
International Journal of Mathematical, Engineering and Management Sciences                                                  

Vol. 6, No. 2, 677-687, 2021 

https://doi.org/10.33889/IJMEMS.2021.6.2.042 

677 

Asymptotic Stability Analysis Applied in Two and Three-Dimensional 

Discrete Systems to Control Chaos 

 
Neha Kumra 

Chitkara School of Engineering and Technology, 

Chitkara University, Baddi, Himachal Pradesh, India. 

Corresponding author: neha.kumra@chitkarauniversity.edu.in 

 

L. M. Saha 
Institute for Innovation and Inventions with Mathematics and IT, Shiv Nadar University, 

Village Chithera, Tehsil Dadri, Gautambudh Nagar, Uttar Pradesh, India. 

E-mail: lmsaha.msf@gmail.com 

 

M. K. Das 
Institute of Informatics & Communication,  

University of Delhi South Campus, Benito Juarez Road, New Delhi, India. 

E-mail: das_mkd@yahoo.com 

 
(Received July 14, 2020; Accepted January 27, 2021) 

 

 

 

Abstract 

Asymptotic stability analysis applied to stabilize unstable fixed points and to control chaotic motions in two and three-

dimensional discrete dynamical systems. A new set of parameter values obtained which stabilizes an unstable fixed point 

and control the chaotic evolution to regularity. The output of the considered model and that of the adjustable system 

continuously compared by a typical feedback and the difference used by the adaptation mechanism to modify the 

parameters. Suitable numerical simulation which are used thoroughly discussed and parameter values are adjusted. The 

findings are significant and interesting. This strategy has some advantages over many other chaos control methods in 

discrete systems but, however it can be applied within some limitations. 
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1. Introduction 
Orbits of dynamical system, originating nearby an unstable fixed point, may remain unstable 

throughout the evolution of the system. The evolutionary motion starting from such positions often 

turn to be chaotic. To obtain regular motion, one has to stabilize the initial point by changing values 

of certain parameters of the system. For this, there should be a well-defined procedures and 

asymptotic stability method can be considered as one of the most effective one. This technique 

proved to be useful, as it could regulate the chaos to achieve desirable results. 

 

Chaos management refers to the technique of modifying and regularizing the chaotic motion 

displayed in nonlinear systems. Several interesting reports on chaos control, (Auerbach et al., 1992; 

Braiman et al., 1995; Carroll & Pecora, 1993; Garfinkel et al., 1992; Litak et al., 2007; Ott et al., 

1990; Pecora & Carroll, 1990; Pyragas, 1992; Shinbrot et al., 1993) have shown that If properly 

applied to chaotic and dynamic systems, management of disorder can be of great benefit. Chaos 

control techniques like OGY and feedback control method with a good effect in a relative short 

period are being used in many nonlinear dynamical systems (Bilal Ajaz et al., 2020; Wang et al., 
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2020) plays an important role in transforming unusual behavior into regularity on various 

engineering devices such as contact signals, chemical reactions etc. 

 

The area of chaos reduction appears as an emerging study, as it includes work in all knowledge 

areas. Due to the severe tolerance and complexity of chaotic dynamics there is a big challenge in 

the control of chaos. Since almost all systems exhibiting chaotic behavior are of a nonlinear form, 

and there is no standard way to describe such behavior, the tools of chaos management for different 

chaotic systems are different. 

 

The present article is based on a method of asymptotic stability,(Erjaee, 2002; Litak et al., 2007; 

Sandeep Reddy & Ghosal, 2016; Schuster, 1999),on chaos control, and applied to some two and 

three dimensional maps. 

 

2. Description of the Method 

Dynamics of the actual map 1nX and that of the desired map 1nY  can be explained by 

following mapping: 

 

1 ( , )n nX F x p                                                                                                                               (1) 

 
*

n 1Y ( , )nF y p                                                                                                                             (2) 

 

Also, the neighborhood dynamics of 1nX and 1nY can be represented by the relation: 

 

1n R n RX A X B p   , 
*

n 1Y D n DA Y B p   . 

 

Matrices , , ,R D R DA A B B  can be obtained from the following: 

 
*( , ) ( , )

n nR x n D y nA D F X p A D F Y p   

*

*( , ) ( , )R p n D np
B D F X p B D F Y p   

1nX 

 
  
 

n

n

x

y
1nY 

 
  
 

n

n

x*

y *
. 

 

Let a, b are two parameters of the system and (xu, yu) be any unstable fixed point of above system 

for given values of a and b. Then, our objective is to obtain two new suitable values for a and b so 

that this unstable point becomes stable. For this, we need the Jacobian matrices defined by 

 

 

 

 

 

 

*,

f f f f

x y a b
J J

g g g g

x y a b

      
      
    
       
         
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The control input parameter matrix 
*p can be given by 

 

* R n M D np C X C p C Y                                                                                                              (3) 

 

Then, using (1), (2) & (3), one obtains the following error equation: 

 

  1   ( -  )   { -  ( - )} ( - )n R D R n R D D D R n R D Me A B C e A A B C C Y B B C p                                (4) 

 

where     - .n n ne X Y  

 

Note that in equation (3) and (4) the coefficient matrices ,R DC C  and MC  are to be determined so 

that if the error vector     -n n ne X Y is initialized as, 0 0e  then it will be zero for all n future 

times. For asymptotic stability, we must have 0ne  as n then equation (4) implies 

 

-  ( - ) 0R D D D RA A B C C   this implies ( - ) -D D R D RB C C A A                                               (5) 

 

and 0R D MB B C         D M RB C B                                                                                   (6) 

 

The necessary and sufficient condition for 0ne   as n  is 

-        -  R D RA B C I                                                                                                                   (7) 

 

From these, one can obtain matrices , ,M D RC C C  and then control parameter matrix 
*p  from 

equation (3). A necessary and sufficient condition for the existence of matrices , ,M D RC C C  that 

satisfies above equations (5) is given by: 

 

 (  )    (  ,   -   )   (  ,   )D D D R D RRank B Rank B A A Rank B B  . 

 

3. Dynamic Models 

(i) Prey-Predator Map 
First , we have considered Prey-Predator map, (Elsadany, 2012), written as 

 

1

1

(1 )

(1 )

n n n n n

n n n n n

X a x x b x y

Y c y y b x y





  

  
                                                                                                         (8) 

 

For a = 3.7, b = 3.5, c = 0.2, there are 4 fixed points:(0, 0), (0, - 4.0), (0.72973, 0) & (0.25712, 

0.49961) out of which fixed point (0.25712, 0.49961) is unstable. So, the Orbits originating nearby 

(0.25712, 0.49961) would also be unstable and unpredictable & may be chaotic. A nearby unstable 

fixed point, we call a desired initial point as (0.3, 0.5). At this initial point together with above 

parameter values, time series, attractor and LCE plots are obtained and shown by Figure 1. Clearly 

the system (8) is showing chaos at (0.3,0.5) with a = 3.7, b = 3.5, c = 0.2. 
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Figure 1. Time series graphs, attractor and LCE plots of the unstable system. 

 

 

Now, let us apply method of asymptotic stability discussed above for this map (8). 

 

For fixed value c = 0.2, we have the unstable fixed point (0.25712, 0.49961), and a nearby point 

(0.3, 0.5) and also 
a 3.7

p= =
b 3.5

   
   
   

. We apply the above-mentioned method and obtain: 

 

 

 

 

  

 

 

  

 

 

 

  

 

For the case when c = 0.2; new values of a and b; a = 3.91525, b = 2.99538 along with initial point 

(0.3, 0.5) a phase plot showing regular motion and plot of Lyapunov exponents (LCE) is also 

showing regularity, given in Figure 2, as value of Lyapunov characteristic exponent is negative 

always. 

R

0.048652 -0.899924
A =

1.74865 0.900078

 
 
 

D

-0.27 -1.05
A =

1.75 1.05

 
 
 

R

0.19101 -0.128462
B =

0 0.128462

 
 
 

D

0.21 -0.15
B =

0 0.15

 
 
 

M

0.90957 0
C =

0 0.85641

 
 
 

R

3.79669 -4.76117
C =

11.6577 -0.66615

 
 
 

D

2.28571 -4.7619
C =

11.6667 0.333333

 
 
 

3.91525
p* =

2.99538

 
 
 
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Figure 2. Phase plot and LCE plot of controlled system. 

 

 

(ii) Food Chain Model: (F – C Model) 
Next, we have considered three dimensional food chain model,(Elsadany, 2012) written as  

  1     (1- ) -  n n n n nx a x x b x y   

  1     -  n n n n ny c x y d y z   

  1     n n nz r y z                                                                                                                              (9) 

 

For values a = 4.1, b = 3.7, c = 3, d = 3.5, r = 3.8, all five fixed points P0, P1, P2, P3, P4 of above 

system be obtained as: P0(0, 0, 0), P1(0, 0.2632, 0.2857), P2(0.518614, 0.263158, 0.158812), 

P3(0.7561, 0, 0) and P4(0.3333, 0.4685, 0). Then, by using steps of stability analysis it has been 

checked that the fixed points P2(0.518614, 0.263158, 0.158812) and P4(0.3333, 0.4685, 0) are 

unstable. Thus, the Orbits originating nearby P2 and P4 would also be unpredictable & may be 

chaotic. Nearby P2, let us assume a desired initial point as P*(0.5, 0.3, 0.2). To proceed further, 

first we fix two parameters say b and c with same values, i.e., b = 3.7 and c=3.0. 

 

Bifurcation diagrams of the above F – C map (9) along x–axis, for three ranges of parameter c are 

obtained and given by Figure 3. 
 

 

 
 

Figure 3. Bifurcation diagrams for map (9). 

 

 

A time series graph and chaotic attractors along the coordinate planes for orbits originated at point 

(0.5, 0.3, 0.2), which is the neighborhood of unstable Fixed Point P2, shown in Figure 4 are showing 

chaos. 
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Figure 4. Time series and attractors of unstable system. 

 

 

In the process of stabilizing the desired point (0.5, 0.3, 0.2), we obtain the following matrices: 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

R

-1.12632 -1.91887 0

A = 0.789474 1.0 -0.921053

0 0.603486 1.0

 
 
 
  

D

-1.11 -1.85 0

A = 0.9 0.8 -1.05

0 0.76 1.14

 
 
 
  

R

0.249654 0 0

B = 0 -0.041793 0

0 0 0.041793

 
 
 
  

D

0.25 0 0

B = 0 -0.06 0

0 0 0.06

 
 
 
  

M

0.998614 0 0

C = 0 0.696544 0

0 0 0.696544

 
 
 
  

R

-6

-8.50528 -7.67549 0

C = -13.1579 0 15.3509

0 10.0581 6.66667×10

 
 
 
  

D

-8.44 -7.4 0

C = -15.0 3.33333 17.5

0 12.6667 2.33333

 
 
 
  

4.1035

p*= 1.05194

1.02707

 
 
 
  
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Thus, for fixed value of b = 3.7, c= 3.0, we proceeded above calculations with input  

 

 

                                        and obtained  

 

 

At these new parameter values of a, d and r, we obtain the phase plot and the plot of Lyapunov 

exponents as shown in Figure 5 below. 
 

 

 
 

Figure 5. Phase plot and LCE plot of controlled system. 

 

 

Clearly phase plot on XY plane shows finite number of points. Similar is the case with also other 

two planes. Also, LCE plot shows the Lyapunov Exponents all are negative. Hence, the system is 

no more chaotic and chaos is controlled. 

 

 

(iii) 3–D Arneodo-Coullet-Tresser (ACT) Map 
Further, let us consider an another 3-dimensional map, known as the Arneodo-Coullet-Tresser (or 

ACT) Map, (Arneodo et al., 1981, 1982),written as 

 

  1

  1  

  1

    -  (  -  )

   (  -  )

    -      

n n n n

n n n n

n n n n

x a x b y z

y bx a y z

z cx d x k e z









 

 

                                                                                      (10) 

 

For parameter values a = 0.6, b = 0.5, c = 0.41, d = 1, e = 1, k =3, ACT map (10) has an unstable 

fixed point given by (0.640312,0.0128062, 0.525056) and thus, the neighboring points this point 

(0.55, 0.01, 0.5) is also unstable. Time series graphs and chaotic attractor obtained for orbit 

originating from this neighboring point are shown in Figure 6. 

a 4.1

p= d = 3.5

r 3.8

   
   
   
   
   

*

a 4.1035

p = d = 1.05194

r 1.02707

   
   
   
   
   
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.

 
 

Figure 6. Time series graphs and Chaotic Attractor Showing chaos in ACT map (10). 

 

Plot of Lyapunov exponents (LCE) with a = 0.6, b = 0.5, c = 0.41, d = 1, e = 1, k = 3 and x=0.55, 

y=0.01, z=0.5 is given by Figure 7. 
 

 

 
 

Figure 7. LCE plot for ACT map in chaotic case. 

 

With such a desired initial point (x0, y0, z0) = (0.55, 0.01, 0.5), we proceed for steps of asymptotic 

stability analysis and obtained 

 

  

 

 

 

 

 

 

 

 

R

0.6 -0.5 0.5

A = 0.5 0.6 -0.6

-0.819998 0 1

 
 
 
  

D

0.6 -0.5 0.5

A = 0.5 0.6 -0.6

-0.4975 0 1

 
 
 
  

R

0.640312 -0.51225 0

B = -0.51225 0.640312 0

0 0 0.640312

 
 
 
  

D

0.55 0.49 0

B = -0.49 0.55 0

0 0 0.55

 
 
 
  
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with these new parameter values, a = 0.585951, b = 0.59804, c = 0.0201784 together with d = e = 

1, k = 3, x=0.55, y = 0.01, z = 0.5 the chaotic system shown earlier is controlled and evolve 

regularly. A phase diagram and the plot for Lyapunov exponents for this case are given in Figure 

8. 

 

 
 

Figure 8. Phase Plot in XY plane and the plot for Lyapunov exponents. 

 

 

Clearly phase plot on XY plane shows a single point and same is the case with other two planes. 

Also, the values of Lyapunov Exponents all are negative. This shows that the system is no more 

chaotic and showing one periodic regular case. Hence, chaos is controlled. 

 

4. Limitation 
The method of asymptotic analysis to control chaos has some limitations & it does not work for all 

dynamical systems. Suppose we desire to have a solution of system of equations 

 

AX = B, 

 

where A and B are known matrices of order, m × n and m × r respectively and X is unknown matrix 

of order n × r which is to be determined. X can be written as X (X1, X2…Xr) and B as B (B1, B2, 

Br) where Xi (i = 1,2,3, r) are n × 1 columns and Bi (i = 1,2,3…, r) are m × 1 columns. 

The system A X = B will be consistent if and only if 

 

Rank of A = Rank of augmented matrix (A, Bi),  i =1, 2, 3, r                                                  (11) 

M

1.11164 -0.590039 0

C = 0.590039 1.11164 0

0 0 1.11164

 
 
 
  

R

-0.856985 -0.145595 1.04865

C = 0.145595 -0.856985 -0.156653

-1.49091 0 0

 
 
 
  

D

-0.856985 -0.145595 1.04865

C = 0.145595 -0.856985 -0.156653

-0.904545 0 0

 
 
 
  

a 0.585951

p* = b = 0.59804

c 0.0201784

   
   
   
      
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Considering equation (5), (6), (7) again 

 

 (  -  )   -  D D R D RB C C A A                                                                                                       (12) 

 

    D M RB C B                                                                                                                             (13) 

 

-    -  R D RA B C I                                                                                                                 (14) 

 

Equations (12), (13) and (14) are consistent if and only if each one of them satisfies condition(s) 

giving by equation (11).For example (Saha et al., 2004), consider the model: 

 

"  ( ,  )       sin  ,    

  ( ,  )     sin  " 

f x y x y k x

g x y y k x

  

 
                                                                                          (15) 

 

Fixed points for this map are given by (  n , 0). The fixed point (0, 0) for k=1 is unstable & 

proceeding above calculations one finds matrix BD = 0, hence Rank (BD) = 0. 

 

But, Rank (BD: BR) is not equal to zero. So, the equation BR = BD CM   is inconsistent in this case. 

Similarly, there are many more systems where this technique fails. 

 

5. Conclusion 
We observed that the asymptotic stability method can be used appropriately to have chaos control 

for maps with n dimensions and m parameters such that m  n. One can fix the values of some m-

n parameters in case m > n, with appropriate considerations. This method could be applied in 

systems of 2, 3 or higher dimensions. However, it does have its drawbacks and it cannot be used 

for every chaotic system. Therefore, there is no evergreen strategy for treating chaos management. 

In order to have stability, different methods are needed in different non-linear systems. 
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