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Abstract MicroRNAs are a *22 nucleotide small non-

coding RNAs found in animals, plants and viruses. They

regulate key cellular processes by enhancing, degrading or

silencing protein coding targets. Currently most of the data

on miRNA is available from Drosophila. Given their

important post-transcriptional role in several organisms,

there is a need to understand the miRNA mediated pro-

cesses in normal and abnormal conditions. Here we report

four novel microRNAs ast-mir-2502, ast-mir-2559, ast-

mir-3868 and ast-mir-9891 in Anopheles stephensi identi-

fied from a set of 3,052 transcriptome sequences, showing

average minimum free energy of -31.8 kcal/mol of duplex

formation with mRNA indicating their functional rele-

vance. Phylogenetic study shows conservation of sequence

signatures within the Class Insecta. Furthermore, 26

potential targets of these four miRNAs have been predicted

that play an important role in the mosquito life-cycle. This

work leads to novel leads and experimental possibilities for

improved understanding of gene regulatory processes in

mosquito.
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Introduction

MicroRNAs are small non-coding RNAs *22 nucleotides

long, involved in a range of gene regulation and post

transcriptional modification events in animals, plants and

viruses (Bartel 2004). Even though miRNAs do not encode

for protein, they regulate a number of translation processes

by enhancing, degrading or silencing gene expression

(Bartel 2009). MicroRNAs are initially found in a pre-

mature state called primary miRNA (pri-miRNA) (Denli

et al. 2004), which is a hairpin structure. This molecule is

later processed by an RNase-III like enzyme Drosha

(Drsh-1) to form a stem-loop structure called pre-miRNA

(Grishok et al. 2001), transported to cytoplasm by Ex-

portin-5 (Kim et al. 2003) and further processed by a

Dicer (Dcr-1) complex to form the mature single stranded

miRNA (Kim et al. 2003; Zing et al. 2004; Zang et al.

2004). Mature miRNA sequences are incorporated into the

RNA induced silencing complex, which recognizes specific

targets in the mRNA sequence and induces post tran-

scriptional gene silencing in several organisms (Khvorova

et al. 2003; Schwarz et al. 2003).

The global health statistics indicate that vector-borne

diseases contribute to 17 % of the world’s infectious dis-

ease burden (World Health Organization Factsheet 2014),

of which malaria forms a significant proportion. The pro-

tozoan parasite, Plasmodium spends major part of its life

cycle in the female Anopheline species. The asexual

sporozoites from mosquito vector are transferred into

human system, when an infected Anopheles takes a human

blood meal. Sporozoites are transported through blood
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vessels to the liver where they invade hepatocytes and

develop into the sexually active form, merozoites (Sturm

et al. 2006). On rupturing of the infected hepatocytes,

merozoites enter the blood stream and invade erythrocytes.

The incubation period for the parasite to manifest in the

human host varies from 2–3 weeks (Miller et al. 2002;

Grüring et al. 2011). It would be relevant to understand

parasite life cycle in Anopheles species, for effective

control of malaria.

A. stephensi is a mosquito vector that is responsible for

12 % of the malarial cases spread across the Indian sub-

continent (Tikar et al. 2011). It belongs to the same sub-

genus as A. gambiae and comprises of two-species namely

A. stephensi sensu stricto and A. stephensi mysorensis,

responsible for the spread of malaria in the Indian sub-

continent. A. stephensi takes human blood meal largely

indoors (endophilic and endophagic respectively) though

during rainy season, the mosquito breeds and feeds itself

outdoors (Sinka et al. 2011). Due to prevalence of stagnant

water pools in the cities the urban population is always at

high risk of vector borne diseases.

Several experimental studies, to determine the role of

microRNAs in malarial infection, have been initiated in the

past (Rathjen et al. 2006; Mead and Tu 2008; El-Assaad

et al. 2011; La Monte et al. 2012). However, a lot more data

are required for better understanding of the mosquito

biology. Given the inherent limitation in conducting large-

scale experiments, the use of computational approach holds

the key for predicting novel molecules and interactions

responsible for malaria infection and effectively narrow

down the set of relevant experiments in future. In this study,

we used bioinformatics tools, computational algorithms and

statistical analysis for identification of novel microRNA

molecules and their targets in the malarial vector Anopheles

stephensi.

Materials and methods

Identifying pre-miRNA signatures in RNA

transcriptome of Anopheles stephensi

A total of 3,052 stem-loop pre-miRNA sequences belong-

ing to 23 organisms of the Hexapoda sub-phylum were

extracted from miRBase v21 [URL—http://www.mirbase.

org/] (Kozomara and Griffiths-Jones 2014). The sequences

were obtained only from organisms with stable completely

sequenced genomes. 61,734 RNAseq transcripts of A.

stephensi (Hittinger et al. 2010) submitted to Vectorbase

[URL—https://www.vectorbase.org/] (Megy et al. 2012)

were extracted. Redundant data were removed. Figure 1

outlines the methodology used in the present work.

RNA Transcriptome of An. stenphensi 
(61,734sequences) [Source: VectorBase] 

3052 pre- miRNA sequences from 23 organisms of 
Hexapoda sub-phylum [Source: MirBase]  

Identification of pre-miRNA orthologous sequences 
signatures in RNA Transcriptome dataset of An. stephensi 

BLASTn [Cut off E-value <0.001, Score >35]

Secondary Structure of predicted Pre-miRNA using MFold 

Prediction of novel miRNAs in An.stephansi 

      MFE Cut off Value <= -25Kcal/mol  

Phylogenetic Analysis of novel miRNAs 

Phylogenetic Tree generation and Validation 

    MP Analysis; Bootstrap Value =1000 

Target Prediction of novel miRNAs using RNAHybrid  

Fig. 1 Flowchart indicating the

methodology for predicting

novel miRNAs and their targets
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Predicting novel mature miRNA genes in A. stephensi

The stem-loop sequences obtained from miRBase were con-

sidered as the query and RNAseq transcripts as the subject

for performing BLAST to identify pre-miRNA stem-loop

signatures in RNAseq transcripts of A. stephensi. BLAST

2.2.30 ? program—(Altschul et al. 1997),BLASTnwasused

with default parameters. A stringent cut-off valuewas set with

E-value \0.001; BLAST Score [35; %Identity [60. The

sequences that satisfied the cut-off values were carefully

screened. Validation of the identified secondary structures

was performed using M-Fold tool based on thermodynamics

metrics (Zuker 2003). The annotation of mature miRNA was

performed based on the widely accepted criteria for selecting

miRNAs from pre-miRNA sequences (Ambros et al. 2003;

Xue et al. 2005). These were (a) presence of mature miRNA

sequence of at least 18 nucleotide length on the stem including

GU Wobble pairs (b) Minimum Free energy value\-15

kcal/mol (c) Absence of multiple loops (d) ability to fold to

stem-loop/hair-pin structures. The nomenclature followed for

naming the novelmiRNAgeneswas identical to that followed

in miRBase and prefixed with ‘‘ast’’ to denote A. stephensi

(Mead and Tu et al. 2008).

Phylogenetic analysis of novel miRNAs in Anopheles

stephensi

The novel microRNAs computationally predicted in A.

stephensi were sent for phylogenetic analysis and com-

pared against their closest relative mosquito species—

Anopheles gambiae, Culex quinquefasciatus and Aedes

aegypti. The source organisms of the novel microRNAs

namely Apis mellifera, Drosophila pseudoobscura and

Tribolium castaneum were also considered for analysis.

Mature miRNA sequences of the organisms were extracted

from miRBase v21 and Clustal Omega tool used for

multiple RNA sequence alignment. We used Molecular

Evolutionary Genetic Analysis—MEGA v6.0 (Tamura

et al. 2013) for phylogenetic tree generation and analysis.

Assuming a conserved evolution for microRNA evolution,

as reported with most microRNAs, we used the Maximum

Parsimony method and the Tree was statistically validated

by bootstrap analysis, replicated 1,000 times over to ensure

maximum accuracy. Inferences regarding the extent of

conservation and divergence patterns of the novel genes

were drawn.

Target prediction of novel microRNAs

Novel microRNAs identified in this study were followed

up for target prediction, using in silico RNA–RNA

hybridization approach to determine their ability to bind

and form miRNA/target duplexes. RNAHybrid (http://

bibiserv.techfak.uni-bielefeld.de/rnahybrid/) was used for

miRNA-target prediction as it applies both thermody-

namics metrics and statistical analysis to predict multiple

potential binding sites of microRNAs in a large sequence

of target RNA (Rehmsmeier et al. 2004). The program

includes features such as exclusion of non-Watson–Crick

base pairs, seed region specific binding sites (2–7 seed

complementarities was set), maximum number of loops

and internal bulges allowed (set at 1), total number of

target hits per microRNA (set at maximum value). As a

final step, potential targets were predicted by aligning the

dataset generated by RNAHybrid, against the non-

redundant protein database by BLASTx program with

default threshold values to draw biologically relevant

conclusions.

Results

Nucleotide BLAST of 3,052 stem-loop sequences with

61,734 resulted in 51 orthologous pre-miRNA signatures in

Table 1 List of novel miRNAs predicted in A. stephensi

S. no Novel miRNA Size Source miRNA Source organism Strand Minimum free energy

values (kcal/mol)

1 [ast-mir-2502 21 dpe-mir-2502 Drosophila pseudoobscura 30 -25.1

GCAGCAGCGCCAGCAACAGCU

2 [ast-mir-2559 23 dpe-mir-2559 Drosophila pseudoobscura 50 -42.0

GCACAUCAUUUUCCCCCUCCCUA

3 [ast-mir-3868 19 tca-mir-3868 Tribolium castaneum 30 -31.9

AGCAACUAAAGCGTTTAAC

4 [ast-mir-9891 21 ame-mir-9891 Apis mellifera 30 -28.5

CUUCGUCCUCGUCGUCGUCG
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17 different organisms (Online Resource 1). Following the

flow chart outlined in Fig. 1, four novel microRNAs were

identified in A. tephansi were named according to the mir-

Base naming convention as ast-mir-2502, ast-mir-2559,

ast-mir-3868, ast-mir-9891 with an average minimum free

energy value of -31.8 kcal/mol. Table 1 indicates the size

and source of the four novel miRNAs and the positions of

these mature miRNAs on the pre-miRNA sequences are

denoted in Fig. 2a–d.

Phylogenetic analysis of these four microRNAs, as

expected, showed closest proximity to their source organ-

ism (Fig. 3). The miRNA genes ast-mir-3868 laid close not

only to its source organism (dps-mir-3868), but also to the

mosquito species A. aegypti miRNA gene, aae-mir-927 and

Tribolium castaneum microRNA gene, tca-mir-927. It is

also interesting to note that the Tribolium castaneum

microRNA gene, tca-mir-3884 belonged to the same clade

as the Drosophila pseudoobscura miRNA gene, dps-mir-

2559 when the novel Anopheles miRNA ast-mir-2559

seemed to show a slight divergence even from its source

organism. All the genes showed high levels of seed region

conservation which is key for miRNA-target interaction.

Target prediction for the four novel microRNAs was

performed using RNAHybrid that generated novel protein-

coding targets with significant biological roles (Table 2). A

total of 26 potential targets that satisfied the minimum MFE

cut-off values were predicted with 12 targets for ast-mir-

2502, 4 targets for ast-mir-2559 and 9 targets for ast-mir-

9891. No targets among Hexapod protein coding regions

were predicted for ast-mir-3868. The predicted targets were

found to vary greatly with respect to their biological func-

tions as detailed in the ‘‘Discussion’’ section.

Discussion

There have been increasing reports of insect resistance to

insecticides in recent years (Nwane et al. 2014; Abdalla

et al. 2014; Xu et al. 2014). Thus, a multipronged strategy

is needed to combat malaria, involving both mosquito and

human systems. Sufficient understanding of biological

pathways in mosquito and human systems, is required to

devise novel innovative therapeutic strategies.

This work is a progressive step towards adding useful

gene regulatory data available in A. stephensi. Here we

predict four novel miRNA namely ast-mir-2502, ast-mir-

2559, ast-mir-3868, ast-mir-9891 in A. stephensi, for the

first time, to our best of knowledge. The miRNA func-

tionality was studied based on the seed region conservation

patterns. Since all the microRNAs shared the seed region

with a maximum allowance of three mismatches, findings

from the phylogenetic study of miRNAs indicate they

Fig. 2 Stem-loop sequences showing novel mature miRNA sequences. a Position of ast-mir-250. b Position of ast-mir-2559. c Position of ast-

mir-3868. d Position of ast-mir-9891
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might possibly share targets as well. This is interesting

because seed region conservation is important in under-

standing miRNA-target interactions. Organisms evolu-

tionarily closest to each other have a higher tendency to

share similar targets in their respective genomes. There is

also a possibility of cluster association between microR-

NAs from the same taxa belonging to the same clade in the

phylogenetic tree (Example: ame-mir-3739 and ame-mir-

3776).

Here we identify 26 potential targets for three novel

miRNAs with an exception of ast-mir-3868 thereby

indicating that the gene that transcribes these sequences

could be unique for A. stephensi. We were able to pre-

dict that ast-mir-2502 and ast-mir-9891 possibly target

ankyrin repeats that are part of the spectrin-binding

protein—ankyrins, known to act in association with other

functionally active domains (Rubtsov and Lopina 2000).

Ankyrins have been reported to play a crucial role in

signal transduction, assembly of integral membrane pro-

teins, associations with ion channels/pumps, calcium

release channels and cell adhesion molecules (Bennett

and Chen 2001).

The ast-mir-2502 was found to interact with the

Really Interesting New Gene (RING) domain that is an

integral part of proteins mediators of ubiquitin ligase

activity (Joazeiro and Weissman 2000) and epithelial

development, protein folding, gene transcription and

translation, mRNA trafficking, cytoskeleton organization,

cell adhesion, chromatin remodeling, zinc sensing and so

on (Laity et al. 2001). The RING finger gene family

member, MGP is associated with mosquito gametogen-

esis (Zhao et al. 2000). Another important target of ast-

mir-2502 is the metalloprotease–disintegrin (ADAM),

which plays a key role in fertilization, proper axonal

guidance, neural and insect wing development (Schlön-

dorff and Blobel 1999). The ast-mir-2559 targets the

Tweedle protein coding regions which is known to

determine the body shape and directly linked to mor-

phogenesis. These are found only in insects where the

Tweedle protein in incorporated into the larval cuticular

structures (Guan et al. 2006).

This study predicts significant outcomes for the ast-mir-

9891 binding with the predicted targets. For example, the

eIF-2B (Eukaryotic Initiation Factor) is a protein transla-

tion initiator. Thus, the interaction of microRNA with eIF-

2B target can lead to regulation of proteins that could be

potentially fatal for the mosquitoes. Another important

target is the sine-oculis gene that has molecular functions

such as sequence-specific DNA binding transcription factor

activity; RNA polymerase II distal enhancer sequence-

specific DNA binding transcription factor activity; tran-

scription factor binding; sequence-specific DNA binding;

protein binding etc. The Regulator of Chromosome Con-

densation (RCC1) target is a eukaryotic protein that acts as

a signaling molecule and sends inhibitory signals on

detecting unreplicated DNA molecules as the cell cycle

progresses from Synthesis phase to Mitotic phase [M

phase] (Dasso 1993). All predicted targets have crucial

biological roles ranging from insect morphogenesis to

gametogenesis.

This study provides interesting leads on the mosquito

specific microRNAs and their potential targets. In future,

experimental studies will be required to validate these

predictions. Our hope is to find novel mosquito specific

targets and their binding molecular partners, towards

effective control of malaria.

Fig. 3 Phylogenetic tree generated indicating functional seed region

specific conservation pattern for the novel miRNAs
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