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Olefin bonds participate in co-reaction with the benzoxazine functionality of the monomer
and are one of the strategies used to affect the crosslink density of a polybenzoxazine
network. In general, the double bond incorporation in starting material is usually
catalyzed by expensive, rare earth metals affecting the sustainability of the reaction.
The natural abundance of feedstocks with inherent double bonds may be a powerful
platform for the development of novel greener structures, with potential applications in
polymers. Here, we report the design, synthesis, and characterization of a biobased
non-halogen flame retardant, consisting of naturally occurring phenols, eugenol (E),
and cardanol (C). The presence of a covalently linked phosphazene (P) core allowed
the synthesis of hexa-functional flame retardant molecules, abbreviated as EP and CP.
The chemical structures of the synthesized EP and CP were confirmed by Fourier
transform infrared (FTIR), nuclear magnetic resonance ('H, '3C, 3'P NMR), and single
crystal XRD (only in the case of EP). Their polymerization with cardanol sourced tri-
oxazine benzoxazine monomer, C-trisapm, was followed by FTIR, NMR, and DSC
studies. The thermal stability and flame retardant properties of the hybrid phosphazene-
benzoxazine copolymers was determined by thermogravimetry analysis (TGA), limiting
oxygen index (LOI), vertical burning, and smoke density analyses. SEM images of the char
residues of the polymers with or without the addition of reactive phosphazene molecules
confirmed the intumescent flame retarding mechanism. Current work highlights the
utility of sustainable origin non-halogen flame retardant (FR) molecules and their utility
in polybenzoxazine chemistry.

Keywords: cardanol, eugenol, phosphazene, flame retardant, halogen-free, polybenzoxazine, reactive flame
retardant

INTRODUCTION

Polybenzoxazine (PBz) is an upcoming class of phenolic polymer that is obtained from the thermal
ring-opening polymerization (ROP) reaction of benzoxazine monomers with or without the
addition of a catalyst/initiator. Unlike most traditional phenol-formaldehyde resins, the formation
of PBzs eliminates the release of any harmful byproducts. PBzs exhibit interesting properties such
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FIGURE 9 | TGA (A,A’) and DTG (B,B’) traces of pristine polymers and their blends recorded at a heating rate of 20 °C/min.

phenyl group of cardanol and eugenol may take place in
phosphazene due to P-O-C cleavage (Ferrar et al, 1980;
Hayes and Allen, 2016). This decomposition results in the
mass loss as observed in the DTG, with the highest mass
losses occurring for pristine phosphazene frameworks of
poly(XP) as they bear the highest percentages of the P-
O-R linkages. However, these mass losses are significantly
minimized showing synergism between the polybenzoxazine and
polyphosphazene frameworks in the blends. The percentage of
renewable phenol content was extremely high in all of the
synthesized polymers, supporting the green potentials of the
used monomers.

Limiting oxygen index (LOI) measures the minimum oxygen
concentration required to support combustion is calculated from
the char yield. A compound with an LOI value >20.9%, the
percentage of oxygen in the air, is considered as a flame retardant
since it requires higher oxygen concentration to burn. An LOI
in the range of 21-28 indicates slow burning rates, with a
range of 28-100 for self-extinguishing materials. The LOI of
the different polymers are presented in Table 1. The LOI value
of poly(C-trisapm) changed from 20 to higher values in the
blends. Incorporation of 1.1% of P in C-trisapm showed slow
burning characteristics and all the other polymers showed self-
extinguishing characteristics. The data showed that the higher
the percentage of phosphorus in the polymer, the higher the
LOI and hence better retardancy, indicating that the addition of

phosphorus to C-trisapm results in the improvement of flame
retardancy (Lu and Hamerton, 2002)1.

Smoke density is a means of measuring the relative optical
amount of smoke released by a burning sample. Measurements
are made by burning the sample in a smoke density chamber,
consisting of a light source and a photometer situated on
opposite sides of the chamber. The attenuation of the light
beam is determined by the accumulation of smoke from the
burning sample in the enclosed chamber. From this experiment,
the light absorption can be plotted vs. time and the rate of
smoke production is determined from the area under the curve
(Lyons, 1975). To understand the effect of the incorporation
of a phosphorous rich reactive additive to poly(C-trisapm), the
relative smoke emission of the different sample smoke emission
was evaluated. The measurements from the optical system are
represented in the plots of light absorption against time in
Figures 10A,B. The area under the curves was calculated and
reported in Table 1. The smoke density data, like the LOI data,
was found to be dependent on the phosphorus content in
the sample. C-trisapm, which contains no phosphorus, burns
with a smoke emission of 37.80%, whereas CP and EP with
phosphorus contents of 4.75 and 8.34% produced 34.01 and
18.80% smoke density, respectively. This revealed a substantial

! Available online at: http://www.uow.edu.au (accessed October, 2009).
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FIGURE 10 | Plots of light absorption by sensor with time during burning of samples (a) XP, (b) X1 Ts, (c) X3 T+, (d) C-trisapm. Plot (A) is for CP and (B) is for EP.
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reduction in smoke due to phosphazene moiety incorporation in
the polymers.

UL (Underwriters Laboratories) tests are burning tests that
evaluate the flammability of polymers. The UL-94 test is a vertical
burn test that determines the vertical burning characteristics of a
polymer. The flammability is rated from VO to V2, with VO being
the best flame retardancy achieved when burning stops within
10's after application of two ignitions of 10's each to the sample,
with no dripping (Lu and Hamerton, 2002). Poly(C-trisapm)
sample burnt instantaneously with a much shorter combustion
time and noticeable drippings, which is in congruence with
LOI results. The flame resistance of the blends is evident from
the digital images of phosphazene containing polymers before
and after burning, shown in Supplementary Figure 11. Pure
poly(CP) and its blends did not catch fire instantaneously,
unlike poly(C-trisapm). The flame resistant characteristics of
crosslinked CP/C-trisapm blends was found to increase with an
increase in phosphorus content, which corroborates with LOI
results. Neat EP homopolymer and its copolymer with C-trisapm
cannot be fabricated into vertical specimens as they were found
to be very brittle, due to rigidity of the framework and the C-
3 propylene chain of EP. The internal plasticization effect of
the C-15 long alkylene chain in CP may be responsible for the
induced flexibility of the fabricated polymer that allowed the
above analysis in the case of CP/C-trisapm copolymer.

Digital images of thermally cured samples before and after
smoke density analysis are shown in Figures 11a-c’. The CP
homopolymer showed a rough contour surface, suggesting
rigidity of polymer framework. However, its copolymer with C-
trisapm showed appreciable molding characteristics, suggesting
benefit imparted by benzoxazine monomer to phosphazene
monomer. The burnt sample digital images revealed an intensive
expansion of the polymer matrix and a significant formation
of protective charred layered architecture. These results are
consistent with the intumescent flame retarding mechanism of
phosphazene structure.

Figures 11d-f shows the SEM images, which determine the
morphology of both the exterior and interior surface of the

char residue obtained after smoke density measurements. With
an increase in CP content, the exterior surface morphology
changed from a rippled to a smooth surface, while interior surface
morphology showed an increase in the development of a network
of porous honeycombed microstructures separated by thin layers
of boundary. The appearance of compact char residue with a
profound interconnected network of lacunae accounts for flame
mitigation strategy, which is associated with the phosphazene
rich polymer network. On the contrary, the formation of larger
cracks on the exterior surface of the order of 20-30 um observed
in char of poly(EP3T;), Supplementary Figure 12b. The cracks
reduced substantially with the increase in C-trisapm content, as
noticed from the exterior surfaces of poly(EP;T3). The analysis
of interior morphology also showed the formation of big porous
microstructures dependent on EP content. The formation of
bubbles and cracks is accounted to the rigid outer coating in
the case of EP containing copolymers, which may have burst to
release the exchange of heat and air (oxygen), thereby inhibiting
the advancement of flame as a structural safety measure. Energy
dispersive spectroscopy (EDS) analysis, Supplementary Table 1
clearly shows a relatively higher atomic % ratio of experimental
P/O to that of theoretical results. This further supports the
development of P and O rich domains to form polyphosphoric
acids, which enable carbonization reaction to form heat resistant
char, by acting as a dehydrating agent at high temperatures (Ma
and Fang, 2012).

To explore the lowering in thermal stability upon XP
incorporation in C-trisapm monomer, we performed swelling
studies of neat polymers/polyphosphazene polybenzoxazine
copolymers. The polymer samples were kept in four different
solvents (H,O, DMSO, EtOH, and CHCIl;) and mass
variation of samples was observed after every 24h for four
consecutive days. The relative swelling ratios are shown in
Supplementary Figure 13. After soaking the polymers in
solvents, the polymer was wiped with clean tissue paper to
remove excess solvent from the surface. The samples were
weighed immediately in a weighing balance with an accuracy
of 10™* g. The polymer samples in chloroform were found
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FIGURE 11 | Digital images of cured samples [ x w x h: (25.040.1) x (25.5 £ 0.1) x 3.0 mm)] of (a) poly(CP), (b) poly(CP3T4), (c) poly(CP+T3) before (a, b, c) and after
burning (@', b/, ¢’); SEM images of poly(CP), (b) poly(CP3T1), (c) poly(CP1Ts) surfaces of residual char: exterior (d, e, f) and interior (as inset) (d’, €', '), respectively.

to disintegrate (with no solubilization) in all the cases after
24h, hence further studies were not carried out using this
solvent. It was observed that the swelling ratio of neat polymer
and copolymers remains unaffected in water and ethanol. We
observed a lower swelling ratio in water than in ethanol followed
by DMSO, suggesting the very high hydrophobicity of the
samples. In DMSO, incorporation of XP in C-trisapm increased
the swelling ratio, suggesting a lowering in crosslink density.
The value is found to be greater in the case of EP than CP based
polymers, which corroborates the TGA studies.

CONCLUSIONS

This study has reported on the synthesis and characterization
of abundantly available agro-origin source phenols, cardanol,
and eugenol, based reactive flame retardant containing a
phosphazene core. The hexafunctional nature of alkylene units
with phenyl spacer to phosphazene core ensures appreciable
reactivity of double bonds in inter- and intramolecular
fashions with the CP/EP monomers and C-trisapm blends.
The co-reaction between the monomers was supported by a
simultaneous reduction of double bonds and an oxazine ring by
FTIR spectroscopy. Newly formed species as a result of aerobic
oxidation were noticed by NMR spectroscopy. Additionally, the
CP alkylene chain was found to be more reactive than the
propylene unit in EP as the former is allylic vs. non-conjugated.
Swelling ratio studies have suggested a very high hydrophobicity

of the polymers allowing their capability to withstand aqueous
conditions for a prolonged duration. However, incorporation of
XP in C-trisapm showed a marginal increase in swelling ratio,
confirming a lowering in crosslink density than neat poly(C-
trisapm). This change in value is slightly higher in the case
of EP than CP based copolymers, supporting higher reactivity
of the latter in crosslinking reactions. The incorporation of
both the monomers has substantially improved flame resistant
characteristics as supported by TGA, LOI, UL-94, smoke density,
and SEM analysis. The presence of oxazine functionality, double
bonds, high renewable content, and a phosphazene core is
encouraging for their utility not only to benzoxazine chemistry
but also in many other polymers. The easy one-step synthetic
method of both the EP and CP monomers holds great potential
as a replacement for many other environmentally toxic flame-
retardants. This study is the first report using the phosphazene
core containing cardanol and eugenol units as reactive type
flame-retardants to exhibit high flame retardation efficiency and
reactivity with the oxazine core. These findings may be useful
in designing future generations of safer and eco-friendly reactive
flame-retardants based on abundantly available synthons.
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