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Abstract: Gallbladder cancer (GBC) is an aggressive and difficult to treat biliary tract carcinoma
with a poor survival rate. The aim of this study was to design a peptide-based multi-epitope
vaccine construct against GBC using immunoinformatics approaches. Three proteins implicated in
the progression of GBC were selected for B and T cell epitope prediction and the designing of the
potential vaccine construct. Seven CTL, four HTL and six Bcell epitopes along with a suitable adjuvant
were selected and connected using linkers for designing the vaccine construct. The secondary and
tertiary models of the designed vaccine were generated and satisfactorily validated. A Ramachandran
plot of the final 3D model showed more than 90% of the residues in allowed regions and only 0.4% in
disallowed regions. The binding affinity of a vaccine construct with TLR 2, 3 and 4 receptors was
assessed through molecular docking and simulation. The average numbers of hydrogen bonds for
vaccine-TLR 2, 3 and 4 complexes in the simulation were 15.36, 16.45, and 11.98, respectively, and
remained consistent over a 100 ns simulation period, which is critical for their function. The results
of this study provide a strong basis for further evaluation through in vitro/in vivo experimental
validation of the safety and efficacy of the designed vaccine construct.

Keywords: immunoinformatics; vaccine; epitope; antigenicity; TLR; GBC

1. Introduction

The global burden of cancer is increasing rapidly with more than 19.3 million new
incident cancers and 9.9 million deaths estimated in 2020 [1,2]. Worldwide, the incidence
and mortality of GBC in 2020 was reported to be 115,949 and 84,695, respectively [1].
GBC is the most frequently diagnosed biliary tract cancer with poor prognosis and a high
fatality rate [3]. The median survival of GBC is less than one year with an overall five-year
survival rate ranging from 5–20% [4–6]. The poor survival of GBC is mostly associated with
asymptomatic early stages leading to late-stage diagnosis on clinical presentation. More
than 90% of GBC are diagnosed in advanced stages or the metastatic phase [7,8].
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The incidence of GBC varies with geographic locations and other concomitant risk
factors. The world age-standardized incidence and mortality rates (ASR) of GBC were 1.2
and 0.84, respectively. Data from Global Cancer Observatory-2020 suggests the highest
incidence associated with GBC in Asia (70.8%), followed by Europe (10.8%), South America
(6.8%), Africa (4.7%) and Northern America (4.5%) [2,9]. GBC is highly prevalent in India,
Pakistan, Japan, Korea, Chile, Ecuador, Bolivia, Czech Republic, Poland and Slovakia [10].

Studies have identified cholelithiasis, cholecystitis, female gender and Salmonella
infection as common risk factors associated with the development of GBC [5,11–13]. The
ASR incidence in females and males is 1.8 and 0.97 respectively [9]. However, the association
of different risk factors with the prognosis of GBC is poorly understood.

Asymptomatic progression and a lack of specific biomarkers for early detection leads
to advanced stage presentation with aggressive tumor biology. Surgical resection of the
gallbladder is recognized as the best treatment plan for GBC [14,15]. However, following
curative surgery, the recurrence rate is high (35%) and prognosis remains poor, particularly
in advanced disease [16]. Apart from surgery, chemotherapy with gemcitabine and oxali-
platin or gemcitabine and cisplatin are the mainstay of the treatment [17]. The benefits of
adjuvant radiation therapy in GBC are unclear due to a lack of evidence regarding clinical
outcomes and overall survival [17]. Conclusively, neither radical surgery nor chemotherapy
have proved to be effective.

The overall prognosis and survival rates of most common cancers have improved as a
result of advances in drug development, diagnostics and screening technologies. However,
because GBC is an uncommon malignancy, research into its diagnosis and therapeutics
is very limited. Malignant cells evade immune recognition by escaping T lymphocytes
and natural killer cells and exploit the immunosuppressive tumor microenvironment [18].
Immunotherapies have lately received much traction as promising cancer therapeutic
approaches. Vaccines stimulating the immune system to recognize and eliminate the cancer
cells represents a novel and effective therapeutic approach [19–21].

Advanced immunoinformatics has revolutionized the field of immunological research
and vaccine development [22]. A multi-epitope-based vaccine development strategy is a
progressive approach for targeting cancer. Recently, EMD640744, an epitope-based vaccine,
has moved to phase-1 clinical trials for solid tumors [23]. Immunoinformatics approaches
have also been used for the development of potential vaccine constructs against SARS-CoV-
2 [24,25] and other highly contagious viruses such as novovirus [26], mayarovirus [27] and
Epstein-Barr virus [28]. With the advancements in immunology and bioinformatics, the
immunoinformatics approaches provide an opportunity to develop specific, cost-effective
and personalized biologics including vaccines [29].

As immune response plays a crucial role in fighting cancer, immunoinformatics ap-
proaches allow for the identification of the potential immunogenic T and B cell epitopes to
trigger the desired immune response [23,30]. Epitope vaccines, particularly peptide-based
multi-epitope vaccines, provide a uniquely designed, cost- and time-effective therapeutic
strategy capable of inducing simultaneous humoral and cellular immune responses [31,32].

Against this backdrop, the discovery of novel alternative therapeutic interventions
for GBC assumes critical importance. Researchers have identified 5′-nucleotidase isoform
2 (NT5E), aminopeptidase N (ANPEP) and membrane metallo-endopeptidase (MME) as
potential targets for the diagnosis and treatment of GBC [19,20,33].

NT5E, also referred to as CD73 and coded by the NTSE gene, is a surface enzyme
on B and T lymphocytes in humans that converts adenosine monophosphate (AMP) into
adenosine [34]. Over-expression of NT5E leads to the accumulation of free adenosine which
is negatively correlated with survival period in GBC [34,35]. The accumulating adenosine
suppresses the cellular immune responses of regulatory T cells and tumor-associated
macrophages, natural killer T (NKT) cells and helper T (Th1) cells, allowing malignant cells
to evade detection thus promoting tumor growth and metastasis [36–40].

ANPEP, also referred to as CD13, is a membrane-bound zinc metallo-enzyme expressed
in macrophages and other human cells [41]. Over-expression of ANPEP has been linked
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with tumor size, differentiation and metastasis in pancreatic, gastric, breast and gallbladder
cancers [36,42]. Sanz et al. identified ANPEP activity in tumor tissue and plasma as an
independent predictor and prognostic factor of 5-year survival in patients with colorectal
cancer [41]. Being a ubiquitous enzyme with moonlighting functional roles limits its use
as a potential therapeutic target. However, the latest evidence suggests a difference in the
function and activity of ANPEP from cancer and normal cells [43].

Membrane metallo-endopeptidase (MME) or neprilysin is also a membrane-bound
zinc metalloproteinase implicated in promoting cancer progression [36]. MME over-
expression has been reported in breast, lung, hepatocellular and gallbladder cancers and
has been associated with poor prognosis [44].

The identified proteins were used for the prediction of immunogenic epitopes and this
study was aimed at designing a novel peptide-based multi-epitope vaccine construct against
GBC using reverse vaccinology and immunoinformatics approaches. To our knowledge,
this is the first study using these tools for designing such a peptide vaccine candidate
targeting GBC.

2. Materials and Methods
2.1. Identification of Target Proteins and Sequence Retrieval

Based on their role in GBC; NT5E, ANPEP and MME proteins were selected for epitope
prediction and the designing of a potential vaccine candidate. The sequences of the selected
proteins in FASTA format were retrieved from the UniProtKB database for subsequent
analysis. Their physicochemical properties, including stability and hydropathicity, were
analyzed in the Protparam server [45]. The flow diagram in Supplementary Figure S1
depicts the process of vaccine construct development.

2.2. Prediction of Epitopes from Target Proteins

2.2.1. Prediction, Screening and Selection of Cytotoxic T-Lymphocyte (CTL) Epitopes

CTL epitopes were predicted using the Immune Epitope Database (IEDB) MHC-I
binding server [46]. An artificial neural network method with an HLA allele reference set
was used for CTL prediction to cover most of the population [47,48]. The predicted CTL
epitopes were ranked based on IC50 value, where a lower IC50 indicates a higher MHCI-I
binding affinity. An IC50 of <50 nM indicates high affinity, <500 nM; moderate affinity and
<5000 nM is considered a low affinity peptide. For this study, IC50 of <500 nM was used as
a cut-off for CTL epitope prediction and selection for the vaccine construct. The predicted
epitopes with IC50 of <500 nM were checked for immunogenicity, antigenicity, allergenicity
and toxicity [46,49].

2.2.2. Prediction, Screening and Selection of Helper T-Lymphocyte (HTL) Epitopes

HTL epitopes were predicted using the IEDB-MHCII server [50]. The NN-align
2.3 technique was selected as the prediction method and human HLA-DR was chosen as
the locus [51,52]. The HTL epitopes with 15-mer length were retrieved and ranked on the
basis of IC50 value with a lower IC50 indicating a higher MHCI-II binding affinity [53].

The predicted HTL epitopes with IC50 < 500 nM were evaluated for interferon-gamma
(IFN-γ) inducing activity using the IFNepitope server. This server uses IFN-γ inducing and
non-inducing datasets of MHC-II binders for the prediction and designing of HTL epitopes
capable of generating an IFN-γ response [54]. The IFN-γ positive epitopes were further
evaluated for antigenicity, immunogenicity, allergenicity and toxicity. Finally, immunogenic,
antigenic, non-allergic, non-toxic and IFN-γ positive HTL epitopes were selected.

2.2.3. MHC-I and MHC-II Population Coverage

The IEDB population coverage server was used to examine the selected CTL and HTL
epitopes corresponding to MHC I and II families and binding leukocyte antigens [55]. The
server computes the distribution and proportion of the population anticipated to respond
to the selected epitopes. Moreover, the server also calculates the total numbers of epitope
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hits recognized by the total population. Population coverage was examined for world
population and subcontinents, as well as countries such as India, Japan, South Korea and
Chile, among others.

2.2.4. Prediction, Screening and Selection of Linear B-Cell Epitopes

B-cell epitopes were predicted using ABCpred and BCPred servers. The ABCpred
web server uses a recurrent neural network for epitope prediction [56]. The BCPred server
prediction is based on a support vector machine algorithm [57]. The epitope length in
BCPred was set at 16-mer in both servers using an overlap filter. Epitopes with a predicted
score of ≤0.9 in BCPred and >0.5 in ABCpred were further evaluated for antigenicity,
allergenicity and toxicity properties.

2.2.5. Prediction of Antigenic, Immunogenic, Allergic and Toxic Properties

Antigenicity of the predicted epitopes was examined using the VaxiJen v.2.0 server
with the target set to a tumor and antigenicity threshold of 0.5. This server uses an
alignment-independent technique for antigenicity prediction based on the physicochemical
parameters [58]. The immunogenicity of the T cell epitopes was examined using IEDB
Class-I and Class-II immunogenicity servers [59,60].

The allergenicity of the predicted epitopes was analyzed using the AllerTOP v. 2.0 server.
AllerTOP uses an auto cross covariance transformation algorithm and physicochemical
characteristics of the proteins for allergenicity prediction. The server classifies epitopes
as probable allergens or probable non-allergens on the basis of the k-nearest neighbor
algorithm [61].

Each predicted epitope was subjected to in-silico toxicity analysis using the Tox-
inPred web server. ToxinPred is used for the prediction and design of non-toxic pro-
teins/peptides [62].

2.2.6. Designing of Vaccine Construct

Top scoring epitopes were selected and linked together for designing the final vaccine
construct. The GPGPG linkers were added to link B-cell and HTL epitopes, whereas
AAY linkers were used to connect CTL epitopes. To enhance the immunogenicity of the
vaccine construct, human β-defensin 3 (hBD3) was used as an adjuvant. The adjuvant was
connected to the construct using an EAAAK linker.

2.2.7. Evaluation of Construct Physicochemical Properties

The physicochemical parameters were examined using the ProtParam tool [45]. These
parameters included molecular weight, isoelectric point, atomic composition, stability,
and hydropathicity. The solubility was predicted using the Protein-Sol web server [63].
The expected solubility value of >0.45 was estimated to have a higher solubility than the
experimental dataset [64].

2.2.8. Prediction of Secondary Structure

The PSIPRED server was used to assess the secondary structure of the designed
vaccine sequence [65]. PSIPRED uses two stage neural networks to predict the 2D structure
including α-helix, β-pleated sheets and coils [66].

2.2.9. Prediction of Tertiary Structure

The RaptorX server was used to perform the homology modelling for the prediction
of the tertiary structure [67]. The server is a template-based modelling tool for predicting
3D models and assigns a rank to the predicted models on the basis of a root mean square
deviation (RMSD) score. The template-based threading and alignment quality predictions
are the key components of RaptorX [68].
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2.2.10. Tertiary Structure Refinement and Validation

The template-based 3D model generated in the RaptorX was further refined using
the Galaxy Refine web server [69]. The refinement helps to improve the quality of the 3D
model. Galaxy Refine uses molecular dynamics simulation to achieve recurrent structure
perturbation and overall structural relaxation through side chain repacking [70].

The quality of the refined 3D model was validated using the ERRAT and PROCHECK
tools in the SAVES v6.0 web server [71–75]. ERRAT analyzes the overall quality of the 3D
model and PROCHECK verifies the stereo-chemical quality by generating a Ramachandran
plot of protein residues [71,74]. The validation of the final 3D model was further verified
through the ProSA web server which compares the predicted model with known structures
of proteins using NMR spectroscopy and X-ray analysis [76].

2.2.11. Prediction of Discontinuous B-Cell Epitopes

The discontinuous B-cell epitopes of the validated 3D model were predicted using
the ElliPro server [77]. The server predicts the surface-accessible nearby cluster residues
based on their protrusion index (PI) values. This score is calculated by taking the average
PI value of each residue. ElliPro came out on top when compared to other structure-based
techniques for predicting epitopes, with an AUC value of 0.732 [77,78].

2.2.12. Molecular Docking with Immune Receptors

The interaction between the designed construct and TLRs is crucial for immune
response generation. TLR2, TLR3 and TLR4 were selected for docking purposes. The
vaccine–receptor docking was performed using the HDOCK server to examine the binding
affinity/energy of the docked complex [79]. The server uses a hybrid algorithm for protein–
protein docking methodologies [80]. HDOCK provides a total of 100 docked complex
predictions ranked on the basis of docked energy scores and ligand RMSD.

The vaccine–receptor interactions were visualized with the LigPlot+ v.2.2 server. Lig-
Plot+ generates schematic 2D vaccine-receptor interaction diagrams representing inter-
molecular hydrogen bonds and hydrophobic interactions [81].

2.2.13. Molecular Dynamics Simulation of Vaccine-Receptor Complexes

The stability and strength of the docked complexes were examined through molecular
simulation [82]. The simulation was performed for each vaccine receptor docked com-
plex for 100 ns using Desmond’s System builder panel with OPLS_2005 force field [83].
Before running the MD simulation, the system was equilibrated using the relax model
system protocol. Ligand–receptor complexes were prepared by solvating with TIP3P water
molecules, periodic boundary conditions established as a cubic box using buffer technique
and a distance threshold of 10. The dynamics panel was set to default parameters, the
trajectory was saved every 100 ps and the Like Energy was captured at 1.2 ps. At a temper-
ature of 300 K and 1.01325 pressure, the volume of the box was equilibrated with the NPT
ensemble (pressure).

The Noose–Hoover chain temperature coupling with 1.0 ps relaxation time and
Martyna–Tobias–Klein pressure coupling 2.0 ps relaxation time of isotropic style were
used during the simulation run at a 2 (fs) time step. The short-range method’s cut-off for
columbic interaction was 9.0 radius.

2.2.14. Immune Simulation

The generation of immunological response of the designed vaccine was demonstrated
through immune simulation using the C-ImmSim server [84]. The prediction of immune
response is based on the stimulation of three major anatomical systems including lymph
node, thymus and bone marrow in mammals. Three injections were administered at
1, 84 and 168 time-steps (each time step corresponds to 8 h indicating that the vaccine
was administered at intervals of 0, 28, and 56 days). The simulation volume was set at
50 and total simulation time was 1050 time-steps (350 days) and other parameters were
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kept as default. The output of the C-ImmSim server provides the simulation of different
immunological cells and predicts the humoral immune response through immunoglobulins,
cytokines and interleukin production.

3. Results
3.1. Identification of Target Proteins and Sequence Retrieval

Sequences of selected proteins, including NT5E (Uniprot ID-P21589), ANPEP (Uniprot
ID-P15144) and MME (Uniprot ID-P08473) in FASTA format, were retrieved from the
UniProtKB database. The stability of the proteins was verified by using the ProtParam
server. The instability index of NT5E, ANPEP and MME was found to be 32.59, 36.17 and
37.62 respectively, indicating that the selected proteins were stable. The physicochemical
properties of the selected proteins were examined and are provided in Supplementary
Table S1. The FASTA sequences were subsequently used for B and T-cell epitope prediction
for vaccine construction.

3.2. Prediction of CTL and HTL Epitopes

The CTL and HTL epitopes were predicted and selected on the basis of IC50 (<500 nM),
antigenicity (>0.5), immunogenicity, non-allergenicity and non-toxicity from NT5E, ANPEP
and MME proteins vaccine development. The selected CTL epitopes covering different
Human Leucocyte Antigen (HLA) super types are depicted in Table 1. The predicted HTL
epitopes were also evaluated for IFN-γ inducing properties. The selected HTL epitopes
and corresponding HLA-DR super types with IFN-γ score and antigenicity are shown
in Table 2.

Table 1. List of CTL epitopes selected for design of vaccine construct.

CTL Epitope Sequence Start End Length Alleles IC-50 Rank Antigenicity/
Immunogenicity

Allergenicity/
Toxicity

MME Protein

RYGNFDILR
2 43 51 9 HLA-A*31:01 8.38 0.06

1.49 and 0.24 NA/NT *
2 43 51 9 HLA-A*33:01 454.92 1.4

TLDDLTWMDA
8 34 43 10 HLA-A*02:01 54.65 0.5

0.85 and 0.12 NA/NT
8 34 43 10 HLA-A*02:06 196.1 1.5

ANPEP Protein

LASYLHTFAY

9 20 29 10 HLA-B*35:01 11.92 0.04

0.99 and 0.12 NA/NT
9 20 29 10 HLA-B*15:01 69.78 0.34

9 20 29 10 HLA-A*30:02 105.04 0.29

9 20 29 10 HLA-A*01:01 125.1 0.2

ASYLHTFAY

9 21 29 9 HLA-A*11:01 19.95 0.1

0.9536 and 0.17 NA/NT

9 21 29 9 HLA-A*30:02 31.44 0.06

9 21 29 9 HLA-B*35:01 32.57 0.1

9 21 29 9 HLA-A*03:01 63.6 0.25

9 21 29 9 HLA-A*01:01 81.21 0.15

9 21 29 9 HLA-A*32:01 108.79 0.1

9 21 29 9 HLA-B*15:01 129.05 0.55

NT5E Protein

WPAAGAWEL

1 21 29 9 HLA-B*35:01 7.79 0.02

0.50 and 0.36 NA/NT1 21 29 9 HLA-B*07:02 35.07 0.14

1 21 29 9 HLA-B*53:01 235.07 0.18

KVLPVGDEV
3 42 50 9 HLA-A*02:06 14.43 0.15

1.1955 and 0.13 NA/NT
3 42 50 9 HLA-A*02:01 286.68 2

VYKGAEVAHF
2 35 44 10 HLA-A*23:01 23.91 0.08

1.1216 and 0.19 NA/NT
2 35 44 10 HLA-A*24:02 65.7 0.12

* NA: Non-Allergic; NT: Non-Toxic.
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Table 2. List of HTL epitopes selected for design of vaccine construct.

HTL PEPTIDE Seq no Start End Length ALLELE IC50 IFN-γ
Score

Antigenicity/
Immunogenicity

Allergenicity/
Toxicity

MME Protein

IQNLKFSQSKQLKKL

9 32 46 15 HLA-DRB1*07:01 5.5

Positive 0.84/92.7 NA/NT *

9 32 46 15 HLA-DRB5*01:01 20.7

9 32 46 15 HLA-DRB1*01:01 27.1

9 32 46 15 HLA-DRB1*09:01 41.3

9 32 46 15 HLA-DRB1*13:02 61.8

9 32 46 15 HLA-DRB1*15:01 152.7

9 32 46 15 HLA-DRB1*11:01 218.6

9 32 46 15 HLA-DRB1*08:02 379.8

9 32 46 15 HLA-DRB4*01:01 412.6

9 32 46 15 HLA-DRB1*03:01 458.6

9 32 46 15 HLA-DRB3*02:02 491.9

5 5 19 15 HLA-
DPA1*03:01/DPB1*04:02 105.8

5 5 19 15 HLA-
DPA1*01:03/DPB1*04:01 302.3

5 5 19 15 HLA-
DQA1*04:01/DQB1*04:02 432.7

5 5 19 15 HLA-
DPA1*01:03/DPB1*02:01 438

5 5 19 15 HLA-
DPA1*02:01/DPB1*05:01 488.9

ANPEP Protein

FSFSNLIQAVTRRFS

1 896 910 15 HLA-DRB1*01:01 13.5

Positive 0.63/83.3 NA/NT

1 896 910 15 HLA-DRB5*01:01 14.7

1 896 910 15 HLA-DRB1*11:01 16.6

1 896 910 15 HLA-DRB1*09:01 22.1

1 896 910 15 HLA-DRB1*07:01 34

1 896 910 15 HLA-DRB1*13:02 39.6

1 896 910 15 HLA-DRB1*15:01 74.6

1 896 910 15 HLA-DRB1*08:02 81.3

1 896 910 15 HLA-DRB1*04:01 101

1 896 910 15 HLA-DRB1*04:05 167

1 896 910 15 HLA-DRB3*02:02 175.3

1 896 910 15 HLA-DRB1*03:01 212.8

1 896 910 15 HLA-DRB3*01:01 360.9

1 896 910 15 HLA-DRB1*12:01 392.6
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Table 2. Cont.

HTL PEPTIDE Seq no Start End Length ALLELE IC50 IFN-γ
Score

Antigenicity/
Immunogenicity

Allergenicity/
Toxicity

NT5E Protein

KEAKFPILSANIKAK

3 13 27 15 HLA-DRB5*01:01 24.7

Positive 0.70/86.7 NA/NT
3 13 27 15 HLA-DRB1*01:01 39.6

3 13 27 15 HLA-DRB1*15:01 63.2

3 13 27 15 HLA-DRB4*01:01 73.8

3 13 27 15 HLA-DRB1*07:01 103.6

3 13 27 15 HLA-DRB1*13:02 144.2

3 13 27 15 HLA-DRB1*11:01 200.6

3 13 27 15 HLA-DRB1*09:01 270.7

3 13 27 15 HLA-DRB1*04:05 387.2

3 13 27 15 HLA-DRB1*08:02 407.4

3 13 27 15 HLA-DRB1*04:01 484.4

3 13 27 15 HLA-
DPA1*02:01/DPB1*14:01 282.4

3 13 27 15 HLA-
DPA1*02:01/DPB1*05:01 283.7

3 13 27 15 HLA-
DPA1*03:01/DPB1*04:02 364.6

KLKTLNVNKIIALGH

4 26 40 15 HLA-DRB1*13:02 6.3

Positive 1.0/69.3 NA/NT

4 26 40 15 HLA-DRB3*02:02 21

4 26 40 15 HLA-DRB1*01:01 31.6

4 26 40 15 HLA-DRB1*07:01 71

4 26 40 15 HLA-DRB4*01:01 71.2

4 26 40 15 HLA-DRB1*11:01 75.6

4 26 40 15 HLA-DRB1*12:01 77.5

4 26 40 15 HLA-DRB5*01:01 80.6

4 26 40 15 HLA-DRB1*04:01 195.4

4 26 40 15 HLA-DRB1*08:02 318.5

4 26 40 15 HLA-DRB1*15:01 371.7

4 26 40 15 HLA-DRB1*03:01 478.1

4 26 40 15 HLA-
DPA1*03:01/DPB1*04:02 121.1

* NA: Non-Allergic; NT: Non-Toxic.

3.3. CTL and HTL Population Coverage Analysis

In order to develop a feasible vaccine candidate relevant to the global population, it
is important to take into account the population coverage of the selected T-cell epitopes.
The world population coverage of selected CTL and HTL epitopes was 93.78% and 81.81%
respectively. The coverage of the individual CTL and HTL epitopes and their respective
HLA genotypic frequency is summarized in Table 3. The HTL epitopes had higher total
HLA hits (48) as compared to CTL epitopes (22).



Vaccines 2022, 10, 1850 9 of 23

Table 3. World population coverage of individual CTL and HTL epitopes (MHC class-I and MHC class-II).

EPITOPES

Coverage HLA Allele (Genotypic Frequency (%)
Total HLA

HitsClass I A*01:01
(10.09)

A*02:01
(24.39)

A*02:06
(1.09)

A*03:01
(9.77)

A*11:01
(8.99)

A*23:01
(3.06)

A*24:02
(12.59)

A*30:02
(1.36)

A*31:01
(3.02)

A*32:01
(2.59)

A*33:01
(0.99)

B*07:02
(8.65)

B*15:01
(5.65)

B*35:01
(5.63)

B*53:01
(1.67)

RYGNFDILR 7.09% − − − − − − − − + − + − − − − 2

TLDDLTWMDA 40.60% − + + − − − − − − − − − − − − 2

LASYLHTFAY 32.81% + − − − − − − + − − − − + + − 4

ASYLHTFAY 58.51% + − − + + − − + − + − − + + − 4

WPAAGAWEL 22.28% − − − − − − − − − − − + − + + 7

KVLPVGDEV 40.60% − + + − − − − − − − − − − − − 2

VYKGAEVAHF 26.18% − − − − − + + − − − − − − − − 2

Epitope set 93.78% 2 2 2 1 1 1 1 2 1 1 1 1 2 3 1 22

EPITOPES

Coverage HLA Allele (genotypic frequency (%))
Total HLA

HitsClass II
DRB1*
01:01
(6.65)

DRB1*
03:01
(10.47)

DRB1*
04:01
(6.46)

DRB1*
04:05
(1.70)

DRB1*
07:01
(10.71)

DRB1*
08:02
(1.31)

DRB1*
09:01
(3.64)

DRB1*
11:01
(6.06)

DRB1*
12:01
(2.53)

DRB1*
13:02
(3.81)

DRB1*
15:01
(10.82)

DRB3*
01:01
(0.0)

DRB3*
02:02
(0.0)

DRB5*
01:01
(0.0)

DRB5*
01:01
(0.0)

IQNLKFSQSKQLKKL 72.74% + + − + + + + + + + − + + + 11

FSFSNLIQAVTRRFS 81.81% + + + + + + + + − + + + + − + 14

KEAKFPILSANIKAK 70.55% + − + + + + + + + + + − − + + 11

KLKTLNVNKIIALGH 77.51% + + + − + + − + − + + − + + + 12

Epitope Set 81.81% 4 3 3 2 4 4 3 4 2 4 4 1 3 3 4 48

+ Restricted: − Nonrestricted.
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The CTL and HTL population coverage was also assessed for different geographical
regions such as South Asia (82.25%, 73.38%), South-East Asia (83.13%, 56.98), Europe
(97.17%, 85.83%), South America (75.46, 58.59%), North America (94.35, 87.89%), East
Africa (73.78%, 81.82%) and South Africa (78.07%, 32.10%). The coverage of CTL and HTL
epitopes in different sub-continents and countries is shown in Figure 1.

 

−

Figure 1. Population coverage of CTL and HTL epitopes with respect to different geographic regions.

3.4. Prediction of B-Cell Epitopes

The 16-mer B-cell epitopes were selected on the basis of binding score (>0.9). The
epitopes with a high binding score were further evaluated for antigenicity (>0.5), allergenic
and toxic properties. The antigenic, non-allergic and non-toxic B-cell epitopes were selected
from three proteins as shown in Table 4.

Table 4. List of B-cell epitopes selected for design of vaccine construct.

Protein B-Cell Epitope Start Position Predicted Score Antigenicity Allergenicity/Toxicity Server

MME
(P08473)

QLKKLREKVDKDEWIS 522 0.93 1.20 NA/NT *
BCPred

GYPDDIVSNDNKLNNE 481 0.97 0.74 NA/NT

ANPEP
(P15144)

PLFIHFRNNTNNWREI 728 0.98 1.05 NA/NT
BCPred

NAIAQGGEEEWDFAWE 799 0.99 1.14 NA/NT

NT5E (P21589)
VVVGGHSNTFLYTGNP 238 0.88 1.36 NA/NT

ABCpred
NSSIPEDPSIKADINK 311 0.88 1.13 NA/NT

B-cell epitopes were selected based on binding score (>0.9), high antigenicity, non-allergenicity and non-toxicity.
* NA: Non-Allergenic, NT: Non-Toxic.

3.5. Designing of Multi-Epitope Vaccine Construct

From the predicted epitopes, seven CTL, four HTL and six B-cell epitopes were selected
for the design of the final vaccine construct. The GPGPG linkers were added to link B-cells
and HTL epitopes, whereas AAY linkers were used to connect CTL epitopes. hBD3 (ID-
Q5U7J2), a 45 amino acid long adjuvant, was added to improve the immunogenicity of the
vaccine construct. The adjuvant was linked using EAAAK linkers. The schematic diagram
and amino acid sequence of the designed vaccine construct is shown in Figure 2A.
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Figure 2. (A) Depicting designed multi-epitope vaccine construct and amino acid sequence. B cell
and HTL epitopes were linked using GPGPG linkers, CTL epitopes were linked using AAY linkers
and adjuvant was connected to N-terminal with EAAAK linker. (B) Predicted secondary structure of
the epitope vaccine showing 37% alpha-helix, 14% beta-strand and 49% coils.

The overall antigenicity score was found to be 0.71, indicating that the vaccine con-
struct is highly antigenic and classified as a probable non-allergen.

3.6. Evaluation of Construct Physicochemical Properties

The final construct consisted of 337 amino acids with a molecular weight of 36.21 KDa
(C1644H2513N453O468S7) and an isoelectric point of 9.28. The predicted aliphatic index
was 70.47 suggesting thermo-stability and an instability index of 23.39 confirmed that
the vaccine construct was stable. The GRAVY score was found to be −0.445, suggesting
its hydrophilic nature. The estimated half-life was predicted to be 30 h in mammalian
reticulocytes, >20 h in yeast and >10 h in E. coli.
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3.7. Prediction of Secondary and Tertiary Structure

The secondary structure consisted of 37% alpha-helix, 14% beta-strand and 49% coils.
The 2D structure is shown in Figure 2B. RaptorX generated five 3D models of the final
vaccine sequence with RMSD values ranging from 4.563 to 7.726. Each model was evaluated
for overall quality using ERRAT and PROCHECK tools. Model 2 with RMSD-5.2374 was
selected on the basis of the overall quality factor in ERRAT (93.7%) and PROCHECK
(Ramachandran plot). The Ramachandran plot of Model 2 showed 87.2% of amino acid
residues in the most favored, 12.5% in allowed and 0.4% in disallowed regions. The initial
3D model and associated Ramachandran plot are shown in Figure 3A,C.

 

−

−

Figure 3. Vaccine construct 3D structure modelling, refinement and validation. (A) Tertiary structure
of the vaccine construct using RaptorX. (B) Refined 3D model of the vaccine construct using Galaxy
Refine. (C) Initial Ramachandran plot showing 87.2% residues in most favored regions, 12.5%
residues in additional and generously allowed regions, and 0.4% residues in disallowed regions.
(D) Ramachandran plot after refinement showing 92.1% in favor, 6.8% in allowed and 0.4% in
disallowed regions of protein residues. (E) Z score of refined model using ProSA-web, showing a
score of −5.2.

3.8. Tertiary Structure Refinement and Validation

Galaxy Refine generated five models of which Model-3, with an RMSD of 0.359, a Mol
Probity of 1.965, a GDT-HA of 0.9733, a Clash score of 12.7 and poor rotamers of 0.4, was
selected for further analysis.

The Ramachandran plot of the refined 3D model showed 92.1% residues in most
favored, 6.8% in additional allowed regions, 0.8% in generously allowed regions and
0.4% in disallowed regions. Based on the results of the Ramachandran plot and ERRAT
score, that quality of Model-3 was found to be acceptable. The refined 3D model and its
Ramachandran plot are shown in Figure 3B,D respectively. The 3D model was further
examined and validated through the ProSA Web server with a predicted Z-score of −5.2,
being in the range of experimentally validated protein structures obtained from X-ray and
NMR spectroscopy analysis (Figure 3E). The solubility score was found to be 0.523 which
shows that the construct is soluble upon expression (Supplementary Figure S2).

3.9. Prediction of Discontinuous B-Cell Epitopes

A total of six discontinuous B-cell epitopes were identified by the ElliPro server.
Almost five B-cell epitopes contained 167 amino acid residues present in the main region of
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the vaccine construct. A score value in the range of 0.67–0.76 was chosen for the selection of
discontinuous B-cell epitopes (Figure 4). Twenty-two residues were predicted from 60–61,
63, 65–81 and 84–85. Twenty-four residues were predicted from 300–303, 305–314 and
328–337. Sixty residues were predicted from 97, 100–110, 121, 124, 125, 128–141, 143–145,
148–161, 182, 184, 185 and 187–197. Thirteen residues were predicted from 220–231 and 234.
Forty-eight residues were predicted from 1–7, 9–11, 13–23, 27, 44–47, 49, 50, 53 and 256–274
(Supplementary Table S2).

 

− − −

Figure 4. Discontinuous B cell epitopes in the 3D model of the designed construct. (A–E) The grey
sticks represent the bulk of the peptide construct and the yellow surfaces depict the residues of
discontinuous B cell epitopes.

3.10. Molecular Docking with Immune Receptors

The docking of the construct was performed with immune receptors including TLR2,
TLR3 and TLR4. Three-dimensional (3D) docked scores for TLR-2, TLR-3 and TLR-4 were
−344.38, −345.38 and −324.47 respectively. The docking energy scores indicating the
vaccine–receptor complex binding affinity and ligand RMSD are shown in Supplemen-
tary Table S3 and the vaccine—TLR2, TLR3 and TLR4—docked complexes are shown
in Figure 5A–C. The docked complexes were analyzed in LigPlot+ for visualization of
intermolecular hydrogen bonds representing vaccine–receptor interactions. For the ligand-
TLR2 complex, Lys8, Arg207, Ile30, Asn200, Tyr255, Asp259 and Glu333 residues were
involved in intermolecular hydrogen bonding (Figure 6A). Similarly, Asp268, Arg262,
His336, Asp259, Asn85, Glu87, Asp322, Arg12, Arg14 residues in ligand-TLR3 (Figure 6B)
and Ala299, Arg207, Ser199, Gln29, Lys32, Lys8 residues in ligand-TLR4 (Figure 6C) were
identified in LigPlot.

− − −

 

Figure 5. Molecular docking and 3D structures of vaccine–receptor complexes (A) Vaccine—TLR2
docked complex (B) Vaccine—TLR3 docked complex (C) Vaccine—TLR-4 docked complex.
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Figure 6. Intermolecular hydrogen bonds and hydrophobic interactions represented

—
— —

Figure 6. Intermolecular hydrogen bonds and hydrophobic interactions represented in 2D structures
for TLRs and vaccine construct complex (A) Vaccine—TLR2 docked complex (B) Vaccine—TLR3
docked complex (C) Vaccine—TLR-4 docked complex.



Vaccines 2022, 10, 1850 15 of 23

3.11. Molecular Dynamics Simulation of Receptor-Vaccine Complex

The Maestro’s Schrodinger simulation event analysis module was used to analyze
the trajectories. By superimposing the trajectories over the reference frame, RMSD and
RMSF were calculated using trajectories from MD simulation data. This provides an
estimate of conformational stability and volatility over the course of the simulation. The
amount of hydrogen bonds established between the receptor and the docked ligand during
the simulation also suggests the ligand’s binding stability with the receptor. A binding
arrangement with a higher number of hydrogen bonds is said to be more stable. For
each TLR2, TLR3, and TLR4 receptor complex with the ligand, the RMSD was computed.
TLR2-complex RMSD demonstrated that, after 60 ns, the RMSD of the TLR2 protein and the
ligand converged. Throughout the simulation, the protein–ligand complex remained stable.
For TLR2 and the TLR2-bound ligand, the standard deviations in RMSD were 0.932 and
1.4321, respectively, with average RMSD values of 2.75 and 5.59 (Figure 7A). For both the
TLR3 protein and ligand, the RMSD plot of the TLR3-complex revealed convergence after
5 ns and remained stable throughout the simulation (Figure 7B). The RMSD of the ligand
was raised to around 20–60 ns, but the binding site remained unchanged. TLR3 and the
TLR3-bound ligand had standard deviations of 0.231 and 0.954, respectively, with average
RMSD values of 3.07 and 5.75 (Figure 7B). The TLR4-complex RMSD data demonstrate
convergence after 5 ns for both the TLR4 protein and the ligand. Ligand RMSD increased
up to 20 ns before stabilizing towards the end of the simulation. Throughout the simulation,
the TLR4-ligand complex maintained its conformational stability (Figure 7C). This shows
that the protein–ligand complex was stable throughout the simulation. The standard
deviation in RMSD was 0.314 Å and 0.885 Å, while average RMSD values were 3.07 Å and
6.03 Å, for TLR4 and the TLR4-bound ligand, respectively.

 

Figure 7. Molecular dynamics simulation of vaccine and immune receptors. (A–C) RMSD plot of
docked vaccine construct with TLR2, TLR3 and TLR4 receptors respectively. (D–F) Intermolecular
H-bonds of docked vaccine construct with TLR2, TLR3 and TLR4 receptors respectively. (G) RMSF
plot of TLR2, TLR3 and TLR4 receptors. (H) Radius of gyration of TLR2, TLR3 and TLR4 receptors.
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Throughout the simulation, the compactness of the proteins was examined, and the
plot revealed that all three proteins were folded correctly. In comparison to TLR3 and TLR4,
TLR2 demonstrated changes in compactness during the simulation. The contact between
the two molecules is represented by intermolecular hydrogen bonds (H-Bonds), which are
implicated in the intensity of binding through the number of H-Bonds. The more H-bonds
there are, the more binding or interaction there is between two molecules. Throughout the
simulation, the average number of intermolecular H-bonds between complex TLR2–ligand
(Figure 7D), TLR3–ligand (Figure 7E), and TLR4–ligand (Figure 7F) were 15.36, 16.45, and
11.98 respectively. For complex TLR2–ligand, TLR3–ligand, and TLR4–ligand, the range
of hydrogen bonds during 100 ns simulation over 1000 time frames was 7–24, 6–29, and
6–23, respectively. The number of hydrogen bond interactions at 10 ns time intervals with
RMSD values is shown in Table 5. This MD simulation analysis indicates that all three
immune receptors efficiently bound with the ligand and showed stable binding throughout
the simulation (Supplementary Videos S1–S3). The number of hydrogen bonds in the 100
ns simulation over 1000 time frames and corresponding receptor and ligand RMSD are
provided in Supplementary Table S4.

Table 5. Vaccine–receptor complex hydrogen bonds with different frames in MD simulation.

TLR-2 TLR-3 TLR-4

Frames
Number of
Hydrogen

Bonds

Receptor
RMSD

(Å)

Ligand
RMSD

(Å)

Number of
Hydrogen

Bonds

Receptor
RMSD

(Å)

Ligand
RMSD

(Å)

Number of
Hydrogen

Bonds

Receptor
RMSD

(Å)

Ligand
RMSD

(Å)

0 ns 14 0 0 20 0 0 18 0 0

10 ns 14 3.017 2.625 17 3.586 5.026 12 2.974 5.484

20 ns 13 3.333 6.035 13 3.605 6.001 11 3.597 6.478

30 ns 12 2.995 6.458 12 3.315 6.561 11 3.763 6.870

40 ns 14 2.869 6.311 13 3.530 6.939 13 4.298 6.583

50 ns 19 3.089 6.444 14 3.171 6.383 11 3.086 6.702

60 ns 20 3.014 6.648 13 3.165 6.402 12 3.258 6.881

70 ns 14 2.927 6.680 19 3.293 6.671 10 3.223 6.552

80 ns 18 3.028 6.872 17 3.478 6.392 11 3.400 6.840

90 ns 16 2.969 6.720 17 3.319 6.397 12 3.163 7.007

100 ns 15 3.072 6.742 26 3.322 6.537 15 3.017 6.907

Average 15.36 2.75 5.59 16.45 3.07 5.75 12.36 3.07 6.03

The average values of RMSF for TLR2, TLR3, and TLR4 were 1.23 Å, 2.71 Å, and
2.45 Å, respectively. RMSF showed fewer fluctuations in TLR3 and TLR4 as compared to
TLR2, see Figure 7G. Moreover, the ligand’s RMSF plot indicates less fluctuation in the
RMSF values of TLR2 as compared to TLR3- and TLR4-bound ligands. Figure 7H shows
the radius of gyration of all three complexes.

3.12. Immune Simulations of Final Vaccine Construct

The output of the C-ImmSim server provides the simulation of different immunological
cells including B-cell, helper-T cell (TH), cytotoxic-T cell (TC), natural killer cell (NK),
macrophages (MA) and the dendritic cell (DC) population. Moreover, the prediction of
immunoglobulins, cytokines and interleukin production during the immune simulation is
also provided.

The total B-cell population, memory B-cell and active B-cell population increased
following each booster vaccine dose and remained stable with minimal decay over the
period of 350 days, see Figure 8A,B. There was a considerable rise in antibody response
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with every exposure to the vaccine construct with a corresponding decrease in the antigen
levels. The humoral immune response was characterized by IgG and IgM antibodies and
the IgM response was higher as compared to IgG after each vaccination (Figure 8C). The
active TH cells and memory TH cells spiked after second and third vaccine doses which
remained elevated up to 350 days (Figure 8D,E). Similarly, the TC cell population per state
showed a steady increase in the active TC population (Figure 8F,G). The IFN-γ response
was significantly higher after the first and second doses and the concentrations of IL-10
and TGF-b also spiked following each vaccination (Figure 8H). Throughout the simulation,
there was also a concurrent rise in the activity of macrophages, dendritic and natural killer
cells (Figure 8I).

γ

Figure 8. Demonstration of humoral and cellular immune responses using immune simulation.
(A) B-cell population (cells per mm3). (B) B-cell population per state (cells per mm3). (C) Antigen,
immunoglobulins and immunocomplexes. (D) TH cell population (cells per mm3). (E) TH cell
population per state (cells per mm3). (F) TC cell population (cells per mm3). (G) TC cell population per
state (cells per mm3). (H) Concentrations of cytokines and interleukins production. (I) Macrophage
population per state (cells per mm3).

4. Discussion

GBC is a biliary tract carcinoma with poor prognosis, high death rate, and a survival
rate of <1 year. Gallbladder malignancies are highly aggressive and current treatments
have yielded dismal outcomes [3–6]. Consequently, the development of novel innovative
therapies for the improvement of survival in this patient population are urgently needed.

Priya et al. in a recent study reported significant over-expression in NT5E, ANPEP
and MME proteins in GBC patients as compared to the control groups, highlighting their
potential as diagnostic and therapeutic targets [36]. The authors reported that NT5E levels
(expressed by cancer exosomes) were significantly elevated in the advanced stages of GBC;
ANPEP was increased in early as well as later GBC while s MME was significantly higher
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in the early stages of GBC. These tumor-associated extracellular vesicular proteins are
implicated in tumor progression and immune suppression [36]. Finally, these proteins
were selected as potential targets for antigenic epitope prediction to stimulate the immune
system and combat GBC progression.

Reverse vaccinology and immunoinformatics approaches in vaccine development is
a rapidly developing field. The epitope-based vaccines designed using these approaches
have demonstrated in vivo efficacy as well as protective immunity with several vaccines
undergoing clinical trials [31]. Several studies have shown promising results in developing
epitope vaccines against different cancers such as breast cancer, Kaposi sarcoma, colon
cancer and cervical cancer [85–88]. Lately, peptide-based vaccines have gained traction due
to several advantages as compared to the conventional vaccines. Apart from the capability
of inducing cancer-specific immune responses, the peptide vaccines are relatively safe and
incur lower developmental costs [89].

Cellular immunity is generated upon the binding of immunogenic peptides to MHC I
and II. The selection of suitable epitopes capable of eliciting a good immune response with
maximum population coverage is critical [90]. In this study, the CTL and HTL epitopes were
selected through rigorous screening. Initially, predicted epitopes were ranked on the basis
of IC50 and an IC50 value of <500 nM was used as a threshold. The predicted epitopes were
further examined for immunogenicity, population coverage, antigenicity, IFN-γ inducing
capability and non-allergenicity. Designed with both CD4+, CD8+ immunogenic epitopes,
this epitope vaccine could elicit a strong, long-lasting cellular immunity.

Finally, the top seven CTL, four HTL and six B-cell predicted epitopes were linked
using different linkers for the designing of a final vaccine construct. hBD3 was added as an
adjuvant for improved immunogenicity. hBD3 acts as an immune regulator by stimulating
monocytes and dendritic cells, thereby playing a crucial role in activating T cells and
cytokine production [91].

The safety and efficacy of the vaccine is determined by the population in which it is to
be administered. Representing both MHC I and II alleles, the maximum world population
coverage was 93.78% for CTL epitopes and 81.81% for HTL epitopes, making it a promising
vaccine candidate. The class I and class II epitopes showed an excellent population coverage
in prevalent geographic regions such as India (74.02% & 74.99%), Japan (94.26% & 74.83%),
Korea (91.97% & 85.32%) and Chile (86.46% & 67.08%), among others.

Finally, a 337 amino acids vaccine construct was designed and evaluated for stabil-
ity, antigenicity, and physicochemical properties. The construct was stable as indicated
by the predicted aliphatic index and instability index. Additionally, the construct also
demonstrated a higher solubility than the soluble E. coli proteins from the experimental
dataset [63,64]. Antigenicity and allergenicity are critical factors in multi-epitope vaccine de-
velopment and because these properties were assessed before designing the construct, the
final vaccine was found to be highly antigenic (0.71), non-allergic and non-toxic in nature.

The secondary and tertiary models of the vaccine were generated and satisfactorily
validated. A Ramachandran plot of the final 3D model showed more than 90% of the
residues in allowed regions and only 0.4% in disallowed regions. For successful generation
of immune response, the stimulation of immunological receptors such as TLRs is important.
Activation of TLRs in immune and cancer cells is critical in triggering cancer-associated
immune response through multiple signaling pathways [92]. The binding affinity of the
designed construct with TLR2, TLR3 and TLR4 was predicted using molecular docking
and the stability of the vaccine–receptor docked complexes was examined through sta-
bility, hydrogen bonds and simulation trajectories using molecular dynamics simulation.
According to molecular docking experiments, the vaccine has a strong affinity for TLR-2,
TLR-3, and TLR-4 receptors. The average numbers of hydrogen bonds for vaccine-TLR 2, 3
and 4 complexes were 15.36, 16.45, and 11.98, respectively, and remained consistent over a
100 ns simulation period, which is critical for their function.

The developed vaccine candidate demonstrated an acceptable cellular as well as hu-
moral immune response in the immune simulation study [84]. Since the vaccine contained



Vaccines 2022, 10, 1850 19 of 23

both CTL and HTL, it showed stimulation of the respective immune cells, which may
further lead to the activation of other potential immune cells such as NK cells, macrophages
and dendritic cells via complex signaling. Overall, the results of immune simulation
showed that the immune response increased in tandem with each booster dose, correspond-
ing to the activation of multiple immune cells. Moreover, the vaccine construct containing
several linear and discontinuous B-cell epitopes suggested antibody mediated immune
response properties which were clearly seen as increased levels of IgG and IgM during
immune simulation.

A major limitation of this study is the lack of the experimental validation and eval-
uation of the safety and efficacy of the designed vaccine construct. However, the results
of this study provide a strong basis for further in vitro/in vivo studies to demonstrate the
safety and efficacy of the construct.

5. Conclusions

Stimulation of the immune system is critical in combating cancer, and peptide-based
epitope vaccines have demonstrated the capability of generating a cancer-specific immune
response. This study reports the designing of a peptide-based multi-epitope vaccine
construct with a thorough analysis of its immunogenicity, antigenicity, allergenicity and
stability using immunoinformatics approaches to trigger a robust immune response against
GBC. The construct contains CD4+, CD8+ and B-cell epitopes from three different antigenic
proteins implicated in GBC progression. The interaction and binding strength of this
vaccine construct with TLRs was excellent and the in silico immune simulation has shown
its ability to induce both cellular and antibody mediated immune responses. The promising
results in the present study provide a strong basis for further evaluation through in vitro
and in vivo experimental validation of the safety and efficacy of the designed vaccine
candidate.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/vaccines10111850/s1, Figure S1: Schematic representation of vac-
cine construct developmental process; Figure S2: Predicted solubility of the vaccine construct; Table S1:
Physicochemical properties of selected target proteins; Table S2: Predicted discontinuous B-cell epi-
tope residues; Table S3: Docking scores of the vaccine construct with immune receptors; Table S4:
The number of hydrogen bonds in the 100 ns simulation over 1000 time frames and corre-sponding
receptor and ligand RMSD; Video S1: MD simulation analysis 1; Video S2: MD simulation analysis 2;
Video S3: MD simulation analysis 3.
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