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Abstract. Hamiltonians that are multivalued functions of momenta are of topical interest
since they correspond to the Lagrangians containing higher-degree time derivatives. Incidentally,
such classes of branched Hamiltonians lead to certain not too well understood ambiguities in
the procedure of the quantization. Within this framework we pick up a model which samples
the latter ambiguities and which, simultaneously, turns out to be amenable to a transparent
analytic and perturbative treatment.

1. Introduction

Models of classical systems with branched structures [1], in either coordinate (x) space or in
its momentum (p) counterpart, have of late been a subject of active theoretical enquiry [2–9].
The key idea is that classical Lagrangians possessing time derivatives in excess of quadratic
powers inevitably lead to p becoming a multi-valued function of velocity (v) thereby yielding a
multivalued class of Hamiltonian systems.

Branched Hamiltonians in the classical context, and their quantized forms, have been recently
discussed by Shapere and Wilczek [2]. Following it, Curtright and Zachos [3] analyzed certain
representative models for a classical Lagrangian described by a pair of convex, smoothly tied
functions of v. The underlying v turns out to be a double-valued function of p. Proceeding to the
quantum domain shows that the double-valued Hamiltonians thus obtained have the inherent
feature of being expressible in a supersymmetric form in the p space. Subsequently, a class of
nonlinear systems whose Hamiltonians exhibit branching was explored by Bagchi et al [4] who
also considered the possibility of quantization for some specific cases of the underlying coupling
parameter.

In this paper we present a class of velocity-dependent Lagrangians which define a canonical
momentum that yields exactly a pair of velocity variables in fractional terms. As a consequence,
the corresponding Hamiltonians develop a branching character. An interesting aspect of our
scheme is that it is well-suited for a perturbative treatment.

http://creativecommons.org/licenses/by/3.0
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2. Branched Hamiltonians: A brief review

Let us briefly review the example of a branched system that was put forward in [3]. It was noted
that a typical classical model of branched Hamiltonians results from a non-conventional form of
the Lagrangian say, for the one given by

L = (v − 1)
2k−1

2k+1 − V (x) (1)

where the traditional kinetic-energy term features the replacement of a typical quadratic form
by a fractional function of “velocity” v while the function V (x) stands for a convenient local
interaction potential. The fractional powers of the difference v − 1 was invoked to make
plausible connections to known phenomenology such as the supersymmetric pairing. In detail,
the (2k + 1)−st root was required to be real and positive or negative for v > 1 or v < 1,
respectively. Correspondingly, the quantity v turned out to be a double-valued function of p.

Working out the standard steps leads to the following two branches:

H± = p± 1

4k − 2

(

1
√
p

)2k−1
+ V (x) . (2)

Note that the k = 1 case speaks of the canonical supersymmetric structure [10] for the difference
H± − V (x) namely, p ± 1

2
√
p , but in the momentum space if viewed as a quantum mechanical

system. The spectral and boundary condition linkages of these Hamiltonians are not difficult to
set up.

3. A velocity dependent potential

Against the above background we consider setting up of an extended Lagrangian model having
a velocity dependent potential U(x, v) that gives rise to a branched Hamiltonian under Legendre
transformation:

L(x, v) = C(v − 1)
2k+1

2k−1 − U(x, v) where C =
2k − 1

2k + 1

(

1

4

)
2

2k+1

(3)

where we assume U(x, v) to be given in a separable form U(x, v) = f(v) + V (x), f(v) and V (x)
are certain functions of v and x respectively.

Using the standard definition of the canonical momentum, we find that it is given by

p =

(

1

4

)
2

2k+1

(v − 1)
2

2k−1 − f ′(v) . (4)

The above equation is too complicated to put down the multivalued nature of velocity in a
tractable closed form.

If we try to determine the associated branches of the Hamiltonian corresponding to this
Lagrangian (3), H± emerge in a mixed form involving the momentum p, the function f(v) and
its derivative.

H± = p± 1

4

[

p+ f ′(v)
]− 2k−1

2

(

2k + 1

2k − 1
− p

[

p+ f ′(v)
]−1
)

+ U(x, v) . (5)

Since a Hamiltonian has to be a function of the coordinate and the corresponding canonical
momentum, H± as derived above is of little use.
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We note that the case k = 1 is particularly interesting to understand the spectral properties
of L(x, v). Explicitly, the Lagrangian assumes the simple but a general form

L = 3

(

1

4

)
2

3

(v − 1)
1

3 − f(v)− V (x) . (6)

A sample choice for f(v) could be

f(v) = λv + 3δ(v − 1)
1

3 (7)

with λ (≥ 0) and δ
(

< 4−
2

3

)

being suitable real constants. Observe that the presence of δ rescales

the kinetic energy coefficient which now enjoys a parametric representation.
The above form of f facilitates determination of the canonical momentum p in a closed form

as given by

p = µ(v − 1)−
2

3 − λ (8)

where µ = 4−
2

3 − δ > 0. On inversion, we find a pair of relations for the velocity depending on
p :

v±(p) = 1∓ µ
3

2 (p+ λ)−
3

2 . (9)

As a consequence, we run into two branches of the Hamiltonian which we put down in the form

H± − V (x) = (p+ λ)± 2γ√
p+ λ

(10)

For the ease of notation, note that we have replaced µ3/2 with γ. In the special case where λ = 0

Figure 1. When λ = 1 and γ = 1

2
, H±−V (x) branches correspond to the upper and lower curves respectively.

and γ = 1

4
, we recover the Hamiltonian derived in [3]. However, the presence of the parameter γ

in (10) is nontrivial as our following treatment of perturbative analysis will show. In Figure 1,
we have given a graphical illustration (for λ = 1 and γ = 1

2
) of the behavior of the two branches

of the Hamiltonian against some typical values of the momentum variable. As in the λ = 0 case
of [3] here also we encounter a cusp asymptotically with regard to p for a fixed γ.
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4. Lowest excitations and the Fourier transform

After one decides to consider just small excitations of our quantum system over a local or global
minimum (x0) of a generic analytic potential V (x), one may put the origin of the coordinate
axis to this minimum, x→ y = x− x0, and write down the Taylor series

V (x) = V (x0) + (x− x0)V ′(x0) +
1

2
(x− x0)2V ′′(x0) + . . . (11)

Recall that V ′(x0) = 0 and the zero of the energy scale can be shifted in such a manner that
V (x0) = 0. Finally, the series is truncated after the first non-trivial term yielding, in ad hoc

units,
V (x0 + y) = y2. (12)

After a Fourier transform to the momentum space, we get a transformed quantum form of
the Hamiltonian guided by the second-order differential operator,

H = − d2

dp2
+W (p) (13)

containing a one-parametric family of pseudo-potentials

W (p) = p+
2γ
√
p
. (14)

Here, the original subscript ± entering Eq. (10) may be perceived as equivalent to an optional
switch between positive coupling-type parameter γ > 0 and its negative alternative γ < 0.
Besides such a freedom of the sign of the dynamical characteristic, the consequent quantum-
theory interpretation of the model requires also a few nontrivial mathematical addenda. The
form Eq. (14) matches with Eq. (10) for λ = 0 which will now be our point of inquiry.

First of all, the most natural tentative candidate

Hφn(p) = Enφn(p) , p ∈ (−∞,∞) (15)

for the quantum Schrödinger equation living on the whole real line of momenta (i.e., with
φn(p) ∈ L2(R)) is characterized by the asymptotically linear decrease of the pseudo-potential
(14) along the left half-line. Hence, the negative half-axis of momenta p must be excluded,
a priori, as unphysical. In other words, the acceptable wave functions φn(p) should vanish,
identically, whenever p ∈ (−∞, 0). The consistent quantization of our model must be based on
the modified, half-line version of Eq. (15), viz., on Schrödinger equation

Hφn(p) = Enφn(p) , p ∈ (0,∞) (16)

such that (cf. also [2] and [3])
φn(p) ∈ L2(R+) . (17)

Still, the discussion is not yet complete. Due care must be also paid to the fact that the
inverse-square-root singularity of W (p) in the origin is “weak” (see, e.g., Ref. [11] for a detailed
explanation of the rigorous, “extension theory” mathematical contents of this concept). In the
language of physics, such a comment means that the information about possible bound states
and physics represented by Eq. (16) with constraint (17) is incomplete.

In the rest of this paper (i.e., in sections 5 and 6) we shall, therefore, describe the two
alternative versions of the completion of the missing, phenomenology-representing information.
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5. Eligible “missing” boundary conditions at small γ and p = 0

As we emphasized above, the existence of the usual discrete spectrum of bound states can only
be guaranteed via an additional physical boundary condition at p = 0. Although, from the
point of view of pure mathematics, the choice of such a condition is flexible and more or less
arbitrary, the necessary suppression of this unwanted freedom can rely upon several forms of
the physics-based intuition.

Let us split the problem into two subcategories. In a simpler scenario we shall assume that
the central core is repulsive and strong (i.e., that our parameter is positive and large, γ � 1).
This possibility will be discussed in the next section 6. For the present, let us admit that the
(real) value of γ is arbitrary and that the regular nature of our ordinary differential Schrödinger
equation near p = 0 implies that the integrability condition (17) itself still does not impose any
constraint upon the energy E [11]. A fully explicit and constructive demonstration of such an
observation may be based on the routine reduction of (16) to its simplified, leading-order form

−√p d2

dp2
ψ(p) + 2γ ψ(p) = 0 . (18)

Being valid at the very small (though still positive) values of p � 1 this equation is exactly
solvable in terms of Bessel functions [12]. Thus, one may choose either γ > 0 or γ < 0.

After some algebra we obtain the respective two-parametric families of the general solutions
which depend on two parameters C1,2 or D1,2 and which remain energy-dependent. At small p
they behave, respectively, as follows,

ψ (p) = C1

√
p I 2/3

(

4
√
2

3

√
γ p

3

4

)

+ C2

√
pK2/3

(

4
√
2

3

√
γ p

3

4

)

(19)

and

ψ (p) = D1

√
p J2/3

(

4
√
2

3

√
−γ p

3

4

)

+D2

√
pY2/3

(

4
√
2

3

√
−γ p

3

4

)

(20)

On this purely analytic background, one of the most natural resolutions of the paradox of the
ambiguity of the physical boundary conditions at p = 0 may be based on the brute-force choice
of the parameters C1,2 or D1,2 in these formulae.

Finally, let us emphasize that intuitively by far the most plausible requirement of the absence
of the jump in the wave functions at p = 0, i.e., the Dirichlet boundary condition

lim
p→0

ψ (p) = 0 (21)

would remove the latter ambiguity of quantization in the most natural manner. The resulting
pair of the requirements

C2 = 0, D2 = 0 (22)

may be then recommended as easily derived from the well known approximate formulae for the
Bessel functions near the origin [12].

6. Perturbation-theory analysis at large γ � 1

In a purely formal spirit one could complement the above-recommended Dirichlet boundary
condition (21) by its Neumann vanishing-derivative analogue

lim
p→0

ψ′ (p) = 0 (23)
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or, more generally, by a suitable Robin boundary condition. In this context it is worth adding
that with a systematic strengthening of the repulsive version of the barrier (i.e., with the growth
of the positive coupling constant γ) the specification of the additional boundary conditions at
p = 0 becomes less and less relevant because the two alternative energy levels will degenerate in
the limit γ →∞.

The most immediate explanation of this phenomenon may be provided by perturbation
theory. In the dynamical regime, when the parameter is large, a perturbative approach seems
to be particularly well suited. With γ � 1, we look at the absolute minimum of the potential
W (p) which occurs at p0, say. This value is, incidentally, unique

p0 = γ
2

3 � 1 (24)

With the construction of a Taylor series in its vicinity,

W (p) =W (p0) + (p− p0)W ′(x0) +
1

2
(p− p0)2W ′′(p0) + . . . (25)

we observe that the first term, which is given by

W (po) = 3γ
2

3 (26)

in very large in this scenario. In contrast, all of the further Taylor coefficients remain very small
and asymptotically negligible,

W ′′(po) =
3

2
γ−

2

3 , W ′′′(po) = −
15

4
γ−

4

3 . . . (27)

Clearly then, with γ � 1, H can be expressed as

H = − d2

dp2
+ 3γ

2

3 +
3

4
γ−

2

3 (p− p0)2 +O(γ−
4

3 (p− p0)3) . (28)

After one re-scales the axis p = ρq, equation (16) acquires the modified form

H̃φ̃n(q) = Enρ
2φ̃n(q) (29)

where,

H̃ = − d2

dq2
+ 3ρ2γ

2

3 +
3

4
ρ4γ−

2

3 (q − q0)2 +O(ρ5γ−
4

3 (q − q0)3) . (30)

One may now set

ρ =

(

4

3

)
1

4

γ
1

6 (31)

yielding the very weakly perturbed harmonic-oscillator Hamiltonian

H̃ = − d2

dq2
+ (q − q0)2 + γ

√
12 +O(ρ5γ−

4

3 (q − q0)3) . (32)

In full analogy to many models with similar structure (cf., the study [13] containing
further references), the exact solvability of the model in the leading-order harmonic-oscillator
approximation proves sufficient because in the domain of large γ � 1 the contribution of the
anharmonic corrections becomes negligible.
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7. Summary

To summarize, we looked at the particular example of a non-conventional form of a velocity-
dependent Lagrangian that leads to a double-valued structure of the associated Hamiltonian for
some specific choice of the underlying coupling parameter. We showed that our scheme allows for
a perturbative analysis by constructing a Taylor series near the vicinity of the absolute minimum
of the potential.
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