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Abstract: There has been exponential growth in the amount of data being generated on a daily basis. Such a huge amount of
data creates a need for efficient data storage techniques. Due to the limitations of existing storage media, new storage solutions
have always been of interest. There have been recent developments in order to efficiently use synthetic deoxyribonucleic acid
(DNA) for information storage. DNA storage has attracted researchers because of its extremely high data storage density, about
1 exabyte/mm?3 and long life under easily achievable conditions. This work presents an encoding scheme for DNA-based data
storage system with controllable redundancy and reliability, the authors have also talked about the feasibility of the proposed
method. The authors have also analysed the proposed algorithm for time and space complexity. The proposed encoding
scheme tries to minimise the bases per letter ratio while controlling the redundancy. They have experimented with three different
types of data with a value of redundancy as 0.75. In the randomised simulation setup, it was observed that the proposed
algorithm was able to correctly retrieve the stored data in our experiments about 94% of the time. In the situation, where

redundancy was increased to 1, the authors were able to retrieve all the information correctly in the proposed experiments.

1 Introduction

Adenine, thymine, cytosine and guanine are four different
nucleotides that form the building blocks of deoxyribonucleic acid
(DNA) arranged in a double helix structure. Adleman [1]
demonstrated an in vitro solution to the directed Hamiltonian path
problem. Adleman's experiment attracted many researchers into
further exploring DNA computing because of its huge potential in
solving mathematical and computational problems and also due to
its capacity to hold data, ability to perform computation with
extremely high parallelisability. DNA Computers are Biochemical
Nano computers that solve computational problems in a test tube.
This alternate computing model uses molecular biology and has
many advantages over silicon-based computing. Several studies
have been presented in the past that explore the different facets of
DNA Computing [2-4].

DNA computing can be classified into three categories [5]: (i)
intramolecular: they are usually involved in the later stage of
exploring candidates and arriving at the final solution. An example
is successive localised polymerisation designed by Sakamoto et al.
[6], (ii) intermolecular and (iii) supramolecular: such as molecules
binding to form self-assembled structures and also influence the
protein binding. Chen and Ellington [7] discussed the pros and
cons of DNA computing. The direct role of DNA computing in the
biochemical systems seems very promising in the future such as
applications to smart drugs, drug design, drug release as well as
DNA self-assembly. They also present the challenges associated
with this model such as dealing with error, kinetics, etc. Winfree et
al. [8] presented that using hybridisation it is possible to simulate a
computation as a one-dimensional cellular automata and also
shown disjunctive hybrid probability logic programs (DHPP) can
be solved in a test tube using multiple tiling reactions. They call
these reactions as one-pot reactions.

This work is focused on designing efficient data encoding
scheme for DNA computing. Although numerous articles have
been published in the past decades in the field of DNA computing,
there still exist numerous challenges that need to be addressed at
the implementation level. One such challenge would be the cost
and technology required to commercialise this alternate form of
computation. Interpretation of the results and visualisation are also
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hurdles that need to be efficiently crossed in order for the
technology to be accepted and adopted. Errors in biochemical
computations are another big challenge, which may occur due to
undesired annealing [4].

DNA computing has the capability of performing basic
arithmetic and Boolean operations. Frank Guarnieri et al. [9]
implemented the addition operation on single bits for the first time
using biomolecular computing in recombinant DNA. Non-negative
binary numbers were represented using primer extensions to
perform addition but were limited to two numbers only and this
method was also limited to only single computation as it neither
exploited parallelism nor it had the capability to perform repetitive
computation. Some researchers also presented basic arithmetic
operations and allowed chaining [10, 11]. Hasudungan et al. [12]
presented an algorithm to solve the minimum vertex cover problem
using DNA computing. The first step in this algorithm was to
design an encoding technique and the second step was to design a
bio-operation technique. They demonstrated the working of their
algorithm using a sample graph with six vertices and six edges.

DNA computing-based solutions have been proposed for
complex computational problems, such as Hamilton path problem
[1], maximal clique problem [13], satisfiability problem [14] in
only 91 steps. The solutions exploit massive parallelism to achieve
good scalability as well as speedup. The satisfiability problem [14]
is solved by encoding all candidate solutions using DNA molecules
and attached to the surface. The candidates that do not form a
solution are identified with the help of several cycles of
hybridisation operations and exonuclease digestion. In the end,
polymerase chain reaction (PCR) is used to amplify the remaining
molecules containing the solution. Lipton [15] proposed a solution
for two-variable SAT problem and also claimed that all problems in
the NP class can be reduced to the satisfiability problem. Sakamoto
et al. [6] presented a solution to NP-complete problems using a
parallel overlap assemble of the single layer of successive
transitions. A single-stranded DNA molecule's 3'-end sequence
encodes for the current state of the machine. The current state is
annealed to the desired area of DNA such that the desired next
state is achieved and encoded on the 3’ end. In this work, the
authors propose to solve NP-complete problems using the method.
They present two experiments first using isothermal reactions and
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second using unnatural bases to avoid out-of-frame annealing that
can be used in DNA computing.

Security has to be on the highest priority when dealing with
such voluminous data. Various encryption techniques based on
DNA Computing have also been proposed in the past. Acharya
[16] proposed an algorithm using the concept of permutation-
diffusion for faster image encryption. They implemented the
diffusion process using the AES algorithm and show that the
algorithm is fast as well as secured. Mondal and Mandal [17]
presented a scheme for encryption of greyscale images and
proposed that the technique could also be extended to colour
images. Hermassi et al. [18] proposed an encryption algorithm that
combines a DNA addition with a chaotic map for encryption of a
greyscale image. They claim that the result is non-invertible.
However, illegal decryption of the ciphered image can be done
with temporary access to the machinery.

In this work, we present an encoding and decoding scheme that
is simple to implement, it is highly scalable and allows the user to
choose the tradeoff between storage density and reliability. We
repeated the simulations for each data 10 times using 0.75
redundancy and we could observe that in 94% of our experiments,
we could retrieve the original string correctly. The minimum error
observed during experiments over 10 experiments is 0%.

2 Background

Information stockpiling, called data storage, is a general term for
chronicling information in electromagnetic or different structures
for use by a PC or gadget. DNA and RNA, penmanship,
phonographic recording, attractive tape and optical circles are the
instances of capacity media. Data storage in a computerised,
machine-coherent medium is now and again called digital data.
New innovations and tech hypothesis advance the persistent
extension of data storage capacity. New strong state drives can hold
colossal measures of information in an exceptionally little gadget,
empowering different sorts of new applications for some ventures,
just as shopper employments. Cloud administrations and other new
types of remote stockpiling likewise add to the limit of gadgets and
their capacity to get to more information without structure extra
data storage into a gadget [19]. Notwithstanding this improvement,
putting away zettabytes of data would even now take a large
number of units, and utilise critical physical space. However
storage density is only one form of archival. Current long haul
recorded capacity arrangements require revives to clean defiled
information, to supplant broken units, and to invigorate innovation.
If we have some ease of preserving the world's data, we have to
look for important advances in storage density and durability.
Researchers have been putting away digital information in DNA
since 2012. That was when Harvard University geneticists encoded
a 52,000-word book in a large number of scraps of DNA, utilising
strands of DNA's four-letter letters in order of A, G, T and C to
encode the 1s of the digitised document [20]. Their specific
encoding plan was generally wasteful, notwithstanding and could
store just 1.28 petabytes/g of DNA. Different methodologies have
improved. Be that as it may, none has had the capacity to store the
greater part of what analysts figure DNA can really deal with,
about 1.8 bits of information per nucleotide of DNA. The volume
of information that can be combined today is constrained for the
most part by the expense of combination and sequencing, however,
development in the biotechnology industry forecasts requests of
extent cost decreases and proficiency upgrades. Banal et al. [21]
recently presented a strategy that could provide random access to
large archival files. Since they encapsulated the data in silica
particles, the density of data storage is higher than PCR-based
methods.

A DNA storage framework must conquer a few difficulties.
First, the cost associated with synthesis and sequencing. The
expenses per megabyte were evaluated at $12,400 to encode
information and $220 for recovery [22]. In any case, it was noticed
that the exponential abatement in DNA amalgamation and
sequencing costs, on the off chance that it proceeds into the future,
should make the innovation financially savvy for long haul
information stockpiling inside around ten years. Second, error rates
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on the order of 1% per nucleotide. Sequences can likewise corrupt
while putting away, further trading off information integrity. A key
part of DNA storage is to devise fitting encoding plans that can
endure errors by including repetition [23]. Existing methodologies
have concentrated on repetition yet have overlooked thickness
suggestions. Third, random access to DNA-based data storage is
dangerous, that can result in the read latency that is actually much
longer than write latency. Also, the current DNA-based data
storage system does not have the capability of synthesising long
strands. For DNA-based data storage to be a feasible choice of data
storage, the automation of the entire process of reading and writing
should be done. The recent methods and technologies are
considered to be time consuming and error prone. Luckily, there's a
steady pace of development discovering more up to date and better
answers for these relentless data storage issues.

2.1 Review of encoding schemes

Several data encoding schemes have been proposed in the past
[24-26]. Along with efficient storage, these encoding schemes also
need to hide data in the DNA to ensure security. Bornholt et al.
[25] presented a DNA-based archival storage system, where they
implemented Goldman encoding and XOR encoding on four image
files and observed that random access can be effectively
implemented on DNA storage. The authors propose that a new
payload is created using XOR operation over two existing
payloads. The address of this strand encodes the address of original
strands as well as information whether the strand is the original one
or an XOR. They were able to recover three of the files without
any problem but one of the files had an error and needed to be
corrected to be recovered. The packing density is higher with 1.5
repeats of each nucleotide, which is comparatively lower than
many others. The algorithm proposed in Bancroft et al. [26] could
successfully recover a message of length 106 using simple ternary
encoding; where messages were composed of 26 English alphabets
and space. However, this method is not scalable. Goldman et al.
[27] presented an encoding scheme with four-fold redundancy by
overlapping segments, where each window represents an output
strand. The encoding scheme is not very compact due to the fact
that it uses tunable redundancy, but it successfully stores and
retrieves the data. Shimanovsky et al. [28] propose a method to
hide data in non-transcribed DNA and non-coding RNA. Takahashi
et al. [29] proposed an automated DNA storage mechanism where
they demonstrated automated writing, coding and reading of 5-byte
data. Organick et al. [30] proposed PCR-based method that could
provide random access to data. They showed that retrieval is
possible with an average copy number of 10 and a packing density
of 17 exabytes/g which provided significant improvement.

2.2 Machine learning using DNA computing

Neural network computation is based on a simplified model of how
the human brain works; containing billions of neurons each
connected to thousands of synapses. A neuron fires and sends a
signal to other neurons when it reaches a threshold potential, where
the potential is computed on the signals received from other
neurons. Artificial neural networks are an attempt to mimic how
the human brain learns. Qian ef al.[31] and Cherry and Qian [32]
presented a method to perform neural network computation, more
specifically the linear threshold gate, using strand displacement
cascades. Seesaw gates are used to build these linear threshold
gates which are further used to construct multilayer neural
networks. The seesaw gates have one or more connections on both
of the sides. In this model, a Reporter gate is used to collect the
output signal. Hopfield neural networks [33] have neurons that are
fully connected to each other and in best-case scenarios they are
able to remember a set of patterns. The network learns from these
set patterns as if they are stored in memory. When it receives a
piece of information such as a partial or distorted pattern, it
identifies and returns back the correct pattern from its memory. The
authors have shown that computational neural networks can be
implemented in vitro using transcriptional circuits. The building
blocks for these transcriptional circuits are transcriptional switches
that transcribe efficiently only in the presence of an activation.
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Fig. 2 Block diagram to present the complete data retrieval mechanism

Here the input is the activator, the output is the transcription
concentration. However, promising these theoretical models may
sound, but it is essential to build a fault-tolerant system as strands
may have undesired reactions which might result in incomplete or
even incorrect products. It was observed that by restoring the
output values in digital form resulted in less noise. However, it is
still an open challenge to design fully fault-tolerant biochemical
neural networks [9-11].

Evolution in computing is termed ‘evolutionary computation’
and evolution biomolecules is called ‘in vitro evolution’[34].
Evolution is a concept we tried to understand from nature and then
model similar approaches for solving computational problems.
Evolutionary computation has a lot of application from solving
complex computational problems, understanding behaviour of
involved entities etc. The advantage of using DNA computing for
evolutionary computation has many benefits, such as: (i) process in
parallel and generate higher-fitness for a larger population, (ii)
huge capacity to store information and (iii) capability to perform
crossover. The authors have addressed the MAX 1 s problem in
this work. Ren et al. [35] used VDNA-encoding method and
genetic algorithm to design a new algorithm named VDNA-EA. It
is capable of implementing the T-S fuzzy -controller and
optimisation of the parameters. The authors have simulated the
experiment. Yoshikawa et al. [36] present the ‘DNA encoding
method’ using pseudo-bacterial genetic algorithm, which is based
on the concept of recombination in bacteria. Deaton et al. [37]
present an evolutionary algorithm. Such algorithms are more
suitable for DNA computing as errors do not cause an incorrect
result, rather they code for variation in the population. They
implement this Evolutionary algorithm to search for good DNA
encodings. Li et al. [38] proposed a genetic algorithm approach to
solve the maximal clique problem. They tested the randomly
generated problems and showed that DNA computing produced
correct answers within a few iterations.

Direct proportional length based DNA computing approaches
for shortest path problem was proposed by authors in [39—41]. The
process initialises with the generation of five unique single-
stranded DNA sequences that represent nodes in a graph. In the
next step, length constraints are formed and then the remaining
sequences are generated. The various approaches differ in the
method used to generate the DNA sequences such as graph
method, Generate and test method and population-based ant colony
optimisation method.

Games theory has a lot of very important applications and the
capability of DNA computing in playing games would be
extremely helpful in the game-theoretic approaches. Wood [42]
proposed a method where DNA can play poker. They use a
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simplified version of poker incorporating bluffing, calling and
folding. DNA is capable of encoding for the different players
where the player and the dealer independently develop their
strategies. The strategies are learnt using multiple instances of the
game, similar to the Genetic algorithm where selection is based on
the fitness function. Cukras et al. [43] present an RNA-based
model for playing chess. The authors demonstrated a solution for
Knights problem on a 3X3 chessboard. The results were correct
most of the time as compared to the random chance. However, the
authors did emphasise on the necessity of handling the error in
DNA computing in order to get correct solutions almost all the
time. Macdonald et al. [44] demonstrated Tic-Tac-Toe game using
DNA computing. Wood [42] presented a study on Game theoretic
approaches for biomolecular computing.

3 Encoding scheme for data storage and retrieval

In this work, we present a data encoding and retrieval scheme.
From the review in the previous sections, it is evident that this
technology is extremely efficient for storing archival data. Fig. 1
represents the complete process for data encoding and storage and
Fig. 2 presents the complete process for decoding and retrieval.
The encoding process, uses two separate inputs: (i) encoded data
(value) and (ii) primer (key). In order to retrieve the required data
correctly, the key is created using the index of the data in the
database, the type of data and size of the file in the number of bits.
This key is then encoded using the proposed scheme to create a
key. The significance of inserting the key is to make indexing
possible in the synthetic DNA as well. Further, the key and the
value are stitched together and sequenced and stored in the form of
a 3D printed material [45]. The process is reversible as the targeted
data can be identified using the primer and decoded by the retrieval
algorithm (Table 1).

3.1 DNA encoding scheme

The data encoding scheme presented in this section can be used to
encode all kinds of digital data such as text, images, graphs, etc.
The fragmentation process used here is presented in Fig. 3 and the
XOR operation applied to the process can be observed in Figs. 4
and 5.

3.2 DNA retrieval scheme

The retrieval algorithm presented in this section decodes the
synthetic DNA and outputs the original string. In the case where
we create 0.75-time redundancy, we retrieve the original string in

637



ACTGACCGTATCGGGTTTACGTAGCTGATGA
Input Fragments
[ [T [ T

[ WO | Output Fragment
Fig. 3 XOR operation
[a]lc c 1|

(A $5G c T]

Fig. 4 DNA fragmentation

Encoding Algorithm
Input: Data to be stored in DNA (Str)
Output: Encoded Data
SynDNA = Null
Convert Str to equivalent binary code BinStr
N = lengthOfBinStr
For (I:=1,I1 <N; I+=2)
{ Convert binary pair at I to corresponding
Nucleotide Nuc
DNA =DNA + Nuc
3
//Create Fragments
Fragment! := Null
Fragment2 := Null
Fragment3 := Null
For(J=1 to lengthofDNA)
{ Fragment2 = Fragmentl+DNA[J]
Fragment! := Fragment2 + DNA[J+1..J+3]
3
//Encoding
I=0
Repeat
{ for(c=1,c<=3,ct+)
{ Oper =Fragmentl[I+c] @ Fragment2[I]
Fragment3 = Fragment3+Oper

}
I=1I+c
c=0

} Until (I < [Fragmentl|)
Prepare final encoding of Fragment1, Fragment2
and Fragment3 and store

Fig. 5 Encoding algorithm

three ways and resolve any observed errors. To improve efficiency,
the redundancy can be increased (Fig. 6).

3.3 Application of the proposed approach

One interesting application of this data encoding and decoding
scheme can be in the area of health care. Health care industry
stores an increasingly high amount of structured as well as
unstructured data [46]. Electronic health records such as patient
details, billing information, laboratory reports, hospitalisation
records, medication records are more structured, whereas doctor's
handwritten notes are an example of unstructured data. Medical
imaging data such as computed tomographic scans, magnetic
resonance imaging, X-rays, ultrasounds etc. also require a huge
amount of storage space. Big data analytics in health care will
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Table 1 XOR operation results

Inputs Output
ABA A
AaC C
AaG G
AeT T
CoC A
CoG T
CeT G
GeG A
GoT C
TeT A

Retrieval Algorithm

Input: Encoded Data (Fragmentl, Fragement?2,

Fragment3)

Output: Original Data (Str)

//Decoding

Temp1=Null

Temp2=Null

I=1

Templ = Null

Repeat

{ oper =Fragmentl[I] @ Fragment3[I]
Temp2 = Temp2 + oper

} Until (I < [Fragmentl|)

I=1
Repeat
{ for(c=1,c<=3,ct+)
{ oper = Fragment1[I+c] @ Fragment?2[I]
Temp = Temp + oper
}
I=l+c
C=0
} Until (I < [Fragmentl|)

Compute DNA1, DNA2 and DNA3 using
Fragmentl, Fragment2 and Fragment3, Templ
and Temp2

If (DNA1 = DNA2 = DNA3)
Output SynDNA
Else resolve conflicts and resolve SynDNA

Convert SynDNA to equivalent binary code
BinStr

Convert BinStr to Str

Fig. 6 Retrieval algorithm

assist in aggregating large amount of medical data collected over
the years into medical databases while payers and providers have
digitised their patient's records. Traditionally, patient's medical
records are stored in physical paper files, X-ray films etc. We need
a system that is able to store the health care data in large volumes
using an efficient, robust as well as a secured mechanism [47, 48].
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Fig. 7 Performance evaluation of the algorithm
(a) Performance of random data sets, (b) Performance on news articles

Table 2 Performance on random data sets
String size  DNA  Fragments 1&3 Fragment 2 Min error,

length %
33 132 99 33 0
48 192 144 48 0
66 264 198 66 0
100 400 300 100 0
134 536 402 134 0
167 668 501 167 0

Table 3 Performance on news articles
String size  DNA  Fragments 1&3 Fragment 2 Min error,

length %
3171 12,684 9513 3171 0
1248 4992 3744 1248 0
3918 15,672 11,754 3918 0
2206 8824 6618 2206 0
8161 32,644 24,483 8161 0
4992 19,968 14,976 4992 0

Table 4 Performance on images

String DNA Fragments Fragment 2 Min error,
image Id length 1&3 %
1 40,012 30,009 10,003 0
2 17,840 13,380 4460 0
3 17,052 12,789 4253 0

4 Experiments and results

For the encoding and decoding process to be acceptable by various
domains, it is very important that it is capable of storing all types
of data such as text, graphs, images, etc. In this work, we
experimented with text, graphical representation of data and
images. The algorithm was implemented in Java and the
performance of these algorithms was tested using computer
simulations. Three existing images and randomly generated strings
and graphs of different sizes were generated to be encoded, stored
and successfully retrieved. The randomly generated strings were of
lengths 33, 66, 48, 100, 134 and 167. An example data set of each
type is given in the Appendix separately. The experiments were
implemented on Intel i5-7200U processor with 8 GB RAM and
2.71 GHz frequency and the performance with respect to time is
shown in Fig. 7. The encoded sequence of bases generated by the
first algorithm was passed as a parameter to our data retrieval
algorithm. Since it has been shown in the literature [49] due to the
biochemical constraints observed in the sequencing process, the
Shannon capacity of a nucleotide is 1.98 bits, which comes to
about 1% error. Thus, to test whether this scheme would be able to
retrieve data with error, we randomly introduced 1% error in the
fragments before passing the sequence to data retrieval algorithm.
The minimum error rates in the retrieved results can be
observed in the results presented at Tables 2—4, when we randomly
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introduced an error of about 1% in the strands. In our experiments,
for a string of length n, we require n+0.75n amount of storage.
Also, the encoding and retrieval scheme is linear in nature. To
generate the final strand, we notice the degeneracy for all the DNA
sequence that could be obtained by pairing up any two of the three
fragments that we obtained during encoding. We notice that in
none of our experiments with graphs, do all of the three supposed
DNA generated differ at a particular index. This fact has been used
to predict the actual DNA. However, in text and images, it was
observed that during some of the simulations, there was a small
error. In repeated experiments, we observed that about 6% of our
experiments showed that there was an error in the predicted string.
So, in situations where reliability cannot be compromised at all, the
error can be further reduced by creating more redundancy. In
storing a string of size n, when we increased the redundancy to 1*n
and further to 1.75*n in our experiments, we were able to correctly
retrieve all the data stored. In addition, more fragments can be
stored for that particular data by performing an XOR with the
fragment containing second third and fourth base of the codons as
well. Thus, this scheme gives the user an option to choose a trade-
off between storage density and reliability.

5 Conclusion and future work

We have proposed algorithms for data encoding and data retrieval
in this paper. We can store a large amount of data in DNA with
almost no error if synthesising and sequencing are done efficiently.
Different endeavours are in progress to investigate the capability of
DNA to store cryptographic keys and other private data. The
expense and designing obstructions to a feasible capacity of non-
hereditary information in DNA are considerable and this
innovation is in its outset. Conquering these hindrances would
realise a transformation in data storage and security, enabling huge
measures of information to be put away safely in only small
amount of DNA. Researchers are developing new techniques to
make DNA a secure storage medium.
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7 Appendix

7.1 Example 1. Input data: an adjacency matrix for a graph
G(V.E)

7.1.1 Data encoding: The binary equivalent of the adjacency
matrix for this graph would be as follows:

0110111011001000001110110111111010111001110000101100
1011001110110100110000011110010111101011100000010000000
0111100000001011000110001000100100111010101100111110011
100100101110000110010010001111000010011010000000001101
1101110100010000001010000101111110100110111010011101110
000100010111011001101101100101100100000101001110110101
1111111111110110101110111001000000100010000111101001101
000100111

Use the following table to convert binary string to a nucleotide
string: A- 00, C- 01, G-10, T-11

DNA:
CGTGTAGAATGTCTTGGTGCTAAGTAGTATGTCATAACTGC
CTGGTGAACAAAATTAAACCGATACACAGCTCCCGCTTAT
GCAGTGACGCAGATTAAGCGGAAAATCTCTCACAAAGGA
CCTTGGCGTGGCTCTAAGAGTGTATCGTAGTAGAAGGCTC
GGTTTTTTGTCCTCTAGAACACAATTCATCACAT

Fragmentl:
GTGAGATGTTTGTGCAAGAGTTGTATACTGCTGTGACAAA
TTAACGATCACGCTCCGTTAGCATGAGCAATTAGCGAAAT
CCTCCAAGGACTTGCGGGCCTAGAGGTACGTGTAAAGCT
CGTTTTTTCCCTAAACCAATCACAC

Fragment2:
CTACGTTACACGAAACAACCTGCGAGATAACGTTATTAGG
GTGTGATT

Fragment3:
TGTTCTTGTGGTCATTTCTCATGTCGCCTGAGTCAGCAAAT
TAACTCGCACGCTAATGGCCGTCAGTACGCCAGCAGGATC
GAGCAAGGAAGGATACCGGATGAGCATGCAGTAGGATCT
ACCAAACTTGATGGTCAAAGTGTG

Fragments after introducing 1% random error

FragmentlEvrr:
GTGAGATGTTTGTGCAAGAGTTGTATACTGCTGTGACAAA
TTAACGATCACGCTCCGTTAGCATGAGCAATTAGCGAAAT
CCTCCAAGGACTTGCGGGCCTAGAGGTACGTGTAAAGCT
CGTTTTTACCCTAAACCAATCACAC

Fragment2Err:
CTACGTTACACGAAACAACCTGCGAGATAACGTTATTAGG
GTGTGATT

Fragment3Err:
TGTTCTTGTGGTCATTTCTCATGTCGCCTGAGTCAGCAAAT
TAACTCGCACGCTAATGGCCGTCAGTACGCCAGCAGGATC
GAGCAAGGAAGGATACCGGATGAGCATCCAGTAGGATCT
ACCAAACTTGATGGTCAAAGTGTG

7.1.2 Data retrieval: DNAL:
CGTGTAGAATGTCTTGGTGCTAAGTAGTATGTCATAACTGC
CTGGTGAACAAAATTAAACCGATACACAGCTCCCGCTTAT
GCAGTGACGCAGATTAAGCGGAAAATCTCTCACAAAGGA
CCTTGGCGTGGCTCTAAGAGTGTAACGTAGTAGAAGGCTC
GGTTTTTTCACCTCTAGAACACAATTCATCACAT
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DNA2:
CGTGTAGAATGTCTTGGTGCTAAGTAGTATGTCATAACTGC
CTGGTGAACAAAATTAAACCGATACACAGCTCCCGCTTAT
GCAGTGACGCAGATTAAGCGGAAAATCTCTCACAAAGGA
CCTTGGCGTGGCTCTAAGAGTGTATCGTAGTAGAAGGCTC
GGTTTTTTGACCTCTAGAACACAATTCATCACAT

DNA3:
CGTGTAGAATGTCTTGGTGCTAAGTAGTATGTCATAACTGC
CTGGTGAACAAAATTAAACCGATACACAGCTCCCGCTTAT
GCAGTGACGCAGATTAAGCGGAAAATCTCTCACAAAGGA
CCTTGGCGTGGCTCTAAGAGTGTATGGTAGTAGAAGGCTC
GGTTTTTTGTCCTCTAGAACACAATTCATCACAT

7.1.3 Final result
retrieved: CGTGTAGAATGTCTTGGTGCTAAGTAGTATGTCA
TAACTGCCTGGTGAACAAAATTAAACCGATACACAGCTCC
CGCTTATGCAGTGACGCAGATTAAGCGGAAAATCTCTCAC
AAAGGACCTTGGCGTGGCTCTAAGAGTGTATCGTAGTAGA
AGGCTCGGTTTTTTGTCCTCTAGAACACAATTCATCACAT

7.2 Example 2. Input data: ‘following is the original string’

7.2.1 Data encoding: The binary equivalent of the adjacency
matrix for this graph would be as follows:

0100011001101111011011000110110001101111011101110110
100101101110011001110010000001101001011100110010000001
110100011010000110010100100000011011110111001001101001
0110011101101001011011100110000101101100001000000111001
1011101000111001001101001011011100110011100101110

Use the following table to convert binary string to a nucleotide
string:

A-00, C-01, G-10, T-11

Corresponding DNA string:
CACGCGTTCGTACGTACGTTCTCTCGGCCGTGCGCTAGAA
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CGGCCTATAGAACTCACGGACGCCAGAACGTTCTAGCGG
CCGCTCGGCCGTGCGACCGTAAGAACTATCTCACTAGCGG
CCGTGCGCTAGTG

Fragmentl:
ACGGTTGTAGTAGTTTCTGGCGTGGCTGAAGGCTATGAAT
CAGGAGCCGAAGTTTAGGGCGCTGGCGTGGACGTAGAAT
ATTCATAGGGCGTGGCTGTG

Fragment2:
CCCCCCCCCACCACCCACCCeeeccAcceeccA

Fragment3:
CATTGGTGCTGCTGGGAGTTATGTTAGGAATTAGCGGAAG
ACTTCTAAGAATGGGCTTTATAGTTATGTTCATGCGAAGCG
GACGCTTTATGTTAGGTG  (Generated wusing the XOR
operation)

Fragments after introducing error:

FraglEvrr:
TCGGTTGTAGTAGTTTCTGGCGTGGCTGAAGGCTATGAAT
CAGGAGCCGAAGTTTAGGGCGCTGGCGTGGACGTAGAAT
ATTCATAGGGCGTGGCTGTG

Frag2Err:
CCCCCCCCCACCACCCACCCeeeccAcceeccA

Frag3Err:
CATTGGTGCTGCTGGGTGTTATGTTAGGAATTAGCGGAAG
ACTTCTAAGAATGGGCTTTATAGTTATGTTCATGCGAAGCG
GACGCTTTATGTTAGGTG

7.2.2 Final result
retrieved: CACGCGTTCGTACGTACGTTCTCTCGGCCGTGC
GCTAGAACGGCCTATAGAACTCACGGACGCCAGAACGTT
CTAGCGGCCGCTCGGCCGTGCGACCGTAAGAACTATCTCA
CTAGCGGCCGTGCGCTAGTG

Retrieved string: 'Following is the original string’.
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