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Abstract

Diabetic Macular Edema (DME) is an advanced stage of Diabetic Retinopathy (DR) and can

lead to permanent vision loss. Currently, it affects 26.7 million people globally and on

account of such a huge number of DME cases and the limited number of ophthalmologists,

it is desirable to automate the diagnosis process. Computer-assisted, deep learning based

diagnosis could help in early detection, following which precision medication can help to miti-

gate the vision loss. Method: In order to automate the screening of DME, we propose a

novel DMENet Algorithm which is built on the pillars of Convolutional Neural Networks

(CNNs). DMENet analyses the preprocessed color fundus images and passes it through a

two-stage pipeline. The first stage detects the presence or absence of DME whereas the

second stage takes only the positive cases and grades the images based on severity. In

both the stages, we use a novel Hierarchical Ensemble of CNNs (HE-CNN). This paper

uses two of the popular publicly available datasets IDRiD and MESSIDOR for classification.

Preprocessing on the images is performed using morphological opening and gaussian ker-

nel. The dataset is augmented to solve the class imbalance problem for better performance

of the proposed model. Results: The proposed methodology achieved an average Accuracy

of 96.12%, Sensitivity of 96.32%, Specificity of 95.84%, and F−1 score of 0.9609 on MESSI-

DOR and IDRiD datasets. Conclusion: These excellent results establish the validity of the

proposed methodology for use in DME screening and solidifies the applicability of the HE-

CNN classification technique in the domain of biomedical imaging.

Introduction

Diabetic Macular Edema (DME) is a complication of Diabetic Retinopathy (DR), and it usually

occurs when vessels in the central part of the macula are affected by the fluid accretion [1].

DME is caused due to diabetes which is a chronic disease induced by inherited and/or

acquired deficiency in the production of insulin by the pancreas. DME is an advanced stage of

DR that can lead to irreversible vision loss [2–4].

Diabetes currently affects more than 425 million people worldwide and is expected to

affect an estimated 520 million by 2025. It is estimated that 10% of people who suffer from

some form of Diabetes are at the risk of DME. DME currently affects around 26.7 million
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people globally, and the number is expected to rise to around 50 million by 2025 [3, 5].

About 7.7 million Americans have DR and approximately 750,000 are suffering from DME.

[4].

Identifying exudates in fundus images is a standard technique for determining DME [6, 7].

The nearness of exudates to the macula determines the severity of DME and the probability of

DME is higher when the exudates are closer to the macula with the risk being maximum when

they are inside the macula [8]. Immediate treatment is required if a person is diagnosed with

DME so as to avoid complete vision loss.

The ratio of ophthalmologists to population in developed countries like USA is 1:15,800

and in developing countries like India is 1:25,000 in urban areas and 1:219,000 in rural areas

[9, 10]. The limited number of ophthalmologists cannot keep up with the rapidly increasing

number of DME patients and this heavily skewed ratio of ophthalmologists with respect to

DME patients is also leading to delayed services to the needy. Manual evaluation of DME is

not adaptable in a large-scale screening scheme, especially in developing countries where there

is a shortage of ophthalmologists [11]. One out of nine individuals turned out to be positive

DME cases during the screening tests as mentioned in [12]. Another challenging aspect of the

healthcare sector in the developing countries is to provide the correct and timely treatment at

an affordable cost. In this kind of a scenario, we require an automated disease discovery frame-

work that can reduce cost and workload, as well as manoeuvre the shortage of ophthalmolo-

gists by limiting the referrals to those cases that require prompt consideration. The reduction

of effort and time of ophthalmologists in diagnosis will be pivotal for arresting the growth of

DME cases.

Propelled by these promising possibilities, we propose to develop an effective solution using

Deep learning techniques to automatically grade the fundus images. Machine learning tech-

niques have powered many aspects of medical investigations and clinical practices. Deep learn-

ing is emerging as a leading machine learning tool in computer vision and has started to

command significant consideration in the field of medical imaging. Deep learning techniques

and in particular, convolutional neural networks, have rapidly gained prominence for analysis

of the medical images.

In this paper, we propose a novel algorithm DMENet which automatically analyses the pre-

processed color fundus images. Preprocessing on the images is performed using morphologi-

cal opening and gaussian kernel. The dataset is augmented to solve the class imbalance

problem for better performance of the proposed model. After Preprocessing, the images are

passed through a two-stage pipeline. In the first stage, the algorithm detects the presence/

absence of DME and once the presence of DME is confirmed it is passed through the second

stage where the image is graded based on the severity. Both these stages are equipped with the

proposed state-of-art technique called Hierarchical Ensemble of Convolutional Neural Net-

works (HE-CNN).

The proposed DMENet algorithm in this paper is built on a novel classification structure

known as HE-CNN which uses the concept of ensemble learning. Ensemble learning is a tech-

nique which combines the outputs from multiple classifiers to improve the classification per-

formance of the model [13]. This approach is intuitively used in our daily lives, where we seek

guidance from multiple experts, weigh and combine their views to make a more informed and

optimized decision. In matters of great importance that have financial or medical implications,

we often seek a second opinion before making a decision, for example, having several doctors

agree on a diagnosis reduces the risk of following the advice of a single doctor whose specific

experience may differ significantly from that of others.

The major contributions of the proposed work can be summarized as follows:

DMENet
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• A preprocessing technique to enhance the key features of the raw fundus images by reducing

noise in the background.

• A two stage DMENet pipeline which is first of its kind and performs disease classification as

well as severity grading.

• A novel ensemble technique HE-CNN which performs image classification effectively by

tackling the problem of overfitting, a common problem in the biomedical image classifica-

tion tasks.

• A new loss function is designed to train the HE-CNN ensemble using L2-loss to boost the

classification performance.

The next section of Related Work gives an outline of the existing techniques for DME diag-

nosis. The section on Materials and Preparation presents the details of the datasets and the

data preparation strategies employed. A detailed description of DMENet is given in Proposed

Methodology section. Experiments and Results section provides the implementation details

along with a clear analysis of the results obtained. A succinct overview of the proposed research

as well as future scope is given in the Conclusions section.

Related work

The feasibility of manual assessment for the diagnosis of ophthalmic cases has become practi-

cally untenable. Automation of at least the first level diagnosis is a clear requirement to

improve the efficacy, affordability, and accessibility of our healthcare system. Over the last two

decades, many research groups have extensively worked on automating the diagnosis of oph-

thalmic problems using color fundus and OCT images. Image acquisition, processing, and

diagnosis using color fundus images are comparatively faster and in case of developing nations

where the cost factor plays a vital role, color fundus imaging scores higher than others.

Recently the use of data-driven machine learning and deep learning techniques on classical

expert labeled image analysis have gained prominence. Convolutional Neural Networks have

become the method of choice for automated grade assessment of DME. The techniques used

in previous works on automated DME grading using color fundus images can be broadly cate-

gorized as (a)Feature detection and classification using hand-crafted techniques (b)Combina-

tion of hand-crafted and machine learning techniques (c)Employing Deep learning techniques

especially CNNs for feature extraction and classification.

One of the earliest automated systems using handcrafted technique given by Siddalingas-

wamy and Gopalakrishna [14] used clustering and mathematical morphological techniques

to detect exudates. In [15] the authors adopted marker-controlled watershed transformation

for extracting exudates to perform DME stage classification. The work given in [16] used top-

down image segmentation and local thresholding to find the region of interest, followed by

exudate detection. Deepak and Jayanthi [11] used a supervised learning approach to capture

the global characteristics in fundus images and assessed disease severity using a rotational

asymmetric metric by examining the symmetry of the macular region. The work proposed in

[17] used a combination of handcrafted and machine learning techniques. This work detected

macula by locating darkest pixel along the enhanced blood vessels followed by clustering of

pixels where the largest cluster was considered as the macula. They used Gabor filter as well

as adaptive thresholding to detect exudates and graded the DME severity with the help of a

support vector machine (SVM). The work given in [18] proposed a method for texture extrac-

tion from various regions of interest of the fundus image and employed SVM for grading of

DME.

DMENet
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However, the overall performance of the above-described grading systems is largely based

on feature extraction strategies, exudate segmentation and the location of anatomical struc-

tures i.e. macula and fovea. In addition, the extraction of features is hugely dependent on the

dataset being used in the methodology. Finding and developing a feature set that is suitable for

different datasets remains a challenge. Thus deep learning emerged as a more promising

approach to learn features automatically. One of the most recent works [19] used CNNs to

automatically extract features and grade the input fundus images. The authors obtained an

accuracy of 88.8%, sensitivity of 74.7% and specificity of 96.5% on MESSIDOR dataset [19].

One of the pioneering works in the domain of ensemble learning was proposed by Dasarthy

and Sheela [20] which deals with the partitioning of feature space using two or more classifiers.

Recently ensemble learning techniques applied on computer vision problems in the domain of

medical imaging with CNNs as classifiers demonstrated significant improvement in the per-

formance [21, 22]. Feature space expansion and use of different starting points have been

instrumental in providing a better approximation of the optimal solution and has been cited as

the rationale for the improved classification using ensemble learning. Ensemble learning offers

a promising alternative to the currently used techniques in the computer vision domain and

we wish to explore it further in the proposed DMENet algorithm.

Materials and preparation

Datasets

The proposed model was trained using data from two publicly available datasets, IDRiD [23]

and MESSIDOR [24]. Both these datasets are graded on a scale of three, where each grade is

described as given in Table 1. Fig 1 gives the visual depiction of the various severity stages of

DME.

IDRID. This database contains 516 fundus images. These images were captured by a reti-

nal specialist at an Eye Clinic located in Nanded, Maharashtra, India. Experts have verified

that all images are of adequate quality, are clinically relevant, no image is duplicated and a rea-

sonable mixture of disease stratification representative of DME is present. The images have a

resolution of 4288×2848 pixels. The dataset contains 222 image of grade 0, 41 of grade 1 and

243 images of grade 2. Images were acquired using a Kowa VX-10 alpha digital fundus camera

with a 50˚ field of view (FOV), and all are centered near to the macula.

MESSIDOR. The Messidor database has been established to facilitate studies on com-

puter-assisted diagnoses of diabetic retinopathy. The database contains 1200 fundus images

acquired at three different locations. The images have resolutions of 1440�960, 2240�1488 and

2304�1536 pixels. This dataset contains 974, 75 and 151 images of grades 0, 1 and 2 respec-

tively. Images were acquired using a color video 3CCD camera on a Topcon TRC NW6 non-

mydriatic fundus camera with a 45˚ FOV.

Data preparation

Data augmentation. In order to build a robust automated disease grading system using

CNNs, it is important to have a dataset of images with uniform representation from all the

Table 1. Description of DME severity grading.

Grade Description

0 No Apparent hard Exudate(s)

1 Presence of hard Exudate(s) outside the radius of one disc diameter from the macula center

2 Presence of hard Exudate(s) within the radius of one disc diameter from the macula center

https://doi.org/10.1371/journal.pone.0220677.t001

DMENet
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classes. Datasets are often imbalanced in the field of medical imaging, as the number of

patients that turn out to be positive is much lower than the total number of cases. This class

imbalance problem introduces significant challenges when training deep CNNs which are

data-intensive [25]. Another common issue that occurs while training deep CNNs on smaller

datasets is overfitting [26]. Training deep CNNs on larger datasets has shown to improve the

robustness and generalisability of the model [27]. Data augmentation is an effective solution to

reduce overfitting during CNN training as well as to balance the samples across different clas-

ses. Various techniques of augmentation, such as Flips, Gaussian-Noise, Jittering, Scaling,

Gaussian-Blur, Rotations, Shears, etc., are commonly used. Flips, Rotations, and Scaling have

outperformed other techniques [4]. Our augmentation methods include random rotations

between 10˚ to 40˚ and horizontal flips. The visual examples of our augmentation techniques

can be seen in Fig 2.

Fig 1. Representative fundus images with different pathological severity of DME. (A) Denotes the images of Grade 0 severity which have no hard exudates, (B)

Represents Grade 1 severity which has exudates outside the radius of one disc diameter from the macula center, and (C) Denotes the fundus under the Grade 2

severity category, with exudates within the radius of one disc diameter from the macula center.

https://doi.org/10.1371/journal.pone.0220677.g001
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Data preprocessing. Preprocessing plays a key role in improving the accuracy of results

by reducing noise in the background. It removes some of the variations between images due to

differing lighting conditions and camera-resolution thus making the data consistent [27]. The

images contained in the above-mentioned databases have different resolutions which are

scaled down to a fixed size to create a standardized dataset. The standardized dataset obtained

is preprocessed to improve image contrast which would help in the clear distinction of

exudates from the background. The preprocessed image is obtained in a two-step process

where we first perform image enhancement and follow it up with the application of the

Fig 2. Reprenstative fundus images depicting our augmentation techniques. The images marked under column (A) are the original fundus images

that are to be augmented. The fundus images under columns (B), (C) are the images generated owing to flipping and random rotations ranging from

10˚ to 40˚ respectively.

https://doi.org/10.1371/journal.pone.0220677.g002

DMENet

PLOS ONE | https://doi.org/10.1371/journal.pone.0220677 February 10, 2020 6 / 22

https://doi.org/10.1371/journal.pone.0220677.g002
https://doi.org/10.1371/journal.pone.0220677


morphological opening operation on the output of the first step. The enhancement of the

input image is based on the mathematical formula given in Eq 1.

Uenðx; y; sÞ ¼ lGðx; y; sÞ � Uðx; yÞ þ oUðx; yÞ þ d ð1Þ

where Uen denotes the corresponding output image after enhancement, U(x, y) denotes the

raw fundus image, G(x, y; σ) is a Gaussian kernel with scale σ [27]. The convolution operator is

represented by �. In this paper σ is empirically set as 25, λ, ω and δ are parameters to control

the weights, which are empirically set as -4, 4 and 0.5. Upon conducting a number of experi-

ments, these values were determined and validated by an ophthalmologist.

Morphological opening is performed on the enhanced image to control the brightness of

blood vessels which appear brighter than other retinal surfaces due to the lower reflectance

[25]. It performs the next step using the expression given by Eq 2.

Up ¼ Uenðx; y; sÞ � φ ð2Þ

where Up denotes the corresponding output image after performing morphological opening

and is the final output of the preprocessing stage. φ represents the structuring element disk

with a radius of 3 pixels and � denotes a morphological opening operation. Fig 3 shows the

visual representation of our preprocessing technique discussed above.

Proposed methodology-DMENet

The description of the proposed methodology- DMENet is presented in this section. DME-

Net is a two-stage pipeline that performs disease classification (Positive DME and Negative

DME) in the first stage followed by severity grading (Grade 1 and Grade 2) in the second

stage. Only those images that are classified as positive DME are passed onto the second

stage. The workflow of our algorithm is illustrated in Fig 4. Each stage comprises of a classifi-

cation structure (referred to as Gamma ensemble in the first stage and Delta ensemble in the

second stage) based on our proposed novel ensemble technique known as Hierarchical
Ensemble of Convolutional Neural Networks (HE-CNN). To delve deeper into the ensemble

methodology, it is prudent to understand CNNs architecture and fine-tuning techniques as

given below.

Background: CNN and fine-tuning

CNNs have been used in biomedical image analysis since the 1990’s [28, 29], however, with the

advent of GPUs and the availability of larger and better datasets, they have started showing

superior performance. The strength of CNN lies in its deep architecture which is responsible

for extracting distinguishing features at different layers of abstraction [30, 31]. CNNs are fun-

damentally made of three types of layers, namely convolutional, pooling, and fully-connected

layers. The convolutional layer is composed of a set of convolutional kernels that are responsi-

ble to learn the patterns or specific features from the input. These kernels compute different

feature maps and each neuron in a feature map is associated with a region of neighboring neu-

rons of the previous layer. The new feature map can be obtained by convolving the input with

a trained kernel followed by application of element-wise nonlinear activation function on the

results obtained using a convolution operator [32]. Activation functions are extremely impor-

tant for CNNs to learn and comprehend non-linear complex functional mapping between the

input and the response variable. The pooling layer is placed between two convolutional layers

with the objective of reducing spatial dimensions, improving the computing performance and

reducing the number of parameters. There are various types of pooling operations, however,

DMENet
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Fig 3. Representative fundus images showing a clear distinction between original and preprocessed images. The

images in the column (A) are the raw fundus images and the images in the column (B) show the preprocessed images

wherein we can observe the exudates (white/pale yellow spots) and blood vessels more clearly with the controlled

background noise.

https://doi.org/10.1371/journal.pone.0220677.g003
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the most commonly used ones are max-pooling [33], and average pooling [34]. After several

convolutional and pooling layers, a fully connected layer that performs high-level reasoning is

obtained [35, 36]. A fully connected layer takes all the neurons in the previous layer and con-

nects them to each of the current layer’s single neurons to generate global semantic informa-

tion. [32].

Various studies [37, 38] have established that transfer learning or fine-tuning a CNN is bet-

ter than training from scratch. Training CNNs from scratch suffers from several issues espe-

cially the requirement of having a large dataset is a serious concern in the medical domain

where expert annotation is a costly affair. Training a CNN from scratch is also computation-

ally expensive, time-consuming and suffers from frequent overfitting and convergence issues.

An effective alternative for training a CNN is transfer learning. Transfer learning is a method

where CNNs first learn features in one setting and then adapt and applies it in another setting.

The factors which affect the transfer learning strategy is the size of the new dataset on which it

is applied and its similarity to the original dataset [39]. CNNs learn low-level features in the

early layers which are general for any network whereas high level features are learned in later

layers that are dataset dependent. One of the more advanced approaches of transfer learning

is Fine-tuning which employs the back-propagation algorithm to update the pre-trained

weights w of a CNNs. Fine-tuning is an iterative process that works by minimizing the cost

function with respect to the pre-trained weights [22]. The cost function is represented as fol-

lows

Cðw;DÞ ¼
1

n

Xn

j¼1

lðf ðDj;wÞ; ĉjÞ ð3Þ

where D is training dataset with n images, Dj is the jth image of D, f(Dj, w) is the CNN function

that predicts the class cj of Dj given w,ĉj is the ground-truth of jth image, lðcj; ĉjÞ is a penalty

function based on logistic loss l for predicting cj instead of ĉj .
In order to minimize the cost function, the Stochastic Gradient Descent algorithm [40] is

commonly used where the cost over entire training dataset is calculated based on the approxi-

mated results obtained over mini-batches of data. If wim denotes the weights in themth convo-

lutional layer at iteration i, and Ĉ denotes the cost over a mini-batch of size y, then the

Fig 4. Illustration of the workflow of proposed model—DMENet. DMENet is a two-stage pipeline, where, in the first stage, the algorithm detects the presence/

absence of DME and once the presence of DME is confirmed it is passed through the second stage where the image is graded based on the severity.

https://doi.org/10.1371/journal.pone.0220677.g004
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updated weights in the next iteration are computed as follows [38]

wiþ1
m ¼ w

i
m þ v

iþ1
m ð4Þ

viþ1
m ¼ Zv

i
m � t

iam
@Ĉ
@wm

ð5Þ

ti ¼ t
b
iy
jYjc ð6Þ

where |Y| denotes the number of training images, αm is the learning rate of themth layer which

controls the size of updates to the weights, η is the momentum coefficient that indicates the

contribution of the previous weight update in the current iteration. This has the effect of

speeding up the learning process while simultaneously smoothing the weight updates, τ is the

scheduling rate that decreases learning rate α at the end of each epoch.

Proposed classification methodology- Hierarchical Ensemble of

Convolutional Neural Networks

This section introduces the proposed novel classification structure known as Hierarchical

Ensemble of Convolutional Neural Networks (HE-CNN) which is used to design the Delta

and Gamma ensembles present in the DMENet pipeline as shown in Fig 4. An overview of the

HE-CNN is shown in Fig 5 (Fig 5 shows HE-CNN representation of a two-level architecture,

however, this methodology can be generalized for n levels). The proposed HE-CNN architec-

ture comprises multiple learners that maps the input to the output and contains various Gating

Systems that characterize the hierarchical structure of the architecture. There is a Local Gating

System (LGS) for each cluster of learners and a Global Gating System (GGS) that serves to con-

solidate the outputs of these clusters. The output of the ith cluster is given by

Oi ¼
X

j

wjiOij ð7Þ

where wji is activation of jth output unit of Local Gating System in the ith cluster and Oij
denotes the output given by jth learner in the ith cluster. The final output of the HE-CNN archi-

tecture is given by

O ¼
X

i

wiOi ð8Þ

where wi is activation of ith output unit of Global Gating System and Oi denotes the output

given by ith cluster. The outputs of the gating systems are normalised using softmax function

[41]

wji ¼
expðgjiÞ

P
mexpðgmiÞ

ð9Þ

and

wi ¼
expðgiÞP
kexpðgkÞ

ð10Þ

where gi and gji are the weighted sums at the output units of the corresponding gating

networks.
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As shown in Fig 5, in this architecture we divide the input space into a nested set of regions

and then attempt to fit simple surfaces to the data which fall in these regions. The regions

would be having soft boundaries, implying that the data points are spread across multiple

regions and the boundaries between these regions are simple parameterized surfaces which are

adjusted from the learning process [42]. Every learner has expertise in one specific area of the

high-dimensional input space and each learner estimates the conditional posterior probability

on the partitioned feature space separated by a gating system based on the given input. This

model combines the outputs of several CNN learners by training the gating system. The gating

system in the architecture are basically classifiers responsible for dividing the input space. The

decision of division is based on the learners capability to model the input-output functions

Fig 5. Illustration of the proposed HE-CNN model (Two-level architecture).

https://doi.org/10.1371/journal.pone.0220677.g005
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within their respective regions as quantified by their posterior probabilities. The hierarchical

nature of this architecture is analysed using probabilistic interpretation as given below. This

section also addresses the error functions used to train both CNN learners and gating systems.

Probabilistic interpretation. The HE-CNN model learns from each cluster which have

multiple CNN learners that are experts in their respective regions. Each jth learner in ith cluster

maps the input x to one of the output classes G (In Gamma Phase-DME or No DME and in

Delta Phase-Grade 1 or Grade 2). The total probability of generating G from x is the mixture

of the probabilities of generating G from each of the component densities P(G, x; Oij), where

the mixture components are multinomial probabilities:

PðG; xÞ ¼
X

i

wi
X

j

wjiPðG; x;OijÞ ð11Þ

Here P(.) represents the likelihood function of the HE-CNN model. The gating system is

responsible for assigning weights and thereby allowing the overall model to execute a competi-

tive learning process by maximizing the likelihood function of the training data [43–45]. Each

learner module specializes in exclusive regions of feature space and all modules in this method-

ology learn simultaneously by interacting with each other rather than learning independently

[46]. The learners in a cluster are closely linked with each other and learn similar mappings

early in the training phase. They differentiate later in training as the probabilities associated

with the cluster to which they belong become larger. Thus the architecture tends to acquire

coarse structure before acquiring fine structure. This particular feature of the architecture is

notable as it provides robustness to overfitting problem in deep hierarchies.

Error function. Taking the error functions used in [42, 44], suitable changes are made to

adapt to the proposed model. Assuming a training set of V images, the error function of CNN

learners for vth input image xv is defined as:

evlearner ¼ � ln
X

i

wi
X

j

wji exp �
1

2
kDv � Ov

jik
2

� � !

ð12Þ

where Dv is the desired output vector, Ov
ji is the output vector of jth learner in ith cluster. The

effective error for jth learner in ith cluster on full training set is defined as

Eji ¼
XV

v¼1

hvjiðD
v � OvjiÞ ð13Þ

here hvji is the posterior probability estimate provided by jth learner of ith cluster for input xv. hvji
is given as

hvji ¼
wi
P

jwji exp �
1

2
kDv � Ovjik

2
� �

P
iwi
P

jwji exp �
1

2
kDv � Ov

jik
2

� � ð14Þ

The error functions of both the gating systems (GGS, LGS) is defined as follows

EGGS ¼
1

2

XV

v¼1

khvji � w
v
i k

2
ð15Þ

ELGS ¼
1

2

XV

v¼1

khvj � w
v
j k

2
ð16Þ
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where hvj gives the posterior probability provided by jth learner in the cluster for which error

function is being calculated. It is defined as given below.

hvj ¼
wvj exp �

1

2
kDv � Ov

j k
2

� �

P
jwvj exp �

1

2
kDv � Ov

j k
2

� � ð17Þ

Experiments, results and discussion

Evaluation metrics and experimental strategy

To assess the performance of the proposed DMENet methodology and HE-CNN ensemble,

standard performance measures have been employed. The Confusion Matrix and Receiver

Operating Characteristic (ROC) analyses are used to calculate the accuracy, precision, sensitiv-

ity/recall, specificity and average area under the ROC curves (AUC). F1−score is the harmonic

mean of precision and recall [47]. F1−score is calculated as given below.

F1 � score ¼ 2 �
Precision � Recall
Precisionþ Recall

ð18Þ

F1−score is a more robust metric to evaluate the classification performance as it takes into

consideration the class imbalance problem by giving equal importance to precision and recall,

thus involving both false positives and false negatives. F1−score ranges between 0 and 1,

reaches the best value of 1 when the balance between precision and recall is perfect. Cohen’s

kappa (κ) score is used to determine the potential of HE-CNN in partitioning the feature space

[48]. κmeasure signifies the level of agreement between classifiers and kappa value ranges

between −1 and 1 (higher the κ score, better is the agreement).

In this study, a 5-fold cross-validation technique is applied to assess the classification mea-

sures and to generalize the performance of the model. The dataset is roughly split into five

equal-size partitions while ensuring that each partition has good representation as a whole. By

preserving random seed across all iterations, the dataset-dependent bias is eliminated. Four

partitions are used for training and the rest of the partition were used for testing. This step has

been repeated five times until all the different test set choices have been evaluated. Over the

five folds, the classification measures are averaged.

Experiment design

This study is based on a two-stage DMENet methodology which uses HE-CNN as a key classi-

fication algorithm in each stage. One of the main issues while developing the DME screening

solution is the class-imbalance problem. The datasets being used contains a significant portion

of DME negative images and more importantly the grade 1 images are less than 10% of the

whole dataset. This can lead to mis-classification of an image with grade 1 characteristics. To

circumvent this issue the tri-class (Grade 0, 1, 2) classification problem is converted into a

binary classification problem using two stage DMENet model as depicted in Fig 4. We have

used a combination of pre-trained networks like ResNet [49], DenseNet [50], SqueezeNet [51],

GoogleNet [31] and SE-ResNet [52] as the learners in each cluster of the ensemble model. The

gating systems, both the local and global are based on the CNN architectures given in Table 2.

The final implementation details of each classification structure (i.e. Gamma and Delta

Ensemble) after performing number of experiments are given below.
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Gamma Ensemble follows the two-levelHE-CNN architecture as shown in Fig 5. The CNN

learners in the first cluster are setup using a combination of ResNet and DenseNet architec-

tures. pre-trained ResNet-50 architecture is used as learner-1 and pre-trained DenseNet-161

architecture as learner-2. The outputs of these learners were aggregated using LGS whose

architecture is based on the CNN-1 structure as given in Table 2. The second cluster is com-

posed of three CNN learners based on SqueezeNet, SE-ResNet and ResNet architectures. A

pre-trained SE-ResNet-50 architecture is used as learner-1, pre-trained SqueezeNet as learner-

2 and pre-trained ResNet-34 architecture as learner-3. The CNN-2 structure given in Table 2

is used as LGS for aggregating the outputs. In order to combine the outputs of both these clus-

ters, we used a GGS which used CNN-3 architecture as given in Table 2.

Delta Ensemble is based on three-levelHE-CNN architecture. It contains an additional clus-

ter of CNN learners and corresponding LGS as compared to the two-level architecture of

Gamma Ensemble. The first cluster contains two pre-trained CNN learners which are based

on the architectures of DenseNet and SE-ResNet. A DenseNet-169 architecture is used as

learner-1, SE-ResNet-50 as learner 2. The outputs of these learners are combined using an

LGS-1 which used CNN-2 architecture as given in Table 2. The two pre-trained CNN learners

in the second cluster are based on architectures of ResNet-50 and SqueezeNet. CNN-1 archi-

tecture given in Table 2 is employed as LGS-2 to combine the outputs of the learners in the sec-

ond cluster. The third cluster is composed of three pre-trained CNN learners- DenseNet-161,

ResNet-34 and GoogLeNet. The CNN-3 architecture is employed as LGS-3 and the CNN-4

architecture is employed as GGS demonstrated in Table 2.

All the CNN learners were initialized on the ImageNet [53] dataset weights. The filter

weights derived from ImageNet were then finetuned through back-propagation thus minimiz-

ing the CNNs empirical cost in Eq 3. We used Stochastic Gradient Descent as discussed in the

previous section to minimize the cost function. Here the cost calculated over mini-batches of

size 32 is used to approximate the cost over the entire training set. The learning rate αm is set

to 10−3 ensuring proper convergence and the scheduling rate which depends on the speed of

convergence τ is set to 0.9. The training process for both the gating systems LGS and GGS is

performed using Adam optimizer [54] with the learning rate of 10−2, batch size of 32, β1 = 0.9,

β2 = 0.999 and decay of 10−5.

Results and discussion

In this experiment, we performed an array of analysis ranging from evaluating the proposed

HE-CNN ensemble technique in each stage of DMENet pipeline, comparative evaluation of

the DMENet methodology with existing computer-aided solutions, analyzing performance of

CNNs vs. proposed HE-CNN technique, comparative study of HE-CNN with other existing

ensemble techniques and finally analyzing the performance of DMENet vs. tri-class classifica-

tion (Grade 0, Grade 1 and Grade 2) solutions. All the analysis and comparisons are made

using the evaluation metrics as discussed in the above section.

Table 2. CNN structures.

Structure Input Size Number of

layers

First Convolution

mask

Other Convolutional

masks

Max-Pooling

Size

Stride Pool type in

FC

Number of output

neurons

CNN-1 224 x 224 18 5 x 5 3 x 3 2 x 2 2 Average 2

CNN-2 224 x 224 22 5 x 5 3 x 3 2 x 2 2 Average 2

CNN-3 224 x 224 28 7 x 7 3 x 3 2 x 2 2 Average 2

CNN-4 224 x 224 32 7 x 7 3 x 3 2 x 2 2 Average 2

CNN-5 224 x 224 40 7 x 7 3 x 3 2 x 2 2 Average 2

https://doi.org/10.1371/journal.pone.0220677.t002
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Evaluation of Gamma and Delta Ensembles. We demonstrate the performance in each

stage of DMENet pipeline using Confusion Matrix and ROC curves. The Confusion Matrix in

Fig 6A shows the performance of Gamma Ensemble on 360 test images and Fig 6B gives the

performance of Delta Ensemble on 244 test images. Table 3 shows the results obtained by

Gamma and Delta ensembles on various metrics of accuracy, specificity,sensitivity, precision,

F1−score and Kappa score. The ROC curves of the Gamma and Delta Ensembles are shown in

Fig 7. The AUC scores obtained by the Gamma and Delta Ensembles are 0.9654 and 0.9489

respectively. One can clearly see that the Gamma and Delta ensembles achieved promising

results.

Comparative evaluation of HE-CNN methodology. To obtain a benchmark for compar-

ing the performance of HE-CNN ensemble and to show its capability, the proposed model is

evaluated with regard to non-ensemble methods using independent CNNs as well as some of

the existing ensemble techniques on both the classification tasks. The performance of CNNs

using pre-trained ResNet, DenseNet architectures and the results obtained are shown in

Table 4. However, one can see from the results that these models do not perform well as they

were overfitting the given data. Measures were taken to control overfitting by adding dropout

factor of 50% on the fully connected layer before the output in the ResNet as well as the Dense-

Net archtectures. Though addition of dropout helped in reducing the effect of overfitting, the

Fig 6. Confusion Matrices showing the performances of (A) Gamma and (B) Delta Ensemble.

https://doi.org/10.1371/journal.pone.0220677.g006

Table 3. Performance of Gamma and Delta Ensembles.

Gamma Ensemble Delta Ensemble

Accuracy 96.67 95.91

Specificity 95.63 97.14

Sensitivity 97.50 94.23

Precision 96.53 96.08

F1−score 0.9701 0.9515

Kappa-Score 0.932 0.916

https://doi.org/10.1371/journal.pone.0220677.t003
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Fig 7. The Receiver Operating Characteristic (ROC) curves demonstrating the performance of Gamma and Delta Ensemble.

The area under the curve is 0.9654 in the Gamma Ensemble and 0.9489 in the Delta ensemble.

https://doi.org/10.1371/journal.pone.0220677.g007

Table 4. Comparitive study of HE-CNN ensemble.

Performance Measures

Classifier Accuracy Specificity Sensitivity F1−score

CNNModels
ResNet-34 82.16 94.27 70.97 0.7923

ResNet-34+Dropout 83.65 91.38 74.49 0.8216

DenseNet-169 74.21 92.26 58.35 0.7175

DenseNet-169+Dropout 78.43 87.34 64.83 0.7345

Ensemble Models
Ave-Ensemble 83.62 86.42 78.27 0.8132

Soft-Ensemble 84.56 82.84 87.39 0.8421

Pruned-Ensemble 88.78 91.23 88.14 0.8967

Mixture-Ensemble 93.16 92.39 93.94 0.9274

HE-CNN 96.12 95.84 96.32 0.9609

https://doi.org/10.1371/journal.pone.0220677.t004
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results obtained are not satisfactory as compared to results given by the proposed HE-CNN

ensemble.

To elaborate the comparative performance of HE-CNN, some standard ensemble tech-

niques have been used as given. Ave-Ensemble averages the output maps of independently

trained CNNs to generate the final output [55, 56]. Soft-Ensemble employs several parallel

CNN branches, where feature maps are concatenated at the end of each convolutional branch

and fully-connected layer processes all the features [57], [58]. Mixture-Ensemble uses multiple

CNNs and a weight regulation network [59]. Pruned-Ensemble uses pruning to retain best

pre-trained models and then make predictions using maximum voting [60]. The results of

these ensemble techniques can be observed in Table 4. All the above models are evaluated

independently on two different classification tasks as in DMENet methodology (i.e. DME and

severity classification), the results obtained are then mapped to a tri-class problem in order to

measure various metrics. This is done in order to understand the true power of HE-CNN

architecture. The proposed DMENet approach is compared with other existing methodologies

on both the MESSIDOR and IDRiD datasets in Tables 5 and 6 respectively.

In the HE-CNN architecture, one of the key components is the gating systems (both LGS

and GGS). The adam optimizer is employed for training. We compare SGD with Nesterov

momentum (with the learning rate set as 10−2 and momentum set as 0.9) to adam optimization

Table 5. Comparitive study of DMENet’s performance with recent solutions for DME screening using MESSIDOR dataset.

Author Year Technique Results

Lim et al. [15] 2011 Marker-controlled watershed transformation for extracting exudates and performed DME stage classification

using the location of extracted exudates

Sensitivity-80.9%

Specificity-90.2%

Accuracy-85.2%

Jaafar et al. [16] 2011 Based on top-down image segmentation and local thresholding by a combination of edge detection and region

growing Grading of hard exudates was performed using a polar coordinate system centred at the fovea

Sensitivity-93.2%

Specificity-90.5%

Akram et al.
[17]

2012 Filter Bank and SVM classifier Sensitivity-92.6%

Specificity-97.8%

Accuracy-97.3%

Baidaa et al.
[19]

2016 Convolutional Neural Networks Sensitivity-74.7%

Specificity-96.5%

Accuracy-88.8%

Li et al. [62] 2019 Cross-disease attention network Accuracy-91.2%

Sensitivity-70.8%

(classification of both DME

and DR)

Proposed

DMENet

2019 Hierarchical Ensemble of CNNs (HE-CNN) Sensitivity-94.68%

Specificity-97.19%

Accuracy-95.47%

https://doi.org/10.1371/journal.pone.0220677.t005

Table 6. Comparitive study of DMENet’s performance with recent solutions for DME screening using IDRiD dataset.

Author Year Technique Results

He et al. [61] 2019 Auxiliary learning approach and XGBoost classifier Sensitivity-95.53%

Specificity-93.84%

Accuracy-94.17%

Li et al. [62] 2019 Cross-disease attention network Joint Accuracy-65.1%

(classification of both DME and DR)

Proposed DMENet 2019 Hierarchical Ensemble of CNNs (HE-CNN) Sensitivity-97.88%

Specificity-94.49%

Accuracy-96.76%

https://doi.org/10.1371/journal.pone.0220677.t006
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method. The results obtained showing superior performance of adam optimization is given

below in Table 7.

To demonstrate the competence of DMENet pipeline in DME screening, the output of

DMENet two-stage pipeline is compared with respect to the tri-class problem. In general, the

fundus images used in DME screening are graded into one of the three categories (Grade 0, 1

and 2). The results obtained through the analysis of tri-class classification using pre-trained

CNNs as well as ensemble methods using HE-CNN are shown in Table 8 along with results

obtained on the DMENet pipeline using the corresponding pre-trained CNN and HE-CNN.

The results strongly validates our premise of breaking the tri classification problem into binary

classification using two levels. The main advantage of our approach is its consistency over

other existing methods on all key metrics, which is extremely important in the medical field.

The downside is, that large datasets are not available in the DME testing area and the feasibility

of the proposed solution could not be tested in a hospital setting.

Conclusions

In this paper, we propose a DMENet methodology for automated screening of DME using raw

fundus images. The technique suggested is a two-step pipeline system that achieves effective

results. The main contribution of this paper is the usage of an advanced preprocessing tech-

nique followed by using the HE-CNN architecture for classification as well as severity grading.

Further, a novel loss function is designed to boost the classification performance. The

HE-CNN architecture overcomes the problem of overfitting that arises due to the small data-

sets. The HE-CNN architecture is fairly general and has the ability to address all related classi-

fication problems in the field of biomedical imaging with little modification. Our approach

outperformed the existing state-of-the-art methods on publicly available databases of IDRiD

and MESSIDOR. The viability of our proposed DMENet solution and HE-CNN design has

been demonstrated successfully. Our results show that DMENet is resilient to various noisy

images and conditions for image acquisition, making it a viable option in low resource settings

for the DME screening process. The future plan is to train and validate the proposed method-

ology by collecting data sets from different medical institutions. The model’s interpretability

and explainability is crucial for medical practitioners and other stakeholders to trust the deci-

sions of the proposed technique.

Table 7. Results of optimization methods.

Optimization Method Accuracy Specificity Sensitivity F1−score

SGD with Nesterov 94.32 93.58 95.92 0.9474

Adam 96.12 95.84 96.32 0.9609

https://doi.org/10.1371/journal.pone.0220677.t007

Table 8. Results of DMENet v/s tri-class classification.

Optimization Method Accuracy Specificity Sensitivity F1−score

ResNet-34

(Tri-Class)

68.31 83.28 67.21 0.7114

ResNet-34

(DMENet)

82.16 94.27 70.97 0.7923

HE-CNN

(Tri-Class)

91.46 88.84 89.62 0.8849

HE-CNN

(DMENet)

96.12 95.84 96.32 0.9609

https://doi.org/10.1371/journal.pone.0220677.t008

DMENet

PLOS ONE | https://doi.org/10.1371/journal.pone.0220677 February 10, 2020 18 / 22

https://doi.org/10.1371/journal.pone.0220677.t007
https://doi.org/10.1371/journal.pone.0220677.t008
https://doi.org/10.1371/journal.pone.0220677


Supporting information

S1 Dataset.

(PDF)

Acknowledgments

We thank the reviewers for their insightful comments that helped improve our manuscript’s

overall quality. We would also like to acknowledge the contribution of Dr. Thirumalesh M.B

from Narayana Nethralaya, Bangalore, India for his continuous inputs and for helping us vali-

date our approach and results from the perspective of an ophthalmologist.

Author Contributions

Conceptualization: Rajeev Kumar Singh, Rohan Gorantla.

Data curation: Rohan Gorantla.

Formal analysis: Rajeev Kumar Singh, Rohan Gorantla.

Funding acquisition: Rajeev Kumar Singh.

Investigation: Rohan Gorantla.

Methodology: Rohan Gorantla.

Project administration: Rajeev Kumar Singh.

Resources: Rohan Gorantla.

Software: Rohan Gorantla.

Supervision: Rajeev Kumar Singh.

Validation: Rajeev Kumar Singh, Rohan Gorantla.

Visualization: Rajeev Kumar Singh, Rohan Gorantla.

Writing – original draft: Rohan Gorantla.

Writing – review & editing: Rajeev Kumar Singh, Rohan Gorantla.

References
1. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology,

screening, and novel therapies. Diabetes care. 2003; 26(9):2653–2664. https://doi.org/10.2337/

diacare.26.9.2653 PMID: 12941734

2. King H. WHO and the International Diabetes Federation: regional partners. Bulletin of the world Health

organization. 1999; 77(12):954. PMID: 10680241

3. Zhang X, Thibault G, Decencière E, Marcotegui B, Laÿ B, Danno R, et al. Exudate detection in color reti-
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