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Abstract 8 

The state of Meghalaya of the North Eastern Region (NER) of India, situated in the India 9 

Himalayan Region (IHR), is the rainiest place in the country and falls under seismic zone V. 10 

The Himalayan ranges account for 80% of total landslide hazards in India. The main goal of 11 

the present study is to generate the GIS-based landslide susceptibility map (LSM) of 12 

Meghalaya by using frequency ratio (FR), Shannon entropy (SE), analytical hierarchy process 13 

(AHP), and fuzzy-AHP (FAHP) models and compare these models for the study area. Fifteen 14 

landslide conditioning factors are used for susceptibility mapping includes a slope, aspect, 15 

elevation, plan curvature, stream power index (SPI), topographic wetness index (TWI), land 16 

use land cover (LULC), normalized difference vegetation index (NDVI), distance from the 17 

river, road and faults, rainfall (30 years mean annual rainfall), soil texture, geomorphology, 18 

and lithology. Landslide inventory of 1330 landslide events is prepared and mapped from 19 

various sources. The inventory dataset is randomly split in a 70/30 ratio to make the training 20 

dataset (70%) used in the model and testing dataset (remaining 30%) for validation purposes. 21 

The southern escarpment, the southeast region of the study area, and hillslope along the 22 

roadside show high susceptibility for landslide occurrence in all four models. The LSMs 23 

produced in the present study are validated using the area under curve (AUC) value. The 24 
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presented LSMs can help concerned authorities and planners to make sustainable development 25 

plans and formulate risk mitigation strategies keeping in mind the critical areas for landslide 26 

hazards.  27 

Keywords: Landslide, GIS, AHP, Fuzzy, Entropy, Northeast India, Hazard, AUC 28 

1. Introduction 29 

Landslide is a natural disaster, defined as the movement of a mass of rock, debris, or soil mass 30 

down a slope. It is one of the most frequently occurring natural hazards and has caused massive 31 

damage to infrastructure, human settlements, and loss of lives worldwide. After China, India 32 

is the second most affected country in Asia by this disaster, as per the Centre for Research on 33 

the Epidemiology of Disasters (CRED) (Guha-Sapir et al. 2012). The entire Himalayan range 34 

of India is very susceptible to landslides which accounts for approximately 80% of total 35 

landslide events in the country (Onagh et al. 2012). Due to landslides, significant damage to 36 

roads and other infrastructure, economic and human losses have been reported in Himalayan 37 

regions (Sur et al. 2020). The North Eastern Region (NER) of India is lying in the Eastern 38 

Himalayas, is highly prone to seismic hazards (seismic zone V), and experiences heavy rainfall. 39 

The region has numerous faults, shear zones, and other tectonic features. Together rainfall, 40 

high seismicity, and numerous tectonic features make the region highly susceptible to hazard 41 

like a landslide. 42 

To reduce the adverse impact of landslides, prepare risk mitigation strategies and plan the 43 

infrastructural development accordingly, the landslide susceptibility studies are proven to be 44 

an effective tool (Kanungo et al. 2006; Pourghasemi et al. 2012b). The outcome of such studies 45 

is in the form of landslide susceptibility maps (LSM) which show the spatial distribution of 46 

different susceptibility classes and locations with high risks (Chen and Li 2020). However, the 47 

reliability of the LSM depends upon the selected conditioning factors, historical landslides, 48 
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quality of data, and the applied methodology for the analysis and modeling (Sarkar and 49 

Kanungo 2004). The conditioning factors are the factors associated with topography, 50 

geomorphology, geology, land use land cover (LULC), anthropogenic activity, rainfall, 51 

seismicity, etc. (Shano et al. 2020) and are responsible for the slope failure. The relation of 52 

these factors with the past landslides forms the basis for estimating the future susceptibility of 53 

landslide occurrence (Chimidi et al. 2017). 54 

In recent times, with the use of GIS and remote sensing, several landslide susceptibility studies 55 

have been carried out worldwide using various methods/models (Sarkar and Kanungo 2004; 56 

Yilmaz 2009; Pradhan and Lee 2010; Pourghasemi et al. 2012a,b,c; Shahabi et al. 2014; Jazouli 57 

et al. 2019; Sur et al. 2020). The landslide susceptibility models can be divided into qualitative 58 

and quantitative approaches (Shano et al. 2020). The qualitative approach includes geomorphic 59 

and landslide inventory techniques and an indirect process involving multi-criteria decision 60 

analysis (MCDA) methods based on expert judgment for weight evaluation of different 61 

thematic data layers (Yilmaz 2009). The most popular MCDA methods are analytical hierarchy 62 

process (AHP) and fuzzy set-based analysis (Ercanoglu and Gokceoglu 2004; Kamp et al. 63 

2008; Akgun et al. 2012; Pourghasemi et al. 2012b; Kayastha et al. 2013; Kavzoglu et al. 2014; 64 

Shahabi et al. 2014; Shahabi and Hasim 2015; Zhao et al. 2017; Jazouli et al. 2019; Sur et al. 65 

2020). The quantitative approaches include statistical (bivariate or multivariate), deterministic, 66 

probabilistic methods, and artificial intelligence-based techniques (artificial neural network, 67 

decision trees, support vector machine (SVM), hybrid approaches) (Kanungo et al. 2006; Shano 68 

et al. 2020). Among the various quantitative approaches, bivariate statistical methods: 69 

frequency ratio (FR), Shannon entropy (SE), the weight of evidence method (WoE); 70 

multivariate statistical methods: logistic regression (LR); SVM and ANN are prevalent 71 

(Yilmaz 2009; Pradhan and Lee 2010; Pourghasemi et al. 2012b,c; Kavzoglu et al. 2014; 72 
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Shahabi et al. 2014; Roodposhti et al. 2016; Zaho et al. 2017; Nohani et al. 2019; Pham et al. 73 

2019a).  74 

In the present study, four models, namely FR, SE, AHP, and Fuzzy-AHP, are utilized to 75 

evaluate the landslide susceptibility of the state of Meghalaya. Meghalaya is situated in the 76 

NER of India, on the Shillong Plateau of the lesser Himalayas, and is one of the major tourist 77 

destinations in NER. There are few landslide susceptibility studies available for western and 78 

central Himalayan regions of Lesser and Shivalik Himalayas (Sarkar and Kanungo 2004; 79 

Mathew et al. 2009; Pareek et al. 2010; Kayastha et al. 2013; Pham et al. 2019a,b; Sur et al. 80 

2020). However, studies of eastern Himalayas are limited. The objective of the present study 81 

is to develop the LSM of Meghalaya and identify the major factors governing the landslide 82 

occurrence in the area using the four above-mentioned models. Also, to evaluate the prediction 83 

power of the most popular bivariate statistical model and MCDA model for the selected study 84 

area. The details of the study area, various conditioning factors applied, methodology, and 85 

results obtained are discussed in the following sections. 86 
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 87 

Fig. 1 Study area 88 

2. Description of the study area 89 

The study area is Meghalaya, one of the states of NER India, located on the Shillong Plateau 90 

of the Indian Himalayan Region (IHR), covering about 22400 km2 area (between longitudes 91 

89.821 E to 92.804 E and latitudes 25.031 N to 26.118 N, Fig. 1). It shares its boundary 92 

with Assam in the north and east while forming an international border with Bangladesh in the 93 

south and west. The elevation of the area ranges from 7 m to 1962 m above mean sea level. 94 

Being in the IHR, it is one of the most tectonic-active regions and rainiest places globally 95 

(Prokop 2014). The area received an average yearly rainfall of 1234.31 to 7467.48 mm between 96 
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1991 and 2020 (30-year period) (Fig. 1). The southern escarpment received the highest rainfall, 97 

as high as 12000 mm annual rainfall (recorded in Cherrapunji). The elevation of the southern 98 

escarpment of the study area is about 1200-1500 m and is related to the Dauki fault (along the 99 

southern boundary), which is much steeper than the northern slope. Due to this sudden rise in 100 

elevation over a short distance, the southern escarpment controls rainfall distribution over the 101 

region. In the study area, the slope ranges from 0° to 76°.  102 

The study area is covered by various lithologic formations, including Proterozoic 103 

(Paleoproterozoic, Mesoproterozoic) (Pr), Late Carboniferous-Permian (LcP), Mesozoic 104 

(Jurassic, Cretaceous) (Ms), Paleogene (Oligocene, Eocene, Palaeocene) (Pl), Neogene 105 

(Miocene, Pliocene) (Neo) and Cenozoic (Holocene, Quaternary, Meghalyan, Middle-late 106 

Pleistocene) (Cn) types of formations (Fig. 2), the details of which are given in Table 1. The 107 

region also consists of many lineaments and structural discontinuities and is associated with 108 

active tectonics. With respect to land use land cover, most of the study area is covered by dense 109 

vegetation (76.06%) followed by light vegetation (17.25%), human settlements and built 110 

spaces (3.22%), agricultural land (2.96%), water bodies (0.45%), and rock outcrop and bare 111 

lands (0.05%) (Fig. 2 and Table 1). These topological, geological, and other geoenvironmental 112 

factors make the study area more prone to disastrous events like landslides. 113 

Table 1 Description of lithological units in the study area 114 

Lithologic Formation Symbol 

Approximate 

areal coverage 

(%) 

Proterozoic formation (quartz, quartzite with thin phyllite 

interband, mica gneiss, migmatite, amphibolite, pyroxene 

granulite, dolerite) 

Pr 51 
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Late carboniferous-Permian (diamictite, phyllite, quartzite, 

conglomerate, feldspathic sandstone, and carbonaceous shale) 

LcP 12.5 

Paleogene (shale, sandstone, siltstone, fossiliferous limestone, 

limestone, phosphatic nodules, fireclay, coal) 

Pl 24 

Neogene (conglomerate, sandstone, siltstone, mudstone, and 

marl) 

Neo 6.5 

Cenozoic (fluvial sediments- sand, silt and clay, loamy sand, 

pebble, laterite) 

Cn 3 

Mesozoic (gritty sandstone alternating with conglomerate, 

basaltic/gabbroic and doleritic dykes, conglomerate, and 

sandstone with pebbles) 

Ms 3 

 115 

 116 

Fig. 2 Lithological units in the study area 117 

3. Material and methods 118 

3.1. Data collection 119 
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In the present study, the data is collected from several sources such as the Bhukosh-Geological 120 

Survey of India (GSI) (https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx) for the creation 121 

of landslide inventory, geomorphology map, and maps of other geological features. The USGS 122 

earth explorer portal (https://earthexplorer.usgs.gov/) is used to collect the SRTM digital 123 

elevation model (DEM) of 30 m resolution. The DEM dataset is utilized to create topographic 124 

maps (like slope, aspect, curvature) and to obtain the stream network of the study area.  125 

3.1.1. Landslide inventory 126 

The prediction accuracy of the LSM primarily depends upon the accuracy of the inventory of 127 

the past landslide data (Reichenbach et al. 2018). Landslide data points are collected from the 128 

Bhukosh-GSI and Google-Earth images. A sum of 1330 landslides is obtained and mapped to 129 

produce the landslide inventory map (Fig. 1). The size of mapped landslides varies from 100 130 

m2 to 1,24,319 m2. As landslides smaller than one cell size (10 m × 10 m) cannot be drawn, the 131 

minimum size is fixed at 100 m2, and landslides equal to or larger than this size are considered 132 

for the study. Identified landslides are generally rainfall-induced and some due to 133 

anthropogenic activity. The failure mechanism is either shallow rotational or translational 134 

failure with debris and rock-cum-debris movement.  135 

Finally, the landslide inventory data are randomly distributed in a 70/30 ratio to create the 136 

training and testing dataset, respectively (Chen and Li 2020). The training dataset (at 933 137 

locations ≈ 70%) is used to build the model, and the testing dataset (397 sites ≈ 30%) is used 138 

to validate the model. 139 

3.1.2. Landslide conditioning factor 140 

After creating the landslide inventory, selection of factors influencing/governing the landslide, 141 

i.e., conditioning factors, are central for any GIS-based landslide susceptibility model (Sarkar 142 

and Kanungo 2004). Based on the analysis of previous studies and regional geological-143 

https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx
https://earthexplorer.usgs.gov/
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environmental characteristics, fifteen landslide conditioning factors are considered in this 144 

study. These factors are discussed in detail in the following section. 145 

3.1.2.1. Slope (degrees), aspect, and elevation 146 

The slope angles have a direct impact on landslides (Pourghasemi et al. 2012b), as with the 147 

increase in the angle of slope, the effect of stress and gravity on the slope forming material 148 

increases. The amount of sunshine, rainfall, and other hydrological processes are affected by 149 

the slope aspect, which describes the direction of the slope face. It impacts the surface material 150 

properties, wetness index, weathering condition, and land cover (Galli et al. 2008). On the other 151 

hand, elevation influences landslides indirectly by affecting rainfall, surface forming material, 152 

land use/cover, geological, and tectonics (Pham et al. 2019a). Therefore, these factors are 153 

frequently used in landslide susceptibility studies (Ercanoglu and Gokceoglu 2004; Sarkar and 154 

Kanungo 2004; Mathew et al. 2009; Yilmaz 2009; Pourghasemi et al. 2012a; Chen and Li 155 

2020). In this study, the slope map, aspect map, and elevation map of the study area are derived 156 

from DEM using ArcMap 10.8, resampled to 10 m resolution (Figs. 3a-c). 157 

3.1.2.2. Plan curvature 158 

The plan curvature is derived from DEM using ArcMap 10.8 with a resolution of 10 m. 159 

Curvature influences the surface erosion processes, especially during the rainfall, by either 160 

converging or diverging the downhill flow and thus becomes one of the critical factors 161 

controlling the landslide event (Oh and Pradhan 2011). The plan curvature classified into three 162 

classes (concave (<-0.05), flat (-0.05-0.05), and convex (>0.05)) (Fig. 3d). 163 

3.1.2.3. Stream power index (SPI) and topographic wetness index (TWI) 164 

Stream power index (SPI) is a topographic factor that reflects the erosive power of streams in 165 

any catchment assuming the discharge is proportional to a specific catchment area (AS) (Moore 166 

et al. 1991). The SPI can be obtained using Equation 1 (Moore et al. 1991). 167 
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tan
S

SPI A =                                                                           (1) 168 

Where ꞵ is the local slope ( in degrees).  169 

Topographic wetness index (TWI) is another topographic factor frequently used in landslide 170 

susceptibility studies, suggesting the tendency of water to accumulate at any point in the 171 

catchment and the tendency of movement of water along the slope under gravitational forces 172 

(Bordoni et al. 2020). Water accumulation at any point can affect the stability of the slope, 173 

depending on the surface forming material and its effect on the geotechnical properties like 174 

permeability, pore water pressure, and shear strength (Yilmaz 2009). It can be defined by 175 

Equation 2. 176 

ln
tan

a
TWI


 

=  
 

                                                                       (2) 177 

Where a is upslope catchment area, and tan(ꞵ) is the slope angle.  178 

The present study prepared the SPI and TWI map using SAGA GIS tools in QGIS and classified 179 

it into five classes, as shown in Figs. 3e-f. 180 

3.1.2.4. Distance from the river 181 

Distance from the river is inversely related to landslides, as the closer the river the more the 182 

chance of the slope being unstable. The proximity to streams increases the soil moisture and 183 

erodes the toe of the slope, making the area in the vicinity more susceptible to landslides 184 

(Pourghasemi et al. 2012b). The stream network map of order four or more is obtained by using 185 

DEM in ArcMap. Finally, the area is divided into five different buffer zones from the river at 186 

a 150 m distance (Fig. 3g). 187 

3.1.2.5. Distance from road  188 
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An anthropogenic activity like road construction alters the natural slope of the hilly area and 189 

increases the slope instability. In the past, numerous landslides have occurred in the vicinity of 190 

roads either constructed or under construction (Wang et al. 2015; Roodposhti et al. 2016; Pham 191 

et al. 2019b). In the present study, the road network data is collected from the Openstreet map 192 

(https://www.openstreetmap.org/export). In this study, highways, primary, secondary, and 193 

tertiary roads are considered. Finally, the area is divided into five different buffer zones from 194 

the roads at a 150 m distance (Fig. 3h). 195 

3.1.2.6. Distance from fault 196 

Fault represents structural discontinuities with reduced rock strength, making the area 197 

vulnerable to landslides (Chen and Li 2020). In this study, major structural discontinuities are 198 

obtained from Bhukosh-GSI and buffered into five different zones at 1000 m distance intervals 199 

(Fig. 3i). 200 

3.1.2.7. Land use land cover (LULC) 201 

The land use land cover (LULC) of any region has a direct influence on slope stability. The 202 

bare land and built space have shown a positive impact of landslides in the past. In the present 203 

study, a global LULC map derived from Sentinet-2 imagery at 10 m resolution by ESRI is 204 

used. The map is available with ten land use classes: water, trees (forested area/dense 205 

vegetation), grass, flooded vegetation, crops, shrub, built space, bare ground snow/ice, and 206 

clouds. The LULC map is extracted by mask for the study area, and classes like grass and shrub 207 

are grouped into a single category named light vegetation. In contrast, flooded vegetation and 208 

crop are grouped into agricultural land (Fig. 3j). Further, the accuracy assessment of 209 

reclassified LULC map is done through randomly generated 300 points falling under different 210 

land-use classes (Table 2). The overall accuracy is 85.33%, while the kappa coefficient (k) 211 

value is 0.824. The value of k > 0.8 shows that the used map is reasonably accurate. 212 

https://www.openstreetmap.org/export
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Table 2 Accuracy assessment of LULC map using kappa coefficient (k) 213 

LULC Classes 
Water 

Dense 

veg. 

Light 

veg. 

Agri 

land 

Built 

space 

Bare 

land 
Total 

(User) 
1 2 3 4 7 8 

Water 1 49 0 0 1 0 0 50 

Dense veg. 2 0 43 5 1 0 1 50 

Light veg. 3 0 1 35 10 0 4 50 

Agri land 4 1 0 5 41 0 3 50 

Built space 7 0 2 4 3 41 0 50 

Bare land 8 2 0 1 0 0 47 50 

Total (Producer) 52 46 50 56 41 55 300 

Overall accuracy       85.33% 

kappa coefficient(k)       0.82 

 214 

3.1.2.8. Normalized difference vegetation index 215 

Normalized difference vegetation index (NDVI) is an indicator of green cover over an area and 216 

the health of the biomass. Higher NDVI values indicate more vegetation cover, and a healthy 217 

vegetation cover offers higher stability to slopes and reduces the probability of landslide 218 

(Nohani et al. 2019). The NDVI map is derived using Sentinel-2 multispectral imagery with 219 

10 m resolution using ArcMap 10.8 and grouped into six classes (Fig. 3k). 220 

3.1.2.9. Rainfall 221 

Precipitation, especially in the form of rain, is one of the foremost reasons for landslide 222 

occurrence on hill slopes. However, the influence of rainfall on landslides is governed by the 223 

slope forming material, land cover, lithology, etc. (Can et al. 2005). For this study, rainfall data 224 

of the last 30 years (1991-2020) is collected from the India Meteorological Department (Pai et 225 

al. 2014) ( 226 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html). The 227 

mean annual rainfall (1991-2020) is calculated and mapped in the GIS environment (Fig. 3l).  228 

3.1.2.10. Soil texture 229 

https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
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The topsoil covers of any area influence the landslide susceptibility (Sarkar and Kanungo 230 

2004). In the present study, the soil map is derived from a world soil map (FAO soil map). The 231 

soil present in the area is mostly loam, sandy loam, and clay (Fig. 3m). 232 

3.1.2.11. Geomorphology 233 

The geomorphology of an area influences the landslide occurrence in the area and is considered 234 

in many susceptibility studies (Pham et al. 2019b). A geomorphological map for the study area 235 

is obtained from the Bhukosh-GSI and the region is classified into seven geomorphological 236 

units (highly dissected plateau (HDP), moderate to low dissected plateau (MDP), highly 237 

dissected hills and valley (HDHV), moderate to low dissected hills and valley (MDHV), 238 

pediment-pediplain complex (PC), alluvial-flood plain (AP) and water bodies (W)) (Fig. 3n).  239 

3.1.2.12. Lithology 240 

The lithology of an area often governs the rock strength and permeability of the rocky soils. 241 

Therefore, in landslide susceptibility studies, it is considered one of the essential factors 242 

(Pradhan and Lee 2010; Wang et al. 2015; Chen and Li 2020). The lithological map of the 243 

study area is obtained from Bhukosh-GSI (at a scale of 1:2M). The lithological formations are 244 

grouped into six classes depending upon the geological era, as mentioned in section 2 (Fig. 2).  245 

All fifteen landslide conditioning factors are transformed into the spatial resolution of 10 m 246 

before using for the susceptibility studies. 247 

 248 
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 262 

Fig. 3 Conditioning factor maps of the study area: (a) Slope (degrees), (b) Aspect of slope, (c) 263 

Elevation, (d) Plan Curvature, (e) SPI, (f) TWI, (g) Distance from river, (h) Distance from road, 264 

(i) Distance from faults, (j) LULC, (k), NDVI, (l) mean annual rainfall (mm/year), (m) Soil 265 

texture, (n) Geomorphology. 266 

3.2. Methodology 267 

For landslide susceptibility assessment, the present study utilizes the bivariate models 268 

(frequency ratio and Shannon entropy) and MCDA models (AHP and Fuzzy-AHP), elaborated 269 

in the following section. 270 
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3.2.1. Frequency ratio (FR) 271 

This approach suggests the possibility of a future event based on past information and it is used 272 

in various studies (Yilmaz 2009; Pradhan and Lee 2010; Chimidi et al. 2017; Nohani et al. 273 

2019; Shano et al. 2020). This method derives the spatial relation between landslide location 274 

(number of landslide pixels) and each landslide conditioning factor. As it represents the 275 

possibility of occurrence, the greater FR value shows higher chances of landslide occurrence 276 

and higher corresponding hazard (Pradhan and Lee 2010). FR of each class of all the 277 

conditioning factors can be obtained using Equation 3. 278 

( )
( )

i

i

i

LS LS
FR

A A
=                                                                              (3) 279 

Where FRi = frequency ratio of ith class, LSi = total landslide area (number of landslide pixels) 280 

in the ith class, LS = total landslide area (total number of landslide pixels) in the study area, Ai 281 

= area falling under ith class (total number of pixels of ith class), and A = total area (total number 282 

of pixels of the entire map).  283 

These FR values of different classes (Table 5) are then used to obtain the prediction rate (PR) 284 

of each factor which depicts the weightage of individual factors, using Equations 4-6. 285 

( )i i
RF FR FR=                                                                           (4)  286 

, ,( ) ( )
j i j i j

R MAX RF MIN RF= −                                                             (5) 287 

( )
j j

PR R MIN R=                                                                        (6) 288 

Where RF is relative frequency, MAX(RFi,j) is the maximum value of RF of jth factor, 289 

MIN(RFi,j) is the minimum value of RF of jth factor, PRj is the prediction rate of jth factor. 290 
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The PRj will be the weight of the jth factor, i.e., Wj,FR. Finally, to obtain the landslide 291 

susceptibility map, the FR of different classes of influencing parameters and Wj,FR of each 292 

parameter is integrated and summed up together, as in Equation 7 (Yilmaz 2009). 293 

( ),

1 1

n m

FR ij j FR

j i

LSM FR W
= =

=                                                            (7) 294 

3.2.2. Shannon entropy (SE) 295 

Entropy is the quantitative measurement of deviation, variability, instability, and uncertainty 296 

of a system and can be used to predict the future trend of a specified system (Lotfi and 297 

Fallahnejad 2010). The Shannon entropy has been widely used for the weighted index 298 

calculation in the landslide and other hazard studies (Wang et al. 2011; Pourghasemi et al. 299 

2012c; Zhao et al. 2017; Nohani et al. 2019). It analyses the dissimilarity in the system in 300 

susceptibility studies, demonstrating the potential for each contributing factor to cause a 301 

landslide. A higher SE index indicates a more significant impact of the factor on the landslide 302 

occurrence (Roodposhti et al. 2016). Equations 8-10 are used for the calculation of information 303 

coefficient (weighted index) based on SE (Pourghasemi et al. 2012c; Zhao et al. 2017). 304 

1

m

ij ij ij

i

P FR FR
=

=                                                                        (8) 305 

2

12

1
log

log ( )

m

j ij ij

ij

D P P
m =

 −
=   
 

  ,   i = 1, 2… m and j = 1, 2… n          (9) 306 

( ) ( ),

1

1 1
n

j SE j j

j

W D E
=

= − −                                                          (10) 307 

Where FR = frequency ratio, Pij = probability density for each class, Dj = entropy of the jth 308 

conditioning factor, mj = number of classes in the jth factor, n = number of factors, and Wj,SE = 309 
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entropy weight of each factor. Table 5 shows entropy weights obtained for all the conditioning 310 

factors. These are normalized and used to get the LSM shown in Fig. 6. 311 

3.2.3. Analytical hierarchy process (AHP) 312 

It is a semi-quantitative, multi-criteria decision-making approach developed by Saaty (Saaty 313 

2000,2008). It involves problem definition, objective, alternatives, pairwise comparison matrix 314 

for weight determination, and overall priority of the factors (or sub-factors) contributing to 315 

landslide (Saaty 2008; Shano et al. 2020). In landslide susceptibility studies, it is one of the 316 

frequently used methods for assigning the weightage to conditioning factors and sub-factors 317 

(Kamp et al. 2008; Kayastha et al. 2013; Shahabi and Hasim 2015; Jazouli et al. 2019). 318 

In AHP, conditioning factors (or their classes) are arranged in the hierarchic order and assigned 319 

a numerical value subjective to judgment based on their relative importance, forming a pairwise 320 

comparison matrix (Table 6 and 7). In the matrix, the scale of assigned value can vary between 321 

1 and 9 based on degrees of preference of one factor (on the vertical axis) over the other (on 322 

the horizontal axis) (Table 3). A higher value shows greater dominance of that factor. Similarly, 323 

these values can vary inversely (1/9 to 1) when the element on the horizontal axis is more 324 

dominant than that on a vertical axis (Table 3). In the present study, for assigning the degree 325 

of preference scale to a factor (or their classes), the relative percentage of area affected by 326 

landslide in that class category is used to make the judgment. Thus, it allows the consideration 327 

of “previous knowledge” and reduces the bias in the scheme (Yilmaz 2009). After the 328 

comparison matrix is built up, the next step is to find criteria weights and consistency ratio 329 

(CR) in Equation 11. 330 

CR CI RI=                                                                       (11)    331 

( ) ( )max 1 1CI n= − −                                                             (12)   332 
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Where CI = consistency index, λmax = principal Eigenvalue, and n = order of the matrix. And 333 

RI = random consistency index that depends upon the order of the matrix (Table 4). 334 

As per Saaty (2008), CR should be less than 0.10, only then the formed comparison matrix is 335 

consistent, and if not so, it represents inconsistency in the factor ratings. One must revise the 336 

matrix until it becomes consistent. In the present study, for the pairwise comparison matrix of 337 

conditioning factors, the CR is equal to 0.049. Also, for the comparison matrix of classes of 338 

each factor, the CR value is less than 0.10 (Table 6 and 7). 339 

Finally, the criteria weights can be integrated to generate the LSM using Equation 13. 340 

, ,

1 1

( )
n m

AHP ij AHP j AHP

j i

LSM w W
= =

=                                                   (13) 341 

Where Wj,AHP = weight of jth conditioning factors and wij,AHP = weight of an ith class of the jth 342 

factor using AHP. Fig. 8 shows the LSM using this model. 343 

Table 3 The scale of preference in AHP (Saaty 2000) and triangular fuzzy scale in FAHP 344 

(Kannan et al. 2013) 345 

Degree of preference 

(AHP)/ Linguistic 

Variables (FAHP)  

The scale of preferences 

(Saaty, 2000) 

Triangular Fuzzy Scale 

of preference (Kannan et 

al. 2013) 

Equal 1 1,1,1 

Moderate 3 2,3,4 

Strong 5 4,5,7 

Very strong 7 6,7,8 

Extremely strong 9 9,9,9 

Intermediate 

2 1,2,3 

4 3,4,5 

6 5,6,7 

8 7,8,9 

Reciprocals 1/2, 1/3, ..., 1/9 
Inverse (e.g. (2,3,4)-1 = 

(1/4,1/3,1/2)) 
  

 346 

Table 4 Random consistency index as per Saaty (2000) 347 
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 

RI 0.00 0.00 0.58 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.53 1.56 1.57 

 348 
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Table 5 Frequency ratio of classes of various conditioning factors and weights assigned using FR and SE models 349 

Sl. 

No 

Conditioning 

Factors 

Class Pixels (%) Landslide Pixels 

(%) 

FR PR 

(Wj,FR) 

Wi,SE 

1 Slope (degrees) <10° 48.70 4.31 0.08 4.79 11.45 

10°-20° 34.11 17.58 0.51 

20° - 30° 12.43 29.11 2.34 

30° - 40° 3.91 33.04 8.45 

>40° 0.85 15.95 18.69 

2 Aspect Flat (-1) 1.77 0.00 0.00 1.27 1.73 

North (0-22.5, 337.7-360) 6.37 5.04 0.79 

Northeast (22.5-67.5) 10.59 14.05 1.32 

East (67.5-112.5) 12.93 14.51 1.12 

Southeast (112.5-157.5) 14.98 16.50 1.10 

South (157.5-202.5) 14.75 16.86 1.14 

Southwest (202.5-247.5) 13.18 14.65 1.11 

West (247.5-292.5) 12.99 8.81 0.67 

Northwest (292.5-337.5) 12.45 9.59 0.77 

3 Elevation (m) <300 29.73 28.00 0.94 1.00 0.71 

300 - 500 15.60 12.89 0.82 

500 - 700 10.75 11.87 1.10 

700 - 900 11.46 9.42 0.82 

900 - 1100 10.13 8.77 0.86 

1100 - 1300 8.09 12.40 1.53 

1300 - 1500 6.35 11.31 1.78 

>1500 7.90 5.34 0.67 

4 Plan curvature 

(100/m) 

Concave (<-0.05) 35.83 51.13 1.42 2.74 2.47 

Flat (-0.05-0.05) 21.52 9.43 0.43 

Convex (>0.05 42.65 39.43 0.92 

5 <150 8.35 4.02 0.48 1.15 0.53 
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Distance from river 

(m) 

150 - 300 7.80 6.93 0.88 

300 - 450 7.37 6.10 0.82 

450 - 600 7.02 6.22 0.88 

>600 69.46 76.73 1.10 

6 Distance from road 

(m) 

<150 5.97 22.06 3.69 2.44 2.43 

150 - 300 5.12 7.50 1.46 

300 - 450 4.62 10.88 2.35 

450 - 600 4.24 6.00 1.41 

>600 80.06 53.56 0.66 

7 Distance from faults 

(m) 

<1000 7.27 5.02 0.69 1.50 1.39 

1000 - 2000 7.09 6.99 0.98 

2000 - 3000 7.00 13.36 1.90 

3000 - 4000 6.79 12.38 1.82 

>4000 71.86 62.27 0.86 

8 LULC Waterbodies 0.45 0.35 0.77 5.45 11.84 

Dense Vegetation 76.06 79.89 1.05 

Light Vegetation 17.25 16.95 0.98 

Agricultural Land 2.96 0.05 0.01 

Built Area 3.22 2.35 0.73 

Bare Land 0.05 0.42 8.48 

9 NDVI <0.015 0.08 0.01 0.07 2.16 2.92 

0.015 - 0.14 1.24 2.52 2.02 

0.14 - 0.18 2.32 4.13 1.78 

0.18 - 0.27 12.90 15.24 1.18 

0.27 - 0.36 20.12 20.63 1.02 

0.36 - 0.999 63.33 57.48 0.90 

10 SPI < 0.13523 44.64 13.34 0.29 5.05 10.94 

0.13523 - 0.3 21.29 8.93 0.41 

0.3 - 0.6 19.05 16.26 0.85 

0.6 - 1.2 11.26 28.92 2.56 
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>1.2 3.76 32.55 8.65 

11 TWI <5 2.14 16.27 7.58 5.92 14.01 

05-07.0 61.77 68.4 1.10 

07-09.0 23.59 11.80 0.50 

09-11.0 6.70 2.69 0.40 

>11 5.77 0.82 0.14 

12 Rainfall (mm/year) <2200 23.14 5.66 0.24 4.17 7.28 

2200 - 3500 47.01 27.14 0.57 

3500 - 4800 13.39 16.26 1.21 

4800 - 6100 11.65 24.98 2.14 

>6100 4.79 25.93 5.41 

13 Soil texture Loam 41.33 13.80 0.33 4.14 10.25 

Sandy Clay 44.40 10.11 0.22 

Clay Loam 10.26 49.46 4.81 

Clay 3.99 26.62 6.67 

14 Geomorphology MDHV 14.26 38.12 2.67 3.16 9.37 

HDP 30.07 3.10 0.10 

MDP 40.50 14.80 0.36 

PC 0.28 0 0.00 

AP 0.96 0.02 0.02 

W 2.53 4.63 1.82 

HDHV 11.38 39.30 3.45 

15 Lithology Cn 3.15 0.01 0.00 5.53 12.67 

Neo 6.46 2.73 0.42 

Pl 24.09 34.09 1.41 

Ms 2.93 22.99 7.84 

LcP 12.30 8.00 0.65 

Pr 51.05 32.15 0.63 

 350 
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Table 6 Pairwise comparison matrix, consistency ratio, and weights assigned to each class of different conditioning factors by AHP 351 

Conditioning 

factors 
Classes  1 2 3 4 5 6 7 8 9 CR 

Weight

s 

(wij,AHP

) 

Slope (degree) <10° 1 1 0.50 0.33 0.20 0.14         0.017 0.052 

10°-20° 2  1 0.50 0.33 0.20 
    

0.087 

20° - 30° 3   1 0.50 0.33 
    

0.150 

30° - 40° 4    1 0.33 
    

0.239 

>40° 5    
 

1         0.471 

Aspect Flat (-1) 1 1 0.11 0.11 0.13 0.13 0.13 0.13 0.14 0.14 0.054 0.014 

North (0-22.5) 2  1 1 2 3 3 4 5 4 0.235 

Northeast (22.5-67.5) 3   1 2 2 3 2 3 3 0.193 

East (67.5-112.5) 4    1 1 2 2 6 7 0.159 

Southeast (112.5-157.5) 5     1 1 2 5 3 0.123 

South (157.5-202.5) 6      1 1 3 3 0.095 

Southwest (202.5-247.5) 7       1 3 2 0.085 

West (247.5-292.5) 8        1 0.50 0.043 

Northwest (292.5-337.5) 9        
 

1 0.053 

Elevation (m)  <300 1 1 1 0.50 0.50 0.20 0.20 0.20 0.33   0.031 0.040 

300 - 500 2  1 0.33 0.50 0.33 0.25 0.25 0.33 
 

0.044 

500 - 700 3   1 1 0.25 0.25 0.20 0.50 
 

0.071 

700 - 900 4    1 0.50 0.33 0.33 0.33 
 

0.072 

900 - 1100 5     1 1 0.50 0.50 
 

0.159 

1100 - 1300 6      1 1 2 
 

0.217 

1300 - 1500 7       1 2 
 

0.241 

>1500  8       
 

1   0.156 

Plan curvature 

(100/m) 

Concave (<-0.05) 1 1 4 1             0.000 0.444 

Flat (-0.05-0.05) 2  1 0.25 
      

0.111 
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Convex (>0.05) 3  
 

1             0.444 

Distance from 

river (m) 

<150 1 1 0.50 2 2 3         0.020 0.247 

150 - 300 2  1 2 3 4 
    

0.370 

300 - 450 3   1 2 3 
    

0.189 

450 - 600 4    1 2 
    

0.120 

>600 5    
 

1         0.073 

Distance from 

road (m) 

<150 1 1 2 3 4 5         0.015 0.416 

150 - 300 2  1 2 3 4 
    

0.262 

300 - 450 3   1 2 3 
    

0.161 

450 - 600 4    1 2 
    

0.099 

>600 5    
 

1         0.062 

Distance from 

faults (m) 

<1000 1 1 1 2 2 3         0.020 0.292 

1000 - 2000 2  1 1 3 4 
    

0.289 

2000 - 3000 3   1 2 3 
    

0.220 

3000 - 4000 4    1 2 
    

0.124 

>4000  5    
 

1         0.075 

LULC Waterbodies 1 1 0.50 0.25 0.50 0.20 0.17       0.047 0.046 

Dense Vegetation 2  1 0.33 0.33 0.33 0.20 
   

0.065 

Light Vegetation 3   1 2 2 0.33 
   

0.199 

Agricultural Land 4    1 0.33 0.25 
   

0.106 

Built Area 5     1 0.33 
   

0.184 

Bare Land 6     
 

1       0.401 

NDVI  <0.015 1 1 0.17 0.17 0.33 0.33 0.50       0.028 0.045 

0.015 - 0.14 2  1 0.50 2 3 4 
   

0.266 

0.14 - 0.18 3  
 

1 2 3 4 
   

0.335 

0.18 - 0.27 4    1 2 3 
   

0.167 

0.27 - 0.36 5     1 3 
   

0.120 

0.36 - 0.999 6     
 

1       0.066 

SPI < 0.13523 1 1 0.50 0.33 0.25 0.14         0.048 0.05 

0.13523 - 0.3 2  1 0.33 0.20 0.14 
    

0.07 
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0.3 - 0.6 3   1 0.33 0.20 
    

0.13 

0.6 - 1.2 4    1 0.33 
    

0.25 

>1.2 5    
 

1         0.51 

TWI <5 1 1 3 5 6 7         0.050 0.49 

05-07.0 2  1 3 5 7 
    

0.27 

07-09.0 3   1 2 5 
    

0.13 

09-11.0 4    1 2 
    

0.07 

>11 5    
 

1         0.04 

Rainfall 

(mm/year) 

<2200 1 1 0.50 0.33 0.20 0.14         0.044 0.05 

2200 - 3500 2  1 0.33 0.20 0.14 
    

0.07 

3500 - 4800 3   1 0.33 0.20 
    

0.13 

4800 - 6100 4    1 0.33 
    

0.26 

>6100  5    
 

1         0.50 

Soil texture Loam 1 1 0.50 0.17 0.14           0.037 0.06 

Sandy clay 2  1 0.17 0.14 
     

0.08 

Clay loam 3   1 0.50 
     

0.34 

Clay 4   
 

1           0.52 

Geomorpholo

gy 

MDHV 1 1 5 4 7 7 3 1     0.052 0.29 

HDP 2  1 0.33 3 3 0.33 0.14 
  

0.06 

MDP 3   1 3 3 0.33 0.14 
  

0.09 

PC 4    1 1 0.20 0.14 
  

0.03 

AP 5     1 0.20 0.14 
  

0.03 

W 6      1 0.25 
  

0.15 

HDHV 7      
 

1     0.35 

Lithology Cn 1 1 0.50 0.20 0.14 0.33 0.33       0.030 0.04 

Neo 2  1 0.25 0.20 0.50 0.33 
   

0.06 

Pl 3   1 0.33 3 2 
   

0.22 

Ms 4    1 5 5 
   

0.45 

LcP 5     1 1 
   

0.10 

Pr 6      1       0.12 
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 352 

Table 7 Pairwise comparison matrix and the weight assigned to each landslide conditioning factor by AHP 353 

S. 

No. 

Conditioning 

Factors 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Criteria 

Weight 

(Wj,AHP) 

1 Slope  1 4 2 3 5 
 

6 3 4 2 3 4 3 3 2 0.156 

2 Aspect  1 3 2 2 0.33 2 0.33 1 0.33 0.50 1 0.50 0.33 0.33 0.046 

3 Elevation   1 2 3 2 6 2 3 1 2 2 1 0.50 0.33 0.078 

4 Plan curvature    1 2 0.50 2 1 2 0.33 0.50 1 0.50 0.50 0.50 0.040 

5 Distance from 

river  

    1 0.20 1 0.50 1 0.50 0.25 1 0.50 0.33 0.20 0.025 

6 Distance from road       1 3 2 3 2 3 2 1 2.00 0.50 0.094 

7 Distance from 

faults  

      1 0.50 1 0.25 0.20 1 0.33 0.25 0.14 0.021 

8 TWI        1 2 0.50 1 2 0.50 0.33 0.33 0.048 

9 SPI         1 0.33 0.33 0.50 0.33 0.33 0.25 0.025 

10 LULC          1 2 2 2 0.50 0.50 0.080 

11 NDVI           1 3 2 1 0.50 0.070 

12 Soil texture            1 0.50 0.33 0.20 0.032 

13 Geomorphology             1 0.50 0.33 0.061 

14 Lithology              1 0.50 0.090 

15 Rainfall               1 0.135 

CR  0.049 

 354 
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3.2.4. Fuzzy-AHP (FAHP) 355 

In this method, a fuzzy pairwise comparison matrix is constructed based on the linguistic 356 

variables defined by the triangular fuzzy scale number (TFN) in Table 3 (Kannan et al. 2013). 357 

Five fundamental methods of Fuzzy-AHP are frequently employed in various decision-making 358 

studies (Pehlivan et al. 2017). FAHP, using a geometric mean method developed by Buckley 359 

(1985), is employed in the present study. It is an extension of AHP using the linguistic 360 

variables, and the steps involved are summarised below (Buckley 1985; Pehlivan et al. 2017): 361 

Step 1: Fuzzification 362 

Fuzzification is the conversion of a linguistic term into a membership function. A triangular 363 

membership function is shown in Fig. 4. The parameter l1, m1, u1 denotes the lowest value, 364 

most likely value (middle value), and the upper value that forms a fuzzy value (µA, e.g., 365 

( ),11 1 1 1, ,
A

l m u = ) and is called TFN (Kahraman et al. 2003). 366 

 367 

 368 

Fig. 4. Triangular membership function (TFN)          369 

Using TFN, a pairwise comparison matric 
ij

M  =   is constructed (Table 8 & 9). 370 



32 

 

( )
( )

( )

12 1

21 2

1 2

1,1,1

1,1,1

1,1,1

n

n

n n n n

M

 
 

 


 
 
 =
 
 
  

                                             (14) 371 

Where ( ), ,
ij ij ij ij

l m u = , i, j = 1, 2, ..., n is TFN. 372 

Step 2: Calculation of fuzzy geometric mean value (ri) for ith criteria 373 

( )( )1

1 2

n

i i i inr   =                                                                (15) 374 

Step 3: For each criterion, calculation of fuzzy weights (wi) 375 

( )( 1)

i i i
w r r

−
=                                                                      (16) 376 

Where ( )( 1) 1 1 1
, ,i

i i i

r
u m l

−  
=   
 

   
 377 

Step 4: De-Fuzzification 378 

In this step, the fuzzy weights are de-fuzzified using the center of area (COA) method 379 

3

i i i
i

l m u
w

+ + =  
 

                                                                (17) 380 

Where wi is non-fuzzy weights. 381 

The normalized de-fuzzified weights are obtained for both conditioning factors (Wj,FAHP) and 382 

their classes (wij,FAHP). These weights are integrated using Equation 18 and used to generate 383 

LSM (Fig. 9). In the past, very few landslide susceptibility studies have been performed using 384 

the FAHP model (Roodposhti et al. 2014; Mallick et al. 2018; Sur et al. 2020).  385 
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, ,

1 1

( )
n m

FAHP ij FAHP j FAHP

j i

LSM w W
= =

=                                                    (18) 386 

The landslide susceptibility maps obtained using all the methods are classified into five 387 

susceptibility classes (very low, low, moderate, high, and very high) based on the natural breaks 388 

classification system (Pourghasemi et al. 2012b) (Fig. 5, 6, 7 & 8). 389 

3.3. Validation of models 390 

In susceptibility studies, model validation is a non-disposable step that suggests the prediction 391 

accuracy of the model. For validating the models, produced LSM are compared with testing 392 

landslide dataset (30% of landslide inventory) locations. The receiver operating characteristics 393 

(ROC) curve is plotted, which represents the true positives (sensitivity) versus false positives 394 

(specificity), and AUC (area under the curve) is utilized for prediction accuracy assessment 395 

(Ayalew and Yamagishi 2005; Mathew et al. 2009). Higher AUC values imply a better model, 396 

and its value range from 0.5 to 1 (Shahabi and Hashim 2015). If AUC is more than 0.8, it is 397 

considered a good fit (Yilmaz 2009). Fig. 10 shows the ROC curve for all four models used in 398 

the study. 399 

4. Results and discussion 400 

4.1. Identification of most influential factors and their classes 401 

In GIS-based susceptibility studies, it is essential to identify the relative influence of each 402 

conditioning factor and its classes on the occurrence of the event. The weights corresponding 403 

to each factor and their classes are calculated using FR and SE method, listed in Table 5. The 404 

FR value shows a spatial correlation between factors and landslide inventory. Therefore, it is 405 

assumed that the higher the FR, the larger the influence of a particular factor on the landslide. 406 

In the present study, pixels with slopes equal to or greater than 30° have higher FR than others. 407 
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In AHP and FAHP models, the subcategory of 30°-40° and >40° slope also show more 408 

significant influence than others (Table 6 and 9). In the case of FR and SE model, subfactor of 409 

bare land of LULC, clay of soil texture, Mesozoic of factor lithology, and areas with SPI>1.2, 410 

TWI<5, rainfall>6100 mm/year in the study region are showing greater susceptibility for 411 

landslide than other class categories of the respective conditioning factors (Table 5). Among 412 

15 conditioning factors, slope, LULC, TWI, SPI, lithology are the most influential factors as 413 

per the FR model. In the SE model, along with these factors, soil texture also shows a 414 

significant influence on landslide occurrence (Table 5). Using AHP, conditioning factors, such 415 

as slope, rainfall, distance from road, lithology, and LULC are found with higher weight share 416 

than others, while the distance from fault is found with the least weightage (Table 7). In the 417 

FAHP model, the dominant landslide factors remain the same as AHP (Table 8). 418 

4.2. Spatial distribution Landslide susceptibility using selected models 419 

The present study employs the four susceptibility models, namely frequency ratio, Shannon 420 

entropy, AHP, and fuzzy-AHP, to develop the LSM of Meghalaya. For this purpose, 15 421 

landslide conditioning factors and landslide training datasets are used in the model 422 

construction. The result shows that the area under the southern escarpment and southeast 423 

portion of the study area has moderate to very high susceptibility for landslide in all four cases 424 

(Figs. 5, 6, 8, and 9). According to the FR model (Fig. 5), 2.17%, 5.98%, and 13.10% areas of 425 

the total study region are classified as very high, high, and moderate susceptibility categories, 426 

respectively (Fig. 7). For the SE model (Fig. 6), 2.07%, 5.38%, and 10.87% areas have very 427 

high, high, and moderate susceptibility classes. Similarly, using the AHP model (Fig. 8), 428 

4.01%, 12.04%, and 26.85% area falls under very high, high, and moderate susceptibility 429 

classes, respectively. For the FAHP model (Fig. 9), 3.88% and 12.15% area (second largest 430 

after AHP) show very high and high susceptibility categories. In comparison, 27.35% area 431 

shows moderate susceptibility to landslide, the highest among all four models (Fig. 7). Along 432 
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with the southern escarpment and southeast region of the study area, these classes are 433 

concentrated along highways of the study area in the case of AHP and FAHP models (Fig. 8 434 

and 9). 435 

4.3. Validation of landslide susceptibility maps 436 

The LSM produced using adopted models is validated using the receiver operating 437 

characteristics (ROC) curves and the AUC method. For this purpose, 397 landslide testing 438 

datasets are used. The ROC curve can also be drawn using a training dataset called the success 439 

rate curve; however, the success rate is not a correct method for evaluating the prediction 440 

capability of the models (Pourghasemi et al. 2012b). Therefore, ROC using the testing dataset 441 

only is adopted in the present study. The ROC curve produced using the testing dataset 442 

(prediction curve) for all four models is shown in Fig. 10. On comparing the AUC values, the 443 

AHP model demonstrates the highest prediction accuracy (AUC = 0.913). For FAHP, FR, and 444 

SE models, AUC values are 0.903, 0.896, and 0.888, respectively. However, all the models 445 

show good prediction accuracy as the AUC value is more than 0.8 in all four cases. 446 

4.4. Discussion 447 

For landslide hazard assessment and risk mitigation, landslide susceptibility mapping is one of 448 

the most applied approaches. The outcome of such susceptibility studies depends upon the 449 

applied conditioning factors (Nohani et al. 2019). However, there are no fixed criteria for 450 

selecting the conditioning factors at present (Pham et al. 2019b). Therefore, based on the 451 

published literature on landslide susceptibility and past landslide characteristics, 15 landslide 452 

conditioning factors are adopted in the present study. Among the selected set of factors, slope 453 

(degrees) is found as the most significant factor influencing landslides in the area. In this study, 454 

the landsides are primarily associated with the locations having slope ranges from 30°-40° and 455 

>40°, similar to Mathew et al. 2008. Other than Slope, Lithology, LULC, Rainfall, TWI, and 456 
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Distance from Road are also identified as critical factors influencing landslides, consistent with 457 

the previous studies (Pourghasemi et al. 2012b; Shahabi and Hashim 2015; Chen and Li 2020).  458 

The present study applies prevalent and widely used bivariate statistical models (FR and SE) 459 

and MCDA (AHP and FAHP) for LSM of Meghalaya, India. The prediction power of each 460 

model is obtained using a testing dataset. We identified AHP (AUCAHP = 0.913) as the best 461 

model following FAHP (0.903), FR (0.896), and SE (0.888) for considered study area. 462 

Kavzoglu et al. 2013 also reported the MCDA model (AHP) as a better model than other 463 

applied models in their study. Some studies reported fuzzy-AHP as a better model than AHP 464 

(Mallick et al. 2018; Sur et al. 2020). Zhao et al. 2017 also compared fuzzy-based SE and AHP 465 

models and reported SE with higher prediction accuracy than fuzzy AHP. In Fuzzy-AHP, the 466 

fuzzy comparison matrix lacks consistency (Duru et al. 2012), which may explain the better 467 

performance of AHP over FAHP in the present study. The prediction accuracy of SE is 468 

comparable to that of FR in the present study (Fig. 10), which is consistent with others (Youssef 469 

et al. 2015 and Nohani et al. 2019). However, the spatial distribution of high to very high 470 

landslide susceptibility class for all four models is approximately consistent and concentrated 471 

along the southern-escarpment and southeast portion of the study area.  472 

The findings in the present study can be used for the estimation of the socioeconomic 473 

vulnerability to landslides in the study area in terms of socioeconomic losses and downtime 474 

(Agrawal et al. 2021). Overall, all four models are acceptable for the landslide susceptibility 475 

study of Meghalaya. The landslide susceptibility study is data-driven and controlled by 476 

geologic conditions, anthropogenic activity, and LULC. Therefore, the study has some inherent 477 

limitations, which can be reduced by applying a high-resolution dataset with advanced data 478 

mining techniques and considering temporal variations in the dataset.  479 
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  480 

Fig. 5 Landslide susceptibility map of Meghalaya using frequency ratio 481 

  482 

Fig. 6 Landslide susceptibility map of Meghalaya using Shannon entropy  483 

 484 
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 485 

Fig. 7 Distribution of different susceptibility classes in the study area  486 

  487 

Fig. 8 Landslide susceptibility map of Meghalaya using AHP  488 

 489 
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Table 8 Fuzzy-Comparison matrix using TFN, and the weight assigned to each conditioning factor using geometric mean FAHP 490 

Sl. 

No. 

Conditioning 

Factor 
1 2 3 4 5 6 7 8 

1 Slope (degrees) 1 1 1 3 4 5 1 2 3 2 3 4 4 5 6 1 2 3 5 6 7 2 3 4 

2 Aspect    1 1 1 2 3 4 1 2 3 1 2 3 0.25 0.33 0.5 1 2 3 0.25 0.33 0.5 

3 Elevation       1 1 1 1 2 3 2 3 4 1 2 3 5 6 7 1 2 3 

4 Plan curvature          1 1 1 1 2 3 0.33 0.5 1 1 2 3 1 1 1 

5 
Distance from 

river 
            1 1 1 0.17 0.2 0.25 1 1 1 0.33 0.5 1 

6 
Distance from 

road 
               1 1 1 2 3 4 1 2 3 

7 
Distance from 

faults 
                  1 1 1 0.33 0.5 1 

8 TWI                      1 1 1 

9 SPI                         

10 LULC                         

11 NDVI                         

12 Soil texture                         

13 Geomorphology                         

14 Lithology                         

15 
Rainfall 

(mm/year) 
                        

 491 

Table 8 (continued) 492 

 493 

 494 

 495 
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 496 

 497 

Sl. 

No. 

Conditioning 

Factor 
9 10 11 12 13 14 15 Wj,FAHP 

1 Slope (degrees) 3 4 5 1 2 3 2 3 4 3 4 5 2 3 4 2 3 4 1 2 3 0.154 

2 Aspect 1 1 1 0.25 0.33 0.50 0.33 0.50 1 1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.25 0.33 0.50 0.040 

3 Elevation 2 3 4 1 1 1 1 2 3 1 2 3 1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.072 

4 Plan curvature 1 2 3 0.25 0.33 0.50 0.33 0.50 1 1 1 1 0.33 0.50 1 0.33 0.50 1 0.33 0.50 1 0.043 

5 
Distance from 

river 
1 1 1 0.33 0.50 1 0.20 0.25 0.33 1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.17 0.20 0.25 0.026 

6 
Distance from 

road 
2 3 4 1 2 3 2 3 4 1 2 3 1 1 1 1 2 3 0.33 0.50 1 0.092 

7 
Distance from 

faults 
1 1 1 0.20 0.25 0.33 0.17 0.20 0.25 1 1 1 0.25 0.33 0.50 0.20 0.25 0.33 0.13 0.14 0.17 0.022 

8 TWI 1 2 3 0.33 0.50 1 1 1 1 1 2 3 0.33 0.50 1 0.25 0.33 0.50 0.25 0.33 0.50 0.050 

9 SPI 1 1 1 0.25 0.33 0.50 0.25 0.33 0.50 0.33 0.50 1 0.25 0.33 0.50 0.25 0.33 0.50 0.20 0.25 0.33 0.027 

10 LULC    1 1 1 1 2 3 1 2 3 1 2 3 0.33 0.50 1 0.33 0.50 1 0.082 

11 NDVI       1 1 1 2 3 4 1 2 3 1 1 1 0.33 0.50 1 0.069 

12 Soil texture          1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.17 0.20 0.25 0.034 

13 Geomorphology             1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.062 

14 Lithology                1 1 1 0.33 0.50 1 0.090 

15 
Rainfall 

(mm/year) 
                  1 1 1 0.136 

 498 

Table 9 Fuzzy-comparison matrix for different class of each conditioning factors and weight assigned to each class by FAHP 499 

Conditioning 

Factors Classes 
1 2 3 4 5 

Slope(degree) <10° 1 1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 
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  10° - 20° 2       1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.17 0.20 0.25 

  20° - 30° 3             1 1 1 0.33 0.50 1 0.25 0.33 0.50 

  30° - 40° 4                   1 1 1 0.25 0.33 0.50 

  >40° 5                         1 1 1 

Aspect Flat (-1) 1 1 1 1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.13 0.14 0.11 0.13 0.14 

  North (0-22.5) 2       1 1 1 1 1 1 1 2 3 2 3 4 

  Northeast (22.5-67.5) 3             1 1 1 1 2 3 1 2 3 

  East (67.5-112.5) 4                   1 1 1 1 1 1 

  Southeast (112.5-157.5) 5                         1 1 1 

  South (157.5-202.5) 6                               

  Southwest (202.5-247.5) 7                               

  West (247.5-292.5) 8                               

  Northwest (292.5-337.5) 9                               

Elevation  <300 1 1 1 1 1 1 1 0.33 0.50 1 0.33 0.50 1 0.17 0.20 0.25 

  300 - 500 2       1 1 1 0.25 0.33 0.50 0.33 0.50 1 0.25 0.33 0.50 

  500 - 700 3             1 1 1 1 1 1 0.20 0.25 0.33 

  700 - 900 4                   1 1 1 0.33 0.50 1 

  900 - 1100 5                         1 1 1 

  1100 - 1300 6                               

  1300 - 1500 7                               

  >1500  8                               

Plan curvature Concave (<-0.05) 1 1 1 1 3 4 5 1 1 1             

  Flat (-0.05-0.05) 2       1 1 1 0.20 0.25 0.33             

  Convex (>0.05) 3             1 1 1             

Distance from river 

(m) <150 
1 

1 1 1 0.33 0.50 1 1 2 3 1 2 3 2 3 4 

  150 - 300 2       1 1 1 1 2 3 2 3 4 3 4 5 

  300 - 450 3             1 1 1 1 2 3 2 3 4 

  450 - 600 4                   1 1 1 1 2 3 

  >600 5                         1 1 1 
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Distance from road 

(m) <150 
1 

1 1 1 1 2 3 2 3 4 3 4 5 4 5 6 

  150 - 300 2       1 1 1 1 2 3 2 3 4 3 4 5 

  300 - 450 3             1 1 1 1 2 3 2 3 4 

  450 - 600 4                   1 1 1 1 2 3 

  >600 5                         1 1 1 

Distance from faults 

(m) <1000 
1 

1 1 1 1 1 1 1 2 3 1 2 3 2 3 4 

  1000 - 2000 2       1 1 1 1 1 1 2 3 4 3 4 5 

  2000 - 3000 3             1 1 1 1 2 3 2 3 4 

  3000 - 4000 4                   1 1 1 1 2 3 

  >4000  5                         1 1 1 

LULC Waterbodies 1 1 1 1 0.33 0.50 1 0.20 0.25 0.33 0.33 0.50 1 0.17 0.20 0.25 

  Dense Vegetation 2       1 1 1 0.25 0.33 0.50 0.25 0.33 0.50 0.25 0.33 0.50 

  Light Vegetation 3             1 1 1 1 2 3 1 2 3 

  Agricultural Land 4                   1 1 1 0.25 0.33 0.50 

  Built Area 5                         1 1 1 

  Bare Land 6                               

NDVI  <0.015 1 1 1 1 0.14 0.17 0.20 0.14 0.17 0.20 0.25 0.33 0.50 0.25 0.33 0.50 

  0.015 - 0.14 2       1 1 1 0.33 0.50 1 1 2 3 2 3 4 

  0.14 - 0.18 3             1 1 1 1 2 3 2 3 4 

  0.18 - 0.27 4                   1 1 1 1 2 3 

  0.27 - 0.36 5                         1 1 1 

  0.36 - 0.999 6                               

SPI < 0.13523 1 1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.20 0.25 0.33 0.13 0.14 0.17 

  0.13523 - 0.3 2       1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 

  0.3 - 0.6 3             1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 

  0.6 - 1.2 4                   1 1 1 0.25 0.33 0.50 

  >1.2 5                         1 1 1 

TWI <5 1 1 1 1 2 3 4 4 5 6 5 6 7 6 7 8 

  05-07.0 2       1 1 1 2 3 4 4 5 6 6 7 8 
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  07-09.0 3             1 1 1 1 2 3 4 5 6 

  09-11.0 4                   1 1 1 1 2 3 

  >11 5                         1 1 1 

Rainfall <2200 1 1 1 1 0.33 0.50 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 

  2200 - 3500 2       1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 

  3500 - 4800 3             1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 

  4800 - 6100 4                   1 1 1 0.25 0.33 0.50 

  >6100  5                         1 1 1 

Soil texture Loam 1 1 1 1 0.33 0.50 1 0.14 0.17 0.20 0.13 0.14 0.17       

  Sandy Clay 2       1 1 1 0.14 0.17 0.20 0.13 0.14 0.17       

  Clay Loam 3             1 1 1 0.33 0.50 1       

  Clay 4                   1 1 1       

Geomorphology MDHV 1 1 1 1 4 5 6 3.00 4.00 5.00 6 7 8 6 7 8 

  HDP 2       1 1 1 0.25 0.33 0.50 2 3 4 2 3 4 

  MDP 3             1 1 1 2 3 4 2 3 4 

  PC 4                   1 1 1 1 1 1 

  AP 5                         1 1 1 

  W 6                               

  HDHV 7                               

Lithology Cn 1 1 1 1 0.33 0.50 1 0.17 0.20 0.25 0.13 0.14 0.13 0.25 0.33 0.50 

  Neo 2       1 1 1 0.20 0.25 0.33 0.17 0.20 0.25 0.33 0.50 1 

  Pl 3             1 1 1 0.25 0.33 0.50 2 3 4 

  Ms 4                   1 1 1 4 5 6 

  LcP 5                         1 1 1 

  Pr 6                               

 500 

Table 9 (continued) 501 

Conditioning 

Factors 
Classes 6 7 8 9 wij,FAHP 
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Slope(degree) <10° 1                         0.054 

  10° - 20° 2                         0.091 

  20° - 30° 3                         0.157 

  30° - 40° 4                         0.237 

  >40° 5                         0.461 

Aspect Flat (-1) 1 0.11 0.13 0.14 0.11 0.13 0.14 0.125 0.143 0.167 0.13 0.14 0.17 0.013 

  North (0-22.5) 2 2 3 4 3 4 5 4 5 6 3 4 5 0.228 

  

Northeast (22.5-

67.5) 
3 

2 3 4 1 2 3 2 3 4 2 3 4 0.186 

  East (67.5-112.5) 4 1 2 3 1 2 3 5 6 7 6 7 8 0.160 

  

Southeast (112.5-

157.5) 
5 

1 1 1 1 2 3 4 5 6 2 3 4 0.131 

  South (157.5-202.5) 6 1 1 1 1 1 1 2 3 4 2 3 4 0.103 

  

Southwest (202.5-

247.5) 
7 

      1 1 1 2 3 4 1 2 3 0.091 

  West (247.5-292.5) 8             1 1 1 0.33 0.50 1 0.039 

  

Northwest (292.5-

337.5) 
9 

                  1 1 1 0.051 

Elevation  <300 1 0.17 0.20 0.25 0.17 0.20 0.25 0.25 0.33 0.50       0.043 

  300 - 500 2 0.20 0.25 0.33 0.20 0.25 0.33 0.25 0.33 0.50       0.046 

  500 - 700 3 0.20 0.25 0.33 0.17 0.20 0.25 0.33 0.50 1       0.068 

  700 - 900 4 0.25 0.33 0.50 0.25 0.33 0.50 0.25 0.33 0.50       0.076 

  900 - 1100 5 1 1 1 0.33 0.50 1 0.33 0.50 1       0.160 

  1100 - 1300 6 1 1 1 1 1 1 1 2 3       0.212 

  1300 - 1500 7       1 1 1 1 2 3       0.234 

  >1500  8             1 1 1       0.161 

Plan curvature Concave (<-0.05) 1                         0.443 

  Flat (-0.05-0.05) 2                         0.115 

  Convex (>0.05) 3                         0.443 

Distance from river 

(m) <150 
1 

                        0.247 
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  150 - 300 2                         0.355 

  300 - 450 3                         0.195 

  450 - 600 4                         0.128 

  >600 5                         0.075 

Distance from road 

(m) <150 
1 

                        0.402 

  150 - 300 2                         0.267 

  300 - 450 3                         0.166 

  450 - 600 4                         0.101 

  >600 5                         0.064 

Distance from faults 

(m) <1000 
1 

                        0.283 

  1000 - 2000 2                         0.279 

  2000 - 3000 3                         0.223 

  3000 - 4000 4                         0.135 

  >4000  5                         0.080 

LULC Waterbodies 1 0.14 0.17 0.20                   0.048 

  Dense Vegetation 2 0.17 0.20 0.25                   0.065 

  Light Vegetation 3 0.25 0.33 0.50                   0.202 

  Agricultural Land 4 0.20 0.25 0.33                   0.105 

  Built Area 5 0.25 0.33 0.50                   0.183 

  Bare Land 6 1 1 1                   0.397 

NDVI  <0.015 1 0.33 0.50 1.00                   0.046 

  0.015 - 0.14 2 3 4 5                   0.267 

  0.14 - 0.18 3 3 4 5                   0.325 

  0.18 - 0.27 4 2 3 4                   0.177 

  0.27 - 0.36 5 2 3 4                   0.121 

  0.36 - 0.999 6 1 1 1                   0.065 

SPI < 0.13523 1                         0.052 

  0.13523 - 0.3 2                         0.063 

  0.3 - 0.6 3                         0.126 



46 

 

  0.6 - 1.2 4                         0.252 

  >1.2 5                         0.507 

TWI <5 1                         0.485 

  05-07.0 2                         0.277 

  07-09.0 3                         0.126 

  09-11.0 4                         0.071 

  >11 5                         0.041 

Rainfall <2200 1                         0.049 

  2200 - 3500 2                         0.062 

  3500 - 4800 3                         0.125 

  4800 - 6100 4                         0.261 

  >6100  5                         0.502 

Soil texture Loam 1                         0.057 

  Sandy Clay 2                         0.077 

  Clay Loam 3                         0.353 

  Clay 4                         0.513 

Geomorphology MDHV 1 2 3 4 1 1 1             0.297 

  HDP 2 0.25 0.33 0.50 0.13 0.14 0.17             0.059 

  MDP 3 0.25 0.33 0.50 0.13 0.14 0.13             0.081 

  PC 4 0.17 0.20 0.25 0.13 0.14 0.13             0.032 

  AP 5 0.17 0.20 0.25 0.13 0.14 0.13             0.032 

  W 6 1 1 1 0.20 0.25 0.33             0.148 

  HDHV 7       1 1 1             0.351 

Lithology Cn 1 0.25 0.33 0.50                   0.043 

  Neo 2 0.25 0.33 0.50                   0.065 

  Pl 3 1 2 3                   0.225 

  Ms 4 4 5 6                   0.442 

  LcP 5 1 1 1                   0.104 

  Pr 6 1 1 1                   0.121 

  502 
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 503 

  504 

Fig. 9 Landslide susceptibility map of Meghalaya using FAHP 505 

  506 

Fig. 10 ROC curve for all four models using the testing dataset 507 

5. Conclusion 508 

In this study, FR, SE, AHP, and FAHP models are used to generate the landslide susceptibility 509 

map of Meghalaya state in NER of India. The landslide inventory consisting of 1330 landslide 510 

data points is prepared and distributed into a 70/30 ratio to form training and testing datasets. 511 

Based on the present study, slope is found as the most influencing factor among the selected 512 



48 

 

15 conditioning factors. The performance of each model is evaluated by the AUC value based 513 

on the testing dataset. The results showed that the prediction accuracy of the AHP model is 514 

better than the other three models in the present study, with an AUC value of 0.913 (91.3% 515 

prediction accuracy). The produced LSMs reveals that the southern escarpment of the study 516 

area, the area in the southeast, and hillslopes along the roads possess great susceptibility for 517 

future landslides. If the road network gets affected due to landslide events, the intra-518 

district/state, inter-district/state connectivity get hampered and impart substantial economic 519 

losses to the population in the region. Therefore, the presented LSM for the considered study 520 

area can help the authorities and decision-makers to plan and manage the risk mitigation 521 

strategies for future landslides and plan the sustainable infrastructure development in the region 522 

accordingly. 523 
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