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We present a doubly parametric extension of the standard Froggatt–Nielsen (FN) mechanism.

As is well known, mass matrices of the up- and down-type quark sectors and the charged lepton

sector in the standard model can be parametrized well by a parameter λ which is usually taken to

be the sine of the Cabibbo angle (λ = sin θC ≃ 0.225). However, in the neutrino sector, there is

still room to realize the two neutrino mass squared differences �m2
sol and �m2

atm, two large mixing

angles θ12 and θ23, and non-zero θ13. Then we consider an extension with an additional parameter

ρ in addition to λ. Taking the relevant FN charges for a power of λ (= 0.225) and additional FN

charges for a power of ρ, which we assume to be less than one, we can reproduce the ratio of

the two neutrino mass squared differences and three mixing angles. In the normal neutrino mass

hierarchy, we show several patterns for taking relevant FN charges and the magnitude of ρ. We

find that if sin θ23 is measured more precisely, we can distinguish each pattern. This is testable

in the near future, for example in neutrino oscillation experiments. In addition, we predict the

Dirac CP-violating phase for each pattern.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

The standard model (SM) is one of the successful models in explaining the results of recent precise

experiments. However, there are many free parameters, particularly as Yukawa couplings in the SM.

There are some ambiguities in realizing the quark and lepton mass hierarchies and mixing angles.

Then, many authors have studied texture analyses or flavor symmetry models in order to elucidate

the origin of the flavor structure as a direction beyond the SM. In fact, Weinberg proposed a simple

zero texture, within two generations of quarks, where quark masses and a mixing angle are related

[1]. Fritzsch extended this to three generations in the so-called “Fritzsch-type mass matrix” [2,3],

which relates quark masses and mixing angles in the quark sector. Furthermore, Fukugita, Tanimoto,

andYanagida extended this argument to the lepton sector [4] and predicted two large neutrino mixing

angles and non-zero θ13 [5,6], which was the last mixing angle of the lepton sector [7–9].

On the other hand, flavor symmetry also plays an important role in understanding the flavor

structure. Froggatt and Nielsen proposed the so-called “Froggatt–Nielsen (FN) mechanism” [10],

which introduces U (1)FN symmetry as flavor symmetry. Taking relevant U (1)FN charge assign-

ments to the different generations, the quark mass hierarchy and Cabibbo–Kobayashi–Maskawa

(CKM) matrix are naturally reproduced in the quark sector, while the non-Abelian discrete flavor
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symmetries [11–14] can easily derive the large mixing angles in the lepton sector, e.g., tri-bimaximal

(TBM) mixing [15,16], which is a mixing paradigm by describing simple mass textures. After the

reactor neutrino experiments reported non-zero θ13, it is important to study other flavor paradigms,

e.g., tri-bimaximal–Cabibbo (TBC) mixing [17,18], with the same mindset as TBM, bi-maximal

(BM), tri-maximal, and golden ratio neutrino mixing. (For a review, see [11–14]). Thus the tex-

ture analysis and the flavor symmetry are important in understanding the flavor structures for both

quark and lepton sectors and there are many works known as, e.g., “stitching the Yukawa quilt”

[19], “µ–τ anarchy” [20,21], “cascades” [22], “Occam’s razor” [23,24], and “repressing anarchy”

[25,26].

As is well known, mass matrices of the up- and down-type quarks and the charged leptons in the

SM can be parametrized well by a parameter λ, which is usually taken to be the sine of the Cabibbo

angle. Taking λ ≃ 0.225, up- and down-type quark and charged lepton mass hierarchies and mixing

angles are reproduced. This type of parametrization was originally proposed by Froggatt and Nielsen

[10]. On the other hand, however, in the neutrino sector, there is still room to realize the lepton flavor

structure, i.e., neutrino mass squared differences �m2
sol and �m2

atm, two large mixing angles θ12 and

θ23, and non-zero θ13. Indeed, it is likely that the neutrino mass matrix has a property distinct from

those of the up- and down-type quarks and the charged lepton mass matrices. This is due to the fact

that the neutrino masses are so tiny in comparison with the other SM fermion masses, and that the

lepton mixing angles are relatively larger than the quark mixing angles. In this paper, we present

an extension of the FN mechanism in the neutrino mass matrix. In particular, we focus on a doubly

parametric extension of the FN (DFN) mechanism.1 To explain, we show an illustrative example of

the doubly parametric extension. This extension is plausible when we use the seesaw mechanism

[29–34], for instance. If the neutrinos are Majorana particles, in the seesaw mechanism we need both

Dirac and Majorana mass terms. Even if the Dirac neutrino mass matrix is parametrized by λ like

the other SM fermions, where the Dirac-type masses come from spontaneous symmetry breaking in

the SM, the Majorana masses can include free mass parameters in general, and in some models it is

plausible that Majorana masses are parametrized by another parameter. Then, in the neutrino sector,

such a situation corresponds to an extended FN mechanism with a parameter ρ in addition to λ.2

Taking the relevant FN charges for the power of λ (= 0.225) and additional FN charges for the

power of ρ, which we assume to be less than one, we can reproduce the ratio of two neutrino mass

squared differences and three mixing angles. In our numerical calculations, we show several patterns

for taking relevant FN charges and the magnitude of ρ. Note that in our numerical analyses, we

consider only the normal neutrino mass hierarchy. We find that if sin θ23 is measured more precisely,

we can distinguish each pattern. In addition, we predict the Dirac CP-violating phase (δCP) for each

pattern.

This paper is organized as follows. In Sect. 2, we show the standard FN mechanism and present

the DFN mechanism. In Sect. 3, we show the results of our numerical analyses in several patterns.

Section 4 is devoted to discussions and summary. In Appendix A, we show the explicit form of the

neutrino mass matrix for each pattern.

1 In some models of the up- and down-type quark sectors, it is known that the mass matrices are consequently

parametrized by two parameters. For example, see Refs. [27,28].
2 Note that we show another extension of the FN mechanism, the Gaussian FN mechanism on magnetized

orbifolds, in Ref. [35].
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2. Doubly parametric extension of the FN mechanism

It is known that the mass matrices of the up- and down-type quark sectors and the charged lepton

sector in the SM can be parametrized well by a parameter λ and six charges {ai, bj} (i, j = 1, 2, 3),

i.e.,

mij = λai+bj , (1)

with up to O(1) complex coefficients in front of each element.3 In particular, it is reasonable to

choose a value of the parameter λ such that the observed masses and mixing angles of the up- and

down-type quark and the charged lepton sectors can be realized. Indeed, such a value is given as

λ = sin θC ≃ 0.225, where θC is the Cabibbo angle. This type of parametrization was originally

proposed by Froggatt and Nielsen, the so-called “FN parametrization” [10].

In this paper, we consider an extension with an additional parameter ρ and six additional charges

{ci, dj} (i, j = 1, 2, 3), i.e.,

mij = λai+bjρci+dj , (2)

also with up to O(1) complex coefficients in front of each element. In particular, this parametrization

is valid in a neutrino mass matrix as well as the other fermion mass matrices. It should be noted

that there are some possibilities for realizing the DFN parametrization. For example, the DFN

parametrization would be considered as effective theories of multi-scale extra dimensions, and would

be obtained by an additional U (1) flavor symmetry and so on. To construct concrete models including

the DFN parametrization is beyond the scope of this paper. In Refs. [27,28], for the up- and down-

type quark sectors, the phenomenological prospects of the doubly parametric extension have already

been studied. In this paper, we focus only on phenomenological properties of the doubly parametric

extension in the lepton sector, in particular the neutrino mass matrix. Here, we assume that the

charged lepton mass matrix takes a diagonal form.

Finally, it is important to comment on concrete values of the two parameters λ and ρ. Note that

without loss of generality we can choose the value of the original parameter λ such that λ = 0.225.

Even if the parameter is chosen to be a distinct value, we can move to the case of λ = 0.225 by

redefining the additional FN charges {ci, dj} and the value of the additional parameter ρ. Hence, in

the following, we take λ = 0.225 and ρ as an arbitrary value which we assume to be less than one.

We show that the DFN textures can reproduce the ratio of the two neutrino mass squared differences

and three mixing angles. We also show the results of our numerical analyses in the next section. Here,

we do not identify the origin of the additional parameter ρ, where one possibility is (right-handed)

Majorana neutrino mass parameters in a seesaw model.

3 We note that this form can be derived from extra dimensions. When we assume that the SM fermions

propagate in the bulk of an interval and have Yukawa couplings on the brane at y = L, the mass matrix is

symbolically written down as mij ∝ e
L(MLi

−MRj
)
∼ λai+bj , where L is the length of the interval. MLi/Ri

are bulk

masses for ith-generation doublet/singlet, and we put the Dirichlet boundary condition for right/left-handed

mode of the doublets/singlets at the two end points at y = 0, L to realize left-hand doublet modes and right-hand

singlet modes, respectively. We adopt the notation in Ref. [36]. If the particle profiles are also localized among

other directions of extra dimensions, we might address the DFN structure.

3/10

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
te

p
/a

rtic
le

/2
0
1
6
/8

/0
8
3
B

0
5
/2

5
9
4
8
9
3
 b

y
 g

u
e

s
t o

n
 0

3
 A

u
g
u
s
t 2

0
2
1



PTEP 2016, 083B05 K. Nishiwaki et al.

3. Numerical analyses

In this section, we focus on mass matrices in the neutrino sector, and also analyze numerical aspects

of the extended FN parametrization. In our numerical calculations, we assume the normal neutrino

mass hierarchy. We use the results of the global analysis of neutrino oscillation experiments [37].

The 3 σ ranges of the experimental data for the normal neutrino mass hierarchy are given as

0.270 ≤ sin2 θ12 ≤ 0.344, 0.382 ≤ sin2 θ23 ≤ 0.643, 0.0186 ≤ sin2 θ13 ≤ 0.0250,

7.02 ≤
�m2

sol

10−5 eV2
≤ 8.09, 2.317 ≤

�m2
atm

10−3 eV2
≤ 2.607, (3)

where θij are lepton mixing angles in the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, while

�m2
sol and �m2

atm are the solar and atmospheric neutrino mass squared differences, respectively. Note

that the DFN parametrization can be valid in both Dirac and Majorana mass matrices. For simplicity,

we assume that FN charges ai(ci) are equivalent to the other charges bj(dj), respectively. Now, the

mass matrix in Eq. (2) becomes symmetric. We also assume that the mass matrix of the charged

leptons is diagonal.4

In the following, we consider six patterns5 with/without additional FN charges as sample patterns

for numerical calculation:6

◦ Pattern 1: ai = {1, 0, 0}, ∀ci, and ρ = 1.0;

◦ Pattern 2: ai = {1, 0, 0}, ci = {0, 3
2
, 5

2
}, and ρ = 0.8;

◦ Pattern 3: ai = {3
2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}, and ρ = 0.4;

◦ Pattern 4: ai = {3
2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}, and ρ = 0.5;

◦ Pattern 5: ai = {3
2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}, and ρ = 0.6;

◦ Pattern 6: ai = {1
2
, 1

2
, 0}, ci = {1, 0, 1

2
}, and ρ = 0.3.

Note that with ρ = 1.0, the first pattern of charge configurations gives the standard FN parametriza-

tion, and this charge configuration gives a µ–τ symmetric mass matrix which derives the almost BM

mixing. In our calculations, the three neutrino masses are adjusted by the ratio of the two neutrino

mass squared differences, because an overall mass scale is completely free for our parametrization.

Here we take O(1) coefficients as 10% deviations from unity and complex phases are taken from −π

to π . Then, we can predict the Dirac CP-violating phase δCP in our numerical calculations, where

the non-zero δCP originates from the complex phases of the mass matrix elements. In each pattern,

we scan 106 configurations of the coefficients of the nine elements of the mass matrix.

First, we show the scatter plots in Pattern 1. The gray regions suggest realized values of mixing

angles sin θ12, sin θ23, sin θ13, and Dirac CP-violating phase δCP in Fig. 1. The insides of the red

dotted lines show the 3 σ allowed regions of each lepton mixing angle, while the orange points

correspond to the case that all three lepton mixing angles are within the 3 σ ranges simultaneously

in Eq. (3). We find that δCP is predicted as |δCP| � 1 and 2.2 � |δCP| � π .

4 It is clear that we can consider large contributions to lepton mixing angles, e.g., Ref. [38]. However, such

large contributions are not typical setups in the framework of the FN parametrization. In many typical cases,

the contributions from the charged lepton mass matrices are considered to be small enough to be negligible.
5 We analyzed various textures and picked six patterns to be mentioned where the result of the recent neutrino

oscillation experiments [37] tends to be explained in part of parameter space.
6 We show the explicit form of the mass matrix of neutrinos for each pattern in Appendix A.
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Fig. 1. Scatter plots in Pattern 1: ai = {1, 0, 0}, ∀ci. We set ρ = 1.0. The ratio of the two neutrino mass squared

differences is required within the range where �m2
sol and �m2

atm are inside the 3 σ ranges shown in Eq. (3). The

insides of the red dotted lines show the 3 σ allowed regions of the lepton mixing angles. The orange points

correspond to the case that all three lepton mixing angles are within the 3 σ ranges simultaneously in Eq. (3).

Fig. 2. Scatter plots in Pattern 2: ai = {1, 0, 0}, ci = {0, 3

2
, 5

2
}. We set ρ = 0.8. The color convention is as in

Fig. 1.

On the other hand, in Pattern 2, the standard FN charges are the same as those of Pattern 1, and we

set ρ = 0.8 so that the mass matrix becomes almost µ–τ symmetric (though not exactly). Figure 2

shows that sin θ23 is around the upper boundary of the 3 σ range, while the other mixing angles

are completely filled within the 3 σ range. Comparing Figures 1 and 2, it is easily seen that the

realized values of sin θ13 in Pattern 2 are relatively larger than those in Pattern 1. This implies that

sin θ13 is improved by the DFN parametrizations, even if the coefficients are not so scattered in large

parameter regions. Also, we can distinguish Patterns 1 and 2 between the standard FN and DFN by

more precise measurement of sin θ23. The extension with an additional parameter leads to modestly

different properties of sin θ13 and sin θ23 from those of a µ–τ symmetric neutrino mass matrix.

Next, we show other patterns from non-µ–τ symmetric neutrino mass matrices. In Patterns 3, 4,

and 5, the charge configurations of ai and ci are ai = {3
2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}, while the magnitudes

of ρ are different: ρ = 0.4, 0.5, 0.6, respectively. If we set ρ = 1.0, which is the standard FN

parametrization, we cannot find the correct ratio of the two neutrino mass squared differences and

three mixing angles. In Figs. 3, 4, and 5, the allowed regions of sin θ12, sin θ13, and δCP are almost the

same, while sin θ23 is completely different. In Figs. 3, 4 and 5, it is easily found that different values

of ρ lead to different values of sin θ23. This is a remarkable property in the DFN parametrizations.

Figure 3 shows that sin θ23 is scattered around the upper boundary of the 3 σ range in Pattern 3. In

Pattern 4, the allowed region of sin θ23 is 0.63 � sin θ23 � 0.72, as shown in Fig. 4. In Pattern 5,

Fig. 5 shows that sin θ23 is around the lower boundary of the 3 σ range. When we set ρ = 0.3 or 0.7,

the obtained values of sin θ23 are beyond the 3 σ experimental upper and lower bounds, respectively.

The three patterns are tested by measuring the value of sin θ23 more precisely. Finally, we show

the last pattern. In Pattern 6 we set ρ = 0.3, which means that this pattern seems to be almost the
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Fig. 3. Scatter plots in Pattern 3: ai = { 3

2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}. We set ρ = 0.4. The color convention is as in

Fig. 1.

Fig. 4. Scatter plots in Pattern 4: ai = { 3

2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}. We set ρ = 0.5. The color convention is as in

Fig. 1.

Fig. 5. Scatter plots in Pattern 5: ai = { 3

2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}. We set ρ = 0.6. The color convention is as in

Fig. 1.

standard FN parametrization because of λ = 0.225.7 In Fig. 6, sin θ12 and sin θ13 are filled within

the 3 σ range, while sin θ23 is distributed around the lower boundary of the 3 σ range. Note that the

neutrino mass matrix in Pattern 6 is considered to be similar to that in Pattern 1, because the value

of the additional parameter is small and approximately equal to λ, i.e., ρ = 0.3. However, the values

obtained for the mixing angles are distinct from each other. Indeed, the DFN extension can make

values of sin θ13 larger and values of sin θ23 relatively smaller. We recognize that these properties

are distinctive from those of Pattern 1 (the original FN). In addition, we find that δCP is predicted as

|δCP| � 1 and 2.0 � |δCP| � π for Pattern 6.

We comment on the relative testabilities of the configurations of the (double) FN charges and

parameters. First, the values obtained for sin θ23 are almost the same in Patterns 1 and 4. The

frequency of consistent values of sin θ13 is certainly improved in Pattern 4. However, the predicted

7 If we set ρ = 1.0, we cannot find the correct neutrino masses and mixing angles in the charge configurations

of ai and ci for Pattern 6. Then the DFN parametrization can be well parametrized in the neutrino sector.
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Fig. 6. Scatter plots in Pattern 6: ai = { 1

2
, 1

2
, 0}, ci = {1, 0, 1

2
}. We set ρ = 0.3. The color convention is as in

Fig. 1.

values are dependent on the coefficients in front of each element. Hence, it is difficult to distinguish

Patterns 1 and 4 by neutrino experimental data. Indeed, such situations happen between the other

patterns, e.g., between Patterns 2 and 3 and between Patterns 5 and 6. These coincident properties

of predicted mixing angles can also be seen in the standard FN parametrizations. Therefore, all

of the patterns cannot always be tested by more precise determination of the three mixing angles.

This is more conspicuous when O(1) coefficients are randomly scattered in a wider range, e.g.,

cij ∈ [0.8, 1.2]. The testability of different configurations of (double) FN charges and parameters is

strongly dependent on concrete model building.

4. Discussions and summary

In the SM, there are many free parameters, especially as Yukawa couplings, so that there are some

ambiguities in realizing the quark and lepton mass hierarchies and mixing angles. It is therefore

important to study texture analysis or a flavor symmetry model in order to elucidate the origin of the

flavor structure as beyond the SM. As is well known. the mass matrices of the up- and down-type

quarks and the charged leptons in the SM can be parametrized well by the parameter λ, which is

usually taken to be the sine of the Cabibbo angle (λ = sin θC ≃ 0.225). In this parametrization, the

mass hierarchies and mixing angles of the quarks and charged leptons are reproduced. However, in

the neutrino sector, there is still room to realize the neutrino mass squared differences �m2
sol and

�m2
atm, two large mixing angles θ12 and θ23, and non-zero θ13.Actually, if the neutrinos are Majorana

particles, in the seesaw mechanism, we need both the Dirac and Majorana mass terms. Even if the

Dirac neutrino mass matrix is parametrized by λ like the other SM fermions, the Majorana masses

include free mass parameters in general, and it is plausible that Majorana masses are parametrized

by another parameter. Thus, in this paper we have presented a doubly parametric extension of the

FN mechanism, with the parameter ρ in addition to λ. Taking the relevant FN charges for the power

of λ (= 0.225) and additional FN charges for the power of ρ, which we assume to be less than one,

we can reproduce the ratio of the neutrino mass squared differences and lepton mixing angles. Here

we assume that the charged lepton mass matrix is diagonal.

In our calculations, the neutrino masses, assuming the normal neutrino mass hierarchy, are adjusted

by the ratio of the neutrino mass squared differences because the overall mass scale is completely free

for our parametrization. Here we take O(1) coefficients as 10% deviations from one and the complex

phases are taken from −π to π . Note that if we take the magnitude of O(1) coefficients as 20%

deviations from one, the allowed region of δCP is −π � δCP � π , while if we take the magnitude of

O(1) coefficients as 5% deviations from one, δCP is more predictive. In this paper, we considered six

patterns with/without additional FN charges as sample patterns for numerical calculations. First, we
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showed the standard FN and DFN parametrizations which are almost µ–τ symmetric mass matrices

in Patterns 1 and 2, respectively. We found that δCP is predicted as |δCP| � 1 and 2.2 � |δCP| � π .

In Pattern 2, sin θ23 is around the upper boundary of the 3 σ range, while the other mixing angles are

completely filled within the 3 σ range.

Next, we showed other patterns where the neutrino mass matrices are not µ–τ symmetric. In

Patterns 3, 4, and 5, the charge configurations of ai and ci are ai = {3
2
, 1

2
, 0}, ci = {0, 1

2
, 3

2
}, while the

magnitudes of ρ are different: ρ = 0.4, 0.5, 0.6, respectively. If we set ρ = 1.0, which corresponds

to the standard FN parametrization, we cannot find the correct ratio of the two neutrino mass squared

differences and three mixing angles, so the DFN pattern parametrizes the neutrino sector well. Finally,

we find a sizable deviation in Pattern 6, where the magnitude of ρ (= 0.3) is a little away from the

FN value λ (≃ 0.225).

We had seen several examples in the mass matrix form formulated under the concept of DFN. We

recognized that patterns of the mixing angles and the Dirac CP phase can deviate from the predicted

ones in the FN texture. The deviations look distinctive when fluctuations in the elements of the

mass matrix are within 10% of unity. As pointed out in the previous section, the explicit differences

between the standard FN and DFN parametrizations tend to appear particularly in values of sin θ23.

Hence, measuring sin θ23 precisely is achievable in the near future, for example in neutrino oscillation

experiments, and such improved measurements can determine how well the DFN texture works.
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Appendix. Neutrino mass matrix for each pattern

We show the neutrino mass matrix m
(i)
ν for each Pattern i, which we discuss in Sect. 3:

m(1)
ν =







λ2 λ λ

λ 1 1

λ 1 1






, m(2)

ν =







λ2 λρ
3
2 λρ

5
2

λρ
3
2 ρ3 ρ4

λρ
5
2 ρ4 ρ5






, m(3,4,5)

ν =







λ3 λ2ρ
1
2 λ

3
2 ρ

3
2

λ2ρ
1
2 λρ λ

1
2 ρ2

λ
3
2 ρ

3
2 λ

1
2 ρ2 ρ3






,

m(6)
ν =







λρ2 λρ λ
1
2 ρ

3
2

λρ λ λ
1
2 ρ

1
2

λ
1
2 ρ

3
2 λ

1
2 ρ

1
2 ρ

3
2






, (A.1)

where the overall mass parameter is omitted for each mass matrix.
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