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Abstract Studies of annual peak discharge and its temporal variations are widely used in the plan-

ning and decision making process of water resources management. Very recently, soft computing

techniques are gaining ground for time series analysis of hydrological events such as rainfall and

runoff. In this study Artificial Neural Network (ANN) has been used in combination with wavelet

to model the annual maximum flow discharge of rivers. The results of ANN-Wavelet (WANN)

model indicate overall low coherence (R2 = 0.39) better than ANN (R2 = 0.31) in isolation. In

the present analysis, the authors also conceded a probabilistic distributional analysis of river flow

time series which has greater potential to better reflect peak flow dynamics. The results highlight

that the overall performance of probability distribution models is superior to WANN model.

Instead of that WANN is better than probabilistic models to find the global maxima of the series.

� 2015 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

River discharge measurements in general are carried out on dis-

crete basis [1–3] and in particular on daily basis in India. Data

and information on annual peak discharge supplements flood

management, reservoir planning and irrigation scheduling

[4,5]. Peak discharge is the consequence of summing up of the

all contributing discharges from river tributaries. In hydrology,

studies related to peak events (river discharge) are deemed nec-

essary given its use in various statistical analyses [1–3].

Estimation of discharge is primarily carried out using two

types of mathematical approaches: multivariate approach

and univariate approach [6–8]. Physical hydrological modeling

is a multivariate approach to estimate the peak discharge using

hydro-meteorological data (rainfall, temperature, etc.) and

geomorphological data (slope, soil type, etc.) [9,10]. Physical

hydrological modeling requires enormous amounts of data

and moreover it is a time-consuming process [11,12]. The

recent trend is a marked shift from physical hydrological mod-

eling to the use of soft computing techniques, which is gaining

significance in a short spell of time [13,14]. Multivariate

approach using soft computing techniques (ANN, SVM,

etc.) is preferred over physical modeling owing to its limita-

tions of time consumption and data volumes [15,16]. Some

multivariate approaches may lead to underestimation of the

events as well as the increased uncertainty associated with

the given event [17–19]. In multivariate approach, underesti-

mation may be attributed to cumulative effect of uncertainty
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existence in individual isolated factor. To minimize the cumu-

lative uncertainty, univariate approach is useful given the point

that all the external factors have previously influenced the pro-

duction of the observed time series. It can also be said that the

time series embodies all the information required to model the

underlying generating process.

Soft computing has numerous applications in hydrological

time series analyses, be it multivariate approach or univariate

approach [20]. Stationary and non-stationary time series can

be analyzed using soft computing techniques. The Artificial

Neural Network (ANN) is a soft computing technique that

comprises both linear and nonlinear concepts and can be

operated with dynamic input–output system. Artificial Neural

Network (ANN) is an influential processing tool which has

been widely used in water resources research [21,22]. Process-

ing time series components of water resources projects

(WRP) with ANN requires a preprocessing stage for data

reduction such as Wavelet Transform (WT) in order to gain

advantages in training time and also to pass up the redundancy

in input data. This helps to obtain a model with better

generalization abilities. This is the prime reason for better per-

formance of WANN in different aspects of water resources

management [23,24].

Probability distribution is the process of statistical inference

surveyed data. It is mainly of two types: parametric distribu-

tion and nonparametric distribution. Parametric distributions

are probability distributions that can be described using an

equation with a finite set of parameters. For a specified para-

metric distribution, the parameters are estimated by fitting to

data. In the field of hydrology the concept of probabilistic dis-

tribution can be applied frequently [25,26].

There is a growing need to critically evaluate the annual

maximum discharge (using univariate approach) in the river

to assist the knowledge base for better planning and manage-

ment of water resources projects. This promoted the use of

ANN and Wavelet-ANN combination to study the annual

maximum discharge. In the present study, analyses of extreme

flood near the Kosi Mahasetu have been performed using

annual maximum discharge time series over the 51 year period

from 1964 to 2014. The goal of this study was to determine

appropriate probability distributions for describing annual

maximum stream flow series for the Kosi River. In this paper,

three parameters based (shape, scale and location) study was

carried out to characterize the maximum flow of Kosi River.

The major research findings of this study revolve around as

follows:

(1) Trend analysis and autocorrelation analysis to detect

time period of similar events.

(2) Performance evaluation of ANN and Wavelet-ANN

time series analysis of annual maximum discharge series.

(3) Evaluation of probability distribution model for annual

maximum discharge and comparison of the results with

Wavelet-ANN model.

2. Description of techniques

2.1. Artificial neural network

Artificial Neural Networks (ANNs) may provide an alterna-

tive model to river discharge in areas which lack precise data

and information about the internal hydrologic processes.

ANN model has been developed with a correlation coefficient

of 0.99 for the maximum daily river discharge [27].

ANN model employs nonlinear functional mapping on the

past observations to predict the future values. ANN uses logis-

tic hidden layer transfer function and two model parameters as

connection weights [28].

Qt ¼ f Qt�1;Qt�2;Qt�3 . . . ;Qt�p;w
� �

þ et ð1Þ

2.2. Wavelet analysis

The hypothesis of wavelet analysis was developed based on

Fourier analysis. A signal is broken up into smooth sinusoids

of unlimited duration in Fourier analysis [13]. A wavelet is a

mathematical function which can be used to localize a given

function in both space and scaling [29,30]. Wavelets can be uti-

lized to extract information from diverse kinds of data; such as

seismic, finance, heartbeat and hydrological [27,31–36]. Wave-

let analysis is often used to learn evolutionary behavior to

characterize fluctuated daily discharge time series [37,38].

The major improvement of wavelet transforms is their capabil-

ity to concurrently acquire information on the time, location

and frequency of a signal, while the Fourier transform pro-

vides only the frequency information of a signal.

The continuous Wavelet Transform (CWT) of a discharge

time series Q(t) is defined as follows:

W s; sð Þ ¼ s�1=2

Z þ1

�1

QðtÞu� t� s

s

� �

dt ð2Þ

W (s, s) presents a two-dimensional representation of wavelet

power under a different scale, where ‘s’ is the wavelet scale, ‘t’

is the time, ‘s’ is the translation parameter and ‘*’ denotes the

conjugate complex function. The translation parameter ‘s’ is

the time step in which the window function is iterated.

2.3. WANN analysis

The Wavelet Artificial Neural Network (WANN) models are

obtained combining two methods, Discrete Wavelet Trans-

form (DWT) and ANN. The WANN model is an ANN model,

which uses sub-time series components obtained using DWT

on original data. The WANN model structure developed in

the present study is shown in Fig. 1. For WANN model inputs,

the original time series is decomposed into a certain number of

sub-time series components (Ds). All component plays differ-

ent role in the original time series and the behavior of each

Notations

Q discharge, m3/s

p time delay, Year

w weights

et fluctuations at time, t
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sub-time series is distinct [38]. In WANN model, the inputs to

the model are the Ds of preceding annual maximum and the

outputs are current maximum discharge.

2.3.1. Wavelet decomposition

Wavelet decomposition of preceding annual maximum time

series (up to preceding three years) has been carried out using

toolbox Wavelet 1-D in MATLAB R2013b. Three years of

lagging was taken for this study and it was based on the point

of first zero crossing of time series autocorrelation. Level of

decomposition was kept constant (i.e. 3) for every time series

(Fig. 2).

2.4. Distributional analysis

Distributional analysis of river discharge time series is consid-

ered very significant in areas related to hydrological engineer-

ing, including management of extreme events and optimal

design of water storage and drainage networks [39–42]. In

order to demonstrate the applicability of the probabilistic

distribution model for annual maximum discharge, 51 years

data from 1964 to 2014 have been also included in the present

analysis.

3. Case study

3.1. Study area

Bihar, a state of India (Fig. 3), is located in the eastern part of

the India. The total area of Bihar is about 94,163 km2 and

is third most populous state in India. Bihar comprises

thirty-eight (38) districts and one hundred and one (101)

sub-divisions. The study area of the present study is the Kosi

River, which is termed as the sorrow of Bihar. The discharge

gauge site is located at 86�3903.1100E longitude and

26�1702.6600N latitude in the vicinity of the Kosi Mahasetu

bridge. Recurrent flood is a common phenomenon which

affects large populations every year. The flood in the years

2004 and 2007 in the recent decades has been devastating.

The 2008 flood leads to the breach of Kosi embankment which

affected large populations and caused extensive damage.

Hence, any study regarding peak discharge has a great social

significance. Complexities in the study of peak discharge

(major contributor of flood) are because of its large scale

variations; in Kosi River it varies from 5704 to 22,319 m3/s.

3.2. Descriptive statistics

To comprehend the river’s discharge regime, the descriptive

statistics of maximum annual discharge at the study station

has been computed (Table 1). The analysis indicates that the

maximum of maximum annual discharge was 22,319 m3/s

Figure 1 Model structure for WANN.

Figure 2 Wavelet decomposition.
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while the minimum of maximum annual discharge was

5704 m3/s, which is less than 25 percentile of the time series.

Coefficient of variation of the time series is found to be

28.22%.

The decreasing trend line may be attributed to a combina-

tion of natural (climate) and anthropogenic (manmade)

changes in the Kosi River catchment (Fig. 4). The five year

moving average is unable to reveal all the information from

the available time series data.

3.3. Autocorrelations

Autocorrelation is the cross-correlation of a time series with

itself. It is a mathematical tool for finding repetitive patterns.

It presents the resemblance between observations as a function

Figure 3 Index map of study area.

Table 1 Statistics of maximum annual discharge at study

station.

Statistics Value Statistics Value (m3/s)

Number of years 51 Min 5704

Mean (m3/s) 9633.8 25% 8013

Std. Deviation (m3/s) 2719.5 50% 9379

Coefficient of variation 0.28228 75% 10,982

Std. Error 380.8 90% 12,571

Skewness 2.1868 95% 14,458

Excess kurtosis 8.4899 Max 22,319
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Figure 4 Trend of annual maximum time series.
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of time separation. It is often used in the time series analysis of

hydrological data [43–45]. Furthermore, changes observed are

not in the same order (i.e., autocorrelation) for annual maxi-

mum discharge data (Fig. 5).

4. Model studies

4.1. ANN vs. WANN

ANN time series was used in isolation for annual maximum

discharge time series. Coefficient of determination was found

to be very low as 0.301 for the available time series. Peak of

the time series (very important for flood management) was

underestimated by ANN. Wavelet function can distinguish

local events at different times so this feature can be integrated

with ANN to match the peak.

Correlation between decomposed (Fig. 2) sub-series (Q, d1,

d2 and d3) and actual time series was computed (Table 2).

Among the four decomposed sub-series the least correlated

series was left out in the final approximated wavelet series.

Effective time series was formed by excluding the least corre-

lated component.

Correlation between Lag 1, Lag 2 and Lag 3 wavelet

decomposed component are 0.552, 0.471, and 0.199 respec-

tively. ANN was again employed on the effective discharge

time series obtained above and results were marginally

improved from isolated ANN time series (correlation coeffi-

cient improved from 0.301 to 0.390 (Fig. 6)). In addition to

the improvement of correlation coefficient (0.301–0.390), the

integrated approach led to the matching of peak discharge.

4.2. Probabilistic distribution model

Six probabilistic distribution models were applied to the

51 years available maximum discharge data based on three

parameters (shape, scale and location). The results of

the K–S test for annual maximum discharge indicate that the

Pearson 5 (3P) distribution with P-values of 0.957 performed

the best.

Scale parameter generally indicates the proportionality with

the variance of the series. The scale parameter is found to be

the highest for Pearson 5 (3P) distribution. Weibull (3P) had

the lowest P value for both K–S and Chi-square test. Different

parameters of probabilistic distribution time series have been

summarized in Table 3.

The location parameter for the Generalized Logistic

Probability distribution was found to be closest to the mean

of the series and even the scale parameter (1259.1) was found

to be low. The scale parameter of Generalized Logistic

Probability distribution is greater than that of log normal

probability distribution. Probability differences show the

lower positive probability difference for Generalized Logistic

Probability distribution as indicated in Figs. 7 and 9 shows

its suitability and applicability for the annual maximum

discharge series. Correlation of the model established using

Generalized Logistic Probability distribution is of the order

of 0.983, which can be considered as good in comparison with

Wavelet-ANN model used for annual maximum discharge

time series. Various probabilistic distributions as given in

Fig. 9 consolidate the view for future use of probabilistic

models to successfully analyze and predict peak discharge.

The empirical Cumulative Distribution Function (CDF)

plot (Fig. 8) reveals the following:

� The Generalized Logistic Probability distribution provides

the best fit for the annual maximum discharge.

� The mean annual maximum discharge is 9155.8 m3/s.

� Approximately 90% of the data falls below 15,000 m3/s.

5. Discussions and conclusions

From the analysis, it is observed that the combination of

Wavelet-ANN has improved the performance of time series

analysis but the ability to replicate information of the observed
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Figure 5 Autocorrelation coefficients for annual maximum time

series.

Table 2 Correlation of wavelet component with real time

observed data with lagged data.

Q(t�1)
* Q(t�2)

** Q(t�3)
***

a3 0.52 0.447 0.382

d1 �0.21 0.2 0.008

d2 �0.15 �0.287 �0.234

d3 0.198 0.187 0.022

Q(t�1)
* = Observed time series with one year lag,

Q(t�2)
** = Observed time series with two year lag, and

Q(t�3)
*** = Observed time series with three year lag.
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Figure 6 Predicted discharge using ANN and WANN.
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time series based on probability distributions time series is

higher than that of Wavelet-ANN. Probability distribution

time series (Fig. 9) can serve as an improvement over the

Wavelet-ANN time series. Peak of peak was best estimated

by WANN (Fig. 6) due to local reflection characteristics of

wavelet.

Five hundred year return period flood was estimated using

Weibull distribution and it was found 14,875 m3/s in

comparison with the 21,000 m3/s for Generalized Logistic

Probabilistic distribution. The peak of peak was found to be

on the lower side (underestimated) using Weibull distribution.

Following conclusions have been drawn over the study:

1. To better reflect and reproduce the complex peak flow

dynamics, it is attempted to use soft computing techniques

namely artificial neural network and wavelet for continuous

annual maximum river discharge measurements as well as

separately carried out probabilistic distributional analysis

on the data obtained. Based on the analysis carried out, it

was found that the peak discharge data fit more realistically

and also with higher accuracy by probabilistic distribution

rather than ANN-Wavelet modeling.

2. Graphical methods have been utilized in the selection of

probabilistic distribution model, while Kolmogorov–

Smirnov (K–S) and chi-square tests were employed to

assess goodness of fit for the selected probabilistic models.

The final selection of the appropriate model was based on

the considerations of all the three parameters (shape, scale

and location) as well as the P-values.

3. It has been suggested to make use of the Generalized

Logistic distribution in flood frequency analysis of the Kosi

region.
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Table 3 Parameters and P values of probabilistic distribution time series.

Distribution Parameters P Values

Shape Scale Location K–S test Chi-square test

Pearson 5 (3P) 10.753 73,645 2070.8 0.95667 0.67918

Weibull (3P) 1.5842 4516.9 5580.2 0.66 0.69309

Generalized Extreme Value 0.07376 1828.6 8435.1 0.934 0.82

Log-Logistic (3P) 4.315 5357.5 3802.5 0.943 0.77

Lognormal (3P) 0.4121 8.5965 3730.4 0.943 0.825

Generalized Logistic 0.21821 1259.1 9155.8 0.946 0.782
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Lognormal) distributions.
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