions, we have the following explicit results, respectively,

Table 1 Parameters for various modulation schemes
Modulation scheme a b
NRZ-OOK 2 2 2
RZ-OOK 2 2
L-PPM 2 4/ Llog2 L
PAM 2 2 2(L − 1)/ log2 L
BPSK 2 1
QPSK 1 1
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pB
(LN)(B) = a

2 2 σ erfc−1(aB)exp (erfc−1(aB))2

× exp − 1
2σ2 ln b

γ1/2 erfc−1(aB) + σ2

2
2

1(0, 1/a),
(12)

pB
(GG)(B) = π1/2a (b αβ)(α + β)/2

γ(α + β)/4 Γ(α)Γ(β)
× exp (erfc−1(aB))2 (erfc−1(aB))(α + β)/2 − 1

× Kα − β 2 b αβ
γ1/2 erfc−1(aB)

1/2

1(0, 1/a),

(13)

pB
(K)(B) = π1/2a (b α)(α + 1)/2

γ(α + 1)/4 Γ(α)
× exp (erfc−1(aB))2 (erfc−1(aB))(α − 1)/2

× Kα − 1 2 b α
γ1/2 erfc−1(aB)

1/2

1(0, 1/a) .

(14)

We will demonstrate below that there are circumstances when the
actual probability of the BER value being close to the average
value E [B] = ∫0

1/aB pB(B) dB can be quite small. To quantify this,
we consider the probability of BER being within the interval
[ E [B] − δB, E [B] + δB] around the average E [B]. This can be
obtained using the integral

ΠB = ∫E [B] − δB

E [B] + δB

pB(B) dB . (15)

We would like to remark that, to study the dispersion of the
probability distribution, one may be interested in calculating the
coefficient of variation (CV), which is defined as the ratio of the
standard deviation to the mean [34]. However, in the present
investigation, the mean can get very close to zero (see, e.g. Table 2)
and therefore CV may not serve as a good measure to capture the
dispersion behaviour. 

As indicated above, in the following, we focus on the BER
using the BPSK (a = 2, b = 1) and QPSK (a = 1, b = 1)
modulation schemes for log-normal, gamma-gamma, and K
distributions. Other modulation schemes can be treated similarly. It
may be noted from the general structure of the BER distribution
appearing in (11) that the PDFs for the BPSK and QPSK
modulation schemes are related to each other by a scaling of 2,
since the variable B scales by the parameter a.

4.1 Results for log-normal irradiance

We use (12) with σ = 0.3 to analyse the BER PDF in the BPSK and
QPSK modulation schemes. We show the corresponding PDF plots
in Fig. 1 for two average SNR (γ) values measured in dB. Monte
Carlo simulation based results (overlaid symbols: filled circles and
squares) are also displayed and are in conformity with the
analytical results (solid curves). The Monte Carlo simulation
involves generating 100,000 BER values using random numbers
from the log-normal distribution and (8). The average BER value
( E [B], rounded to three decimal places) corresponding to each
curve is also indicated on the horizontal axis using an arrow. As
discussed above, the scaling of two can be observed between the
BPSK and QPSK curves, i.e. the QPSK curve extends up to twice
the width of BPSK curve and has half the corresponding height.

In Table 2 we compile, for the BPSK modulation scheme,
values of the average BER E [B], the variance
Var[B] = E (B2) − ( E (B))2, and the probability ΠB of the BER
being within a neighbourhood ±δB of E [B]. We choose δB = 0.05,
which corresponds to an interval of length 0.05 on either side of
E [B], unless E [B] lies closer to the edges (0 or 1/a = 0.5) than a
distance of 0.05. It should be noted that 0.05 constitutes 10% of the
total available domain of 0 to 0.5 for the BER in the BPSK scheme.
We can see from the tabulation that in the log-normal model the

probability of the BER being within this interval, around the
average value, is generally quite large. Hence, E [B] provides a
reasonable estimate of the actual behaviour of the BER.

Due to the scaling relation between BPSK and QPSK schemes
via the parameter a, the average and variance values for the latter
are twice and four times the ones indicated in the Table 2,
respectively. Moreover, the ΠB values given in the table work for
QPSK if δB is chosen as 0.1 around the corresponding average
value.

4.2 Results for gamma-gamma irradiance

We use (13) to analyse the BER distribution under the gamma-
gamma irradiance model under the BPSK and QPSK modulation
schemes. In Fig. 2, we show the BER PDFs for two average SNR
(γ) values in the gamma-gamma distribution with α = 4 and β = 2.
The curves based on analytical results match very well with the
Monte Carlo simulation results depicted using symbols. The latter
involves obtaining 100,000 BER values calculated using (8) with
the aid of random numbers from the gamma-gamma distribution.
In this case, we observe that the PDFs are quite dispersed about the
average values indicated by the arrows pointing on the horizontal

Table 2 BER statistics for BPSK modulation scheme in the
log-normal irradiance model: E [B], Var[B], and ΠB for
δB = 0.05. For QPSK modulation scheme, the E [B] is twice
and Var[B] is four times the values shown below for BPSK
modulation. Moreover, the ΠB values indicated below hold for
QPSK modulation if δB is chosen as 0.1
σ γ E [B] Var[B] ΠB

0.1 0 0.08070 0.00042 0.98573
0.1 5 0.00730 0.00002 1.00000
0.1 10 0.00002 0.00000 1.00000
0.2 0 0.08663 0.00164 0.78029
0.2 5 0.01139 0.00017 0.99040
0.2 10 0.00017 0.00000 1.00000
0.3 0 0.09579 0.00350 0.56593
0.3 5 0.01825 0.00063 0.94488
0.3 10 0.00090 0.00001 0.99932

 

Fig. 1  PDF of the BER for the log-normal distributed irradiance in BPSK
(a = 2, b = 1) and QPSK (a = 1, b = 1) modulation schemes. The log
irradiance variance has been chosen as σ = 0.3. The solid curves indicate
the analytical prediction and the overlaid symbols are based on Monte
Carlo simulation. The average values of BER, indicated using the arrows
pointing on the horizontal axes, are
(a) BPSK: 0.096, QPSK: 0.192, (b) BPSK: 0.018, QPSK: 0.036
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axes. This implies that the average value may not give a good
estimate about the behaviour of the BER. Additionally, the PDF of
BER in this case exhibits some interesting features. For small
average SNR, i.e. γ → − ∞ dB, it assumes large values near the
right edge (B = 1/2 for BPSK and B = 1 for QPSK) and for large γ
it shows enhanced values towards the left edge (B = 0).
Correspondingly, the minimum of the PDF (anti-mode) in each
case is located towards the left edge for small γ values and moves
towards the right edge, as γ is increased to large values.

In Table 3, we tabulate ΠB for δB = 0.05, along with E [B] and
Var[B], for several parameter values in the BPSK case. Here we

find that the probability of the BER assuming a value within a
neighbourhood ±0.05 of the average is typically low. This
indicates that in this case the average BER is not a good indicator
of the actual behaviour of the random variable B. It can be also
seen that the variances in this case are comparatively larger. The
results for QPSK case again follow using the scaling of 2.

4.3 Results for K-distributed irradiance

We investigate the BER statistics for K-distributed irradiance using
(14). Fig. 3 depicts the plots for the BER PDF for BPSK and QPSK
modulation schemes for two SNR values with the parameter α set
to 2. The agreement between the solid curves using the analytical
results and the symbols based on Monte Carlo simulation is
excellent. Here also we see that the BER values are rather
dispersed about the average values indicated using the arrows on
the horizontal axes.

Table 4 compiles the E [B] and Var[B] values along with ΠB for
δB = 0.05 valid for the BPSK modulation. Low ΠB values indicate
that E [B] does not serve as a good measure for assessing the BER
behaviour. A similar conclusion holds for the QPSK modulation
scheme also due to the scaling relationship via the parameter a.

5 Channel capacity
Channel capacity is an important performance metric that refers to
the maximum achievable data rate that can be reliably
communicated between the transmitter and the receiver. It is given
by [14, 15]

C(I) = W
ln 2 ln(1 + γ) = W

ln 2 ln 1 + γI2 , (16)

where W represents the bandwidth. The corresponding PDF can be
calculated as

Fig. 2  PDF of the BER for the gamma-gamma distributed irradiance with
α = 4, β = 2 in the BPSK (a = 2, b = 1) and QPSK (a = 1, b = 1)
modulation schemes. Solid curves are based on analytical expression, while
the overlaid symbols are using Monte Carlo simulation. The average values
of BER for the two plots, indicated using arrows, are
(a) BPSK: 0.175, QPSK: 0.350, (b) BPSK: 0.101, QPSK: 0.202

 
Table 3 BER statistics for BPSK modulation scheme in the
gamma-gamma irradiance model: E [B], Var[B], and ΠB for
δB = 0.05. For QPSK modulation scheme, the E [B] is twice
and Var[B] is four times the values compiled below. The ΠB
values appearing below hold for QPSK modulation if δB is
taken as 0.1.
α β γ E [B] Var[B] ΠB

2 2 0 0.19634 0.02547 0.15201
2 2 5 0.12521 0.02157 0.14138
2 2 10 0.07177 0.01452 0.15486
3 2 0 0.18272 0.02298 0.16589
3 2 5 0.10933 0.01824 0.16043
3 2 10 0.05740 0.01108 0.20995
3 3 0 0.16790 0.01986 0.18634
3 3 5 0.09199 0.01431 0.19291
3 3 10 0.04233 0.00739 0.83857
4 2 0 0.17524 0.02163 0.17451
4 2 5 0.10096 0.01654 0.17294
4 2 10 0.05041 0.00949 0.33436
4 3 0 0.15968 0.01814 0.19999
4 3 5 0.08278 0.01232 0.21747
4 3 10 0.03507 0.00575 0.85732
4 4 0 0.15100 0.01620 0.21775
4 4 5 0.07306 0.01017 0.25503
4 4 10 0.02773 0.00413 0.87828

 

Fig. 3  PDF of the BER for the K–distributed irradiance with α = 2 in the
BPSK (a = 2, b = 1) and QPSK (a = 1, b = 1) modulation schemes. Solid
curves are based on analytical expression and the overlaid symbols are
using Monte Carlo simulation. The average values of BER for the two plots,
indicated using arrows, are
(a) BPSK: 0.229, QPSK: 0.458, (b) BPSK: 0.166, QPSK: 0.331
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pC(C) = ∫
0

∞
δ C − C(I) f (I) dI

= 2C /W − 1ln 2
W(2C /W − 1)1/2γ1/2

× ∫
0

∞
δ I − (2C /W − 1)1/2

γ1/2 f (I) dI .

(17)

We used here (16) and the property of the Dirac delta function as in
(10). This then readily yields

pC(C) = 2C /W − 1ln 2
W(2C /W − 1)1/2γ1/2

× f (2C /W − 1)1/2

γ1/2 1(0, ∞) .
(18)

This equation can be used to evaluate the channel capacity PDF for
any kind of turbulence scenario with the irradiance modelled by a
function f (I). In the cases of log-normal, gamma-gamma, and K
distributions, it yields the following expressions, respectively,

pC
(LN)(C) = 2C /W − 1ln 2

2π σ W(2C /W − 1)

× exp − 1
8σ2 ln 2C /W − 1

γ + σ2
2

1(0, ∞),
(19)

pC
(GG)(C) = 2C /W(ln 2)(αβ)(α + β)/2

W γ(α + β)/4 Γ(α)Γ(β)
2C /W − 1 (α + β)/4 − 1

× Kα − β 2 αβ 2C /W − 1
γ

1/4

1(0, ∞) .
(20)

pC
(K)(C) = 2C /W(ln 2) α(α + 1)/2

W γ(α + 1)/4 Γ(α)
2C /W − 1 (α − 3)/4

× Kα − 1 2 α 2C /W − 1
γ

1/4

1(0, ∞) .
(21)

It is convenient to define the channel capacity per bandwidth,
C = C /W  [14, 15], for which the PDF is given by

pC(C) = pC(WC) dC
dC

= W pC(WC)

= 2C − 1ln 2
(2C − 1)1/2γ1/2

f (2C − 1)1/2

γ1/2 1(0, ∞) .
(22)

We note that this expression is same as (18) with W effectively set
to 1.

Similar to the BER analysis, we consider the probability of the
channel capacity being within the interval [ E [C] − δC, E [C] + δC]
in the neighbourhood of E [C]. It is obtained using the integral

ΠC = ∫E [C] − δC

E [C] + δC

pC(C) dC . (23)

Similar expression holds for the channel capacity per bandwidth
(C). In the following three subsections, we analyse the behaviour
of C for the log-normal, gamma-gamma, and K irradiance models.

5.1 Results for log-normal distributed irradiance

We show the plots of the channel capacity PDF in Fig. 4 for two
average SNR (γ) values for the log-normal distribution with log
irradiance variance σ = 0.3. Monte Carlo simulation based symbols
(filled diamonds) are overlaid on the analytical curves and are in
excellent agreement. As in the case of the BER analysis, the Monte
Carlo simulation involves generating 100,000 channel capacity

values using random numbers taken from the log-normal
distribution. The average channel capacity value
( E [C] = ∫0

∞C pC(C) dC) for each plot is also indicated on the
horizontal axis using an arrow. From the plots, we can see that the
channel capacity values are rather localised around E [C],
considering the available domain (0, ∞) for the channel capacity.

In Table 5, we consider the channel capacity per bandwidth and
compile the corresponding average E [C], the variance Var[C], and
the probability ΠC of the channel capacity being occurring within
an interval δC = 0.5 around E [C]. Rather high values of ΠC imply
that E [C] is a good indicator of the channel capacity behaviour in
the log-normal irradiance model for the considered parameter
values.

5.2 Results for gamma-gamma distributed irradiance

We show the plots of channel capacity PDF in Fig. 5 considering
the gamma-gamma fading model with α = 4 and β = 2. The Monte
Carlo results are also displayed using the symbols. In contrast to
the log-normal case, here the distribution is rather spread out
around the average values indicated using the arrows on the
horizontal axes. Low ΠC values in Table 6 and large variances also

Table 4 BER statistics for BPSK modulation scheme in the
K irradiance model: E [B], Var[B], and ΠB for δB = 0.05. For
QPSK modulation scheme, the E [B] is twice and Var[B] is
four times the values compiled below for BPSK modulation.
The ΠB values given below hold for QPSK modulation if δB is
taken as 0.1
α γ E [B] Var[B] ΠB

1 0 0.25687 0.03409 0.11392
1 5 0.19927 0.03495 0.09680
1 10 0.14807 0.03169 0.08682
2 0 0.22914 0.03112 0.12637
2 5 0.16562 0.02992 0.10986
2 10 0.11282 0.02466 0.10257
3 0 0.21796 0.02988 0.13168
3 5 0.15279 0.02796 0.11541
3 10 0.10054 0.02220 0.10956

 

Fig. 4  PDF of the channel capacity per bandwidth for the log-normal
distributed irradiance with σ = 0.3. The solid curves depict the analytical
results and the overlaid symbols are based on Monte Carlo simulation. The
average values E [C] for the two plots
(a) 0.999, (b) 2.009, are indicated using arrows

 

2970 IET Commun., 2019, Vol. 13 Iss. 18, pp. 2966-2972
© The Institution of Engineering and Technology 2019



lead to the conclusion that in this case E [C] performs extremely
poor at assessing the behaviour of the channel capacity. 
Consequently, one must examine the higher-order moments or the
PDF itself.

5.3 Results for K-distributed irradiance

Finally, we examine the behaviour of the channel capacity in Fig. 6
for the K distribution with α = 2. The analytical results shown
using the solid curves are in excellent agreement with the overlaid
symbols obtained using Monte Carlo simulation. As can be
observed, the PDF curves are rather dispersed about the average
values indicated using the arrows on the horizontal axes. The E [C]
and Var[C] values are compiled in Table 7 along with the ΠC for
δC = 0.5. Low values for the ΠC conform with the observation in
the figure and thereby emphasise to look beyond the average for
capturing the true behaviour of the channel capacity.

6 Conclusion
In this work, we have derived, for the first time, exact closed-form
results for the PDFs of BER and channel capacity, which can be
used for an arbitrary irradiance fading model. In particular, we
have focused on the log-normal, gamma-gamma, and K
distribution models and validated our analytical results using
Monte Carlo simulations. In our analysis, we find that the averages
of BER and channel capacity assess the overall behaviour of these

Table 5 Channel capacity statistics in the log-normal
irradiance model: E [C], Var[C], and ΠC for δC = 0.5
σ γ E [C] Var[C] ΠC

0.1 0 0.99998 0.02071 0.99891
0.1 5 2.05171 0.04764 0.97830
0.1 10 3.44874 0.06849 0.94408
0.2 0 0.99973 0.08162 0.92843
0.2 5 2.03514 0.18585 0.75335
0.2 10 3.41711 0.27008 0.66211
0.3 0 0.99872 0.17927 0.78289
0.3 5 2.00869 0.40179 0.56288
0.3 10 3.36585 0.59308 0.47864

 

Fig. 5  PDF of the channel capacity per bandwidth for the gamma-gamma
distributed irradiance with α = 4, β = 2. Analytical predictions are
illustrated using the solid curves and Monte Carlo simulation results are
shown using the overlaid symbols. The average channel capacity values
depicted using the arrows are
(a) 0.979 , (b) 1.775 for the two plots, respectively

 
Table 6 Channel capacity statistics in the gamma-gamma
irradiance model: E [C], Var[C], and ΠC for δC = 0.5
α β γ E [C] Var[C] ΠC

2 2 0 0.96321 1.32108 0.27306
2 2 5 1.70444 2.67181 0.18492
2 2 10 2.71160 4.42655 0.15006
3 2 0 0.97317 1.16232 0.30026
3 2 5 1.74938 2.39271 0.20226
3 2 10 2.80576 3.95638 0.16438
3 3 0 0.98076 0.99164 0.33626
3 3 5 1.79495 2.07646 0.22534
3 3 10 2.90548 3.40880 0.18371
4 2 0 0.97870 1.07287 0.31707
4 2 5 1.77467 2.23403 0.21295
4 2 10 2.85784 3.69215 0.17315
4 3 0 0.98489 0.89542 0.35954
4 3 5 1.82075 1.89547 0.24033
4 3 10 2.96099 3.09876 0.19625
4 4 0 0.98818 0.79537 0.38782
4 4 5 1.84692 1.70090 0.25871
4 4 10 3.01862 2.76135 0.21176
 

Fig. 6  PDF of the channel capacity per bandwidth for the K-distributed
irradiance with α = 2. Analytical predictions are illustrated using the solid
curves and Monte Carlo simulation results are shown using the overlaid
symbols. The average channel capacity values depicted using the dots are
(a) 0.937 , (b) 2.488 for the two plots, respectively

 
Table 7 Channel capacity statistics in the K-distributed
irradiance model: E [C], Var[C], and ΠC for δC = 0.5
α γ E [C] Var[C] ΠC

1 0 0.90145 1.98533 0.18928
1 5 1.49409 3.74489 0.13076
1 10 2.28638 6.17143 0.10545
2 0 0.93735 1.68641 0.22099
2 5 1.59862 3.29136 0.15139
2 10 2.48804 5.46766 0.12220
3 0 0.95207 1.55604 0.23553
3 5 1.64254 3.08968 0.16059
3 10 2.57129 5.15623 0.12949
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measures rather well for the log-normal model which applies to
low turbulence conditions. However, for the case of gamma-
gamma and K distributions with parameters set to model medium
to strong turbulence conditions, the average values perform very
poorly in capturing the actual behaviour of the BER and the
channel capacity which are rather dispersed significantly around
the mean. Consequently, we have argued that one must go beyond
the lower moments and, in fact, investigate the full distribution to
get a complete picture.
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