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Abstract—We comment on the paper ‘‘Cutset Bounds on the
Capacity of MIMO Relay Channels’’ by Jeong et al. and point
out that, unlike what appears from a remark and some other
contents by these authors, the matrix distribution for the sum of
two complex randomWishartmatrices has already been derived
by Kumar for the general case of arbitrary covariance matrices
and not only for the special case when one of them is assumed
proportional to the identity matrix. The latter assumption has
been made only for deriving the corresponding eigenvalue dis-
tribution. Furthermore, we draw attention to the result that
when all covariance matrices are chosen proportional to the
identity matrix, then it is possible to obtain exact and closed
form expressions for the sum of an arbitrary number ofWishart
matrices and not only for two as considered by Jeong et al.

Index Terms—Sum of Wishart matrices, eigenvalue statis-
tics, MIMO multiple access channels, MIMO relay channels,
Shannon transform.

In a recent article [1], the authors have used the sum of

Wishart matrices in the context of multiple-input-multiple-

output (MIMO) relay channels. The purpose of the present

comment article is to compare certain results presented in [1]

with those in [2]–[4]. In particular, we point out that the

matrix distribution of the sum of two complex centralWishart

matrices for the general case of arbitrary covariance matrices

has already been derived in [2], and not only for the special

case when one of the covariance matrices is relaxed to be

proportional to identity matrix. Furthermore, we also high-

light certain generalizations concerning the sum of arbitrary

number of Wishart matrices that have already been provided

in [3] and [4].

Sums of Wishart matrices play a key role in multivariate

statistics [5]–[9] and, among other things, find applications

in the analysis of several modern-day MIMO communica-

tion models [1], [3], [4], [10], [11]. While the investigation

of the sum of independent Wishart matrices dates back to

the work of Tan and Gupta [8], recent availability of exact

solutions concerning its eigenvalue statistics has revived the

interest in exploring such composite matrix models fur-

ther [2]–[4], [12], [13]. In [2] one of the present authors

has derived the matrix probability density for the sum of

two independent central complex Wishart matrices which

have different covariance matrices associated with them.

Moreover, in the case of one of the covariance matrices pro-

portional to the identity matrix, closed form expressions for

eigenvalue densities have also been obtained in [2] and [12].

Several other important results for the sum of two Wishart

matrices have been worked out in [13], such as an exact

expression for the arbitrary order eigenvalue density corre-

lation function. In [3] and [4], exact solvability has been

established for the sum of an arbitrary number of independent

Wishart matrices with covariance matrices proportional to

the identity matrix. This sum is evidently equivalent to the

scalar-weighted sum of independent uncorrelated-Wishart

matrices. It has been shown that this problem can be mapped

to that of a semicorrelated Wishart matrix, and therefore

the existing results [14]–[16] for the latter can be used. The

eigenvalue statistics derived therein has been applied to inves-

tigate the ergodic capacity of distributed antenna systems [3],

and the ergodic sum capacity of MIMO multiple access and

MIMO relay channels [4].

Jeong et al. [1] refer to the sum of n × n-dimensional

Wishart matrices Wl (l = 1, ...,L),

W =

L∑

l=1

Wl, (1)

as a Hyper Wishart matrix, and provide the corresponding

probability density function (PDF) in Theorem 1. Concerning

this, we would like to point out that this PDF has already

been published with a proof in [4], and another proof has

been provided in [13]. While Jeong et al. [1] do refer to [2],

and mention in the footnote that, ‘‘The distribution of the

sum of two complex Wishart matrices has been derived using

the Harish-Chandra-Itzykson-Zuber unitary group integral

when one of the covariance matrices is proportional to the

identity matrix while the second is arbitrary’’, we would like

to clarify that [2] already gives the matrix distribution when

both the covariance matrices are arbitrary; see [2, eq. (10)].

It is only for the corresponding eigenvalue density that one

of the covariance matrices has been considered proportional

to the identity matrix in [2]. We would also like to emphasize
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that [1, eq. (3)] can be readily obtained by considering the

eigenvalue decomposition of W, and does not lead to any

further information unless some assumption is made for the

covariance matrices.

In Corollary 1 [1], the authors provide the joint PDF of

eigenvalues for L = 2 casewhen both the covariancematrices

are proportional to the identity matrix. Actually, from the

works [3], [4] it is evident that if the covariance matrices are

taken proportional to the identity matrix, then it is possible to

obtain the joint PDF of eigenvalues for the sum of an arbitrary

number (L) of Wishart matrices, as discussed below. In fact,

the corresponding marginal density of a generic eigenvalue

has already been provided in [3] and [4].

Consider the covariance matrices associated with the

Wishart matrices in (1) to be

6l = σl In, l = 1, ...,L, (2)

where σl are positive scalars, and In is the n-dimensional

identity matrix. Moreover, suppose the degrees of freedom of

the Wishart matrices Wl in (1) are m1, ...,mL , respectively.

Then, as shown in [4], we can write W = G
†
G, where G is

an m × n matrix with m = m1 + · · ·mL and is described by

the PDF

P(G) ∝ e−trG†6−1G, (3)

with 6 = diag(σ1Im1
, ..., σLImL ). Evidently, the

m× m-dimensional matrix W̃ = GG
† is complex central

Wishart distributed, i.e., W̃ ∼ CWm(n,6). Consequently,

one can use the existing results for semicorrelated Wishart

matrices; see e.g. [14]–[16]. We can have the following two

possibilities:

A. m ≤ n

In this caseW and W̃ share the nonzero eigenvalues λ1, .., λm,

which are described by the joint PDF

P(λ1, . . . , λm)

=
(−1)m(m−1)/2

m!
1(λ)

m∏

i=1

λn−mi

Ŵ(n− m+ i)

×

L∏

l=1

σ
−nml
l ·

det

[
[(−λj)

k−1 e−σ
−1
l λj ] j=1,..,m

k=1,..,ml

]

l=1,...,L

det

[
[
Ŵ(j) σ

k−j
l

Ŵ(j−k+1)
] j=1,..,m
k=1,..,ml

]

l=1,..,L

.

(4)

Here, 1(λ) =
∏

j>k (λj − λk ) is the Vandermonde

determinant, Ŵ(·) is the Gamma function [17], and

det[[fj,k,l] j=1,..,m
k=1,..,ml

]l=1,...,L denotes

det[[fj,k,1] j=1,..,m
k=1,..,m1

· · · [fj,k,L] j=1,..,m
k=1,..,mL

].

In (4), as well as the equations below, 1/Ŵ(k) should be taken

as 0 if k happens to be a non-positive integer. In addition to the

eigenvalues λ1, .., λm, W possesses n − m zero eigenvalues,

and a full PDF incorporating these can be written by intro-

ducing Dirac delta functions in (4).

B. m > n

In this case there are n nonzero eigenvalues λ1, ..., λn eigen-

values, shared by both W and W̃. The corresponding joint

PDF is

P(λ1, . . . , λn)

= (−1)n(n−1)/21(λ)

∏L
l=1 σ

−nml
l∏n

i=1 Ŵ(i+ 1)

×

det



[(−λj)

k−1 e−σ
−1
l λj ] j=1,..,n

k=1,..,ml

[
Ŵ(j) σ

k−j
l

Ŵ(j−k+1)
] j=1,..,m−n
k=1,..,ml



l=1,..,L

det

[
[
Ŵ(j) σ

k−j
l

Ŵ(j−k+1)
] j=1,..,m
k=1,..,ml

]

l=1,..,L

. (5)

Additionally, W̃ possesses m− n zero eigenvalues.

In either case, i.e., for m ≤ n or m > n, the marginal PDF

describing a generic nonzero eigenvalue is given by [3], [4]

p(λ)

= −ν−1det−1

[[ Ŵ(j) σ
k−j
l

Ŵ(j− k + 1)

]
j=1,..,m
k=1,..,ml

]

l=1,..,L

× det




0
[
Ŵ(k)e−λ/σl

σ n−k+1
l

L
(n−k+1)
k−1 ( λ

σl
)
]
k=1,..,ml[

λn−j

Ŵ(n−j+1)

]
j=1,..,m

[ Ŵ(j)
Ŵ(j−k+1)

σ
k−j
l

]
j=1,..,m
k=1,..,ml




l=1,..,L

,

(6)

FIGURE 1. Comparison between the analytical marginal density (solid
line) and simulation result (histogram) for (a) n > m case:
n = 7, L = 3, m1 = 2, m2 = 1, m3 = 2, σ1 = 2, σ2 = 6/5, σ3 = 3/4, and
(b) for n < m case: n = 3, L = 2, m1 = 2, m2 = 2, σ1 = 1/2, σ2 = 7/6.

where ν = min(m, n), and L
(k)
j (·) represent the associated

Laguerre polynomials [17]. With the aid of (4) and (5), one

can alsowrite downmarginal densities (correlation functions)

of higher orders. In Fig. 1, we show the comparison between
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the analytical marginal density of eigenvalues as predicted

by (6), and numerical simulation involving 50000 matrices

for two sets of parameter values, as indicated in the caption.

We can see an excellent agreement in both cases.

The knowledge of the marginal density enables us to com-

pute the Shannon transform, which is given by [18]

S(ρ) =

∫ ∞

0

ln(1 + ρλ) p(λ) dλ. (7)

With the aid of result (6), we obtain the following closed form

expression for the Shannon transform:

S(ρ) = ν−1det−1

[[ Ŵ(j) σ
k−j
l

Ŵ(j− k + 1)

]
j=1,..,m
k=1,..,ml

]

l=1,..,L

×

ν∑

µ=1

det

[
[ψ

(µ)
j,k (σl)] j=1,..,m

k=1,..,ml

]

l=1,..,L

. (8)

Here, ψ
(µ)
j,k (σ ) are given by

ψ
(µ)
j,k (σ )

=





σ k−1ρj−1

Ŵ(n− j+ 1)
G
3,2
3,4

(
0,j−1; j

j−1,j−1,n; k−1

∣∣∣ 1

σρ

)
, j = µ

Ŵ(j) σ k−j

Ŵ(j− k + 1)
, j 6= µ,

(9)

FIGURE 2. Comparison between the analytical predictions (solid lines)
and simulation results (symbols) for the Shannon transform. Parameter
values used are n = 3, 4, 5 and L = 3, m1 = 1, m2 = 1, m3 = 2, σ1 = 3/2,
σ2 = 1, σ3 = 2/3.

with G
3,2
3,4(·) being a Meijer G-function [19]. The derivation

involved is similar to that of the mean channel capacity,

as provided in [3] and [4]. We show a comparison of the

above analytical result with numerical simulation for three

n values in Fig. 2. The Shannon transform values depicted in

the figure have been obtained by averaging over the values

calculated for 50000 matrices used in the simulation. Once

again, the agreement is perfect.

Finally, we would like to point out that the application

of sum of Wishart matrices to the MIMO relay channel,

as discussed in [1], has also been considered in [4].
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