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Ab initio evaluation of the Born correction, Born couplings, and higher
derivative matrix elements with Gaussian-lobe orbitals

Yongfeng Zhang, Nagamani Sukumar, Jerry L. Whitten, and Richard N. Porter
Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400

(Received 14 January 1988; accepted 9 March 1988)

Formulation of the expectations of eight operators required for the evaluation of the Born
corrections, the Born couplings, and higher derivatives of the Born—Oppenheimer wave
functions are derived for the case of a Gaussian-lobe orbital (GLO) basis. The relative
simplicity of these analytical formulas is a special advantage of GLO and reduces the computer
time in these calculations. Some operators treated here require a modification of the Slater
rules. As examples of applications of these techniques, ab initio calculations of the orbital
stresses and the Born corrections for the ground state X ‘E; and excited states ‘2; n, C,
C' 311, and ®I1,, (IT) of N, are reported. The obtained results show that the Born correction
near the avoided crossing region strongly depends upon the nuclear separation; in this region
configuration interaction makes an important contribution.

I. INTRODUCTION

Born-Oppenheimer (BO) adiabatic potential-energy
surfaces' for molecules and collision complexes are essential
to the interpretation of molecular properties and provide a
description of the dynamics of nuclei in processes involving
essentially a single electronic state. On the other hand, the
study of radiationless transitions, predissociation, electronic
transitions in molecular collisions, and certain perturbations
of molecular spectra requires a nonadiabatic treatment. The
inclusion of the Born (nonadiabatic) coupling parameters?
in the Hamiltonian allows treatment of the breakdown of the
BO approximation. These parameters are the matrix ele-
ments of the first derivative of the nuclear displacement op-
erator (NDO) in the space spanned by the Born—-Oppenhei-
mer electronic wave functions (BOEWF). The properties of
the NDO have been recently discussed in detail.’

There has been increasing interest in the study and cal-
culation of the diagonal elements (the so-called Born correc-
tion terms),*'? off-diagonal elements (the so-called Born
couplings),''~*° and higher derivatives of the BO potential
energy surfaces.”' Since these matrix elements are generally
considered difficult to calculate, several searches for a prac-
tically effective procedure to obtain these quantities are un-
derway.”?! Algorithms for calculating first and second de-
rivatives from large-scale configuration interaction (CI)
molecular wave functions have been developed by Buenker
and Peyerimhoff and their co-workers.*

Gaussian-lobe orbitals (GLO), first introduced by
Preuss® and by Whitten?*° have been widely and success-
fully used in many molecular calculations.?® This choice of
basis has two main advantages: first, the formulas for expec-
tations of various operators are relatively simple in terms of
the GLO; second, less computation time is generally re-
quired—a nontrivial consideration for calculation of the
Born corrections, the Born couplings, and the higher deriva-
tives. Since these calculations involve many different opera-
tors, and reliable results require several full calculations of
electronic wave functions, the advantage of the GLO basis is
particularly well demonstrated in the present applications.
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In this paper we derive the formulas for the expectations
of the required operators in the GLO basis. The effectiveness
of the method is evident from the accuracy and consistency
of the results we report for the orbital stress and for the Born
corrections for the ground state and several excited elec-
tronic states of N,.

Il. EXPECTATION VALUES REQUIRED FOR THE BORN
COUPLINGS, THE BORN CORRECTIONS, AND HIGHER
DERIVATIVES

We consider the following expectation values of the op-
erators required for the evaluation of the Born correction,
the Born couplings, and higher derivatives, in the space of
BOEWF:

<w,~|(—§é Ve, M
2
“’"'(‘a%‘z‘ V), )
3
<w,-l(% V)|W,->, 3)
<wi|(—jQ—4 V)|\I/,>, 4)
<w..1§§|wj>, (5)
82
W51, (6)
d d
(55 ¥ \3@‘”) ’ ™
(VS V,-V,¥,), (8)

where @ is an arbitrary generalized nuclear position coordi-
nate. Indices p, g run over all electrons, |¥;) and |¥;) are BO
electronic states, and V is the electron-nuclear potential-
energy operator:

Z
V——_EVp:—Zr_p"
p P P
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where Z, is the charge number of the pth nucleus.

Operator (1) is used to calculate the vector Born cou-
pling matrix elements by the Hellmann—Feynman formu-
1a,?® the orbital stress, and the transition stress*®?° and is
useful in a force analysis for molecules.>®

Operator (2) is used to calculate the Born correction
parameters and the scalar Born coupling parameters by the
Hellmann-Feynman formula®’ and its diagonal elements
are related to the molecular force constants.

Operators (3) and (4) are used to evaluate the higher
derivatives by the generalized Hellmann-Feynman formu-
las® and molecular cubic as well as quartic force constants.

Operator (5) is used to calculate the vector Born cou-
pling parameter by the numerical method,'”'® and also the
nuclear contribution to the dipole transition moment be-
tween state 7 and state /.

Operator (6) can be used to obtain the Born correction
parameters (diagonal elements) and the scalar Born cou-
pling parameters (off-diagonal elements). Operator (7)
provides another approach to the Born correction param-
eters, as suggested by Sellers and Pulay.”® Besides this, it
also serves as a consistency check for the numerical results of
expectations for operator (6).%8

The expectations of operator (8) are the cross terms of
the electronic kinetic energy, which contribute to the total
Born corrections and Born couplings.

lil. THE TRANSFORMATION OF EXPECTATIONS FROM
Cl WAVE FUNCTION TO THE GLO BASIS

CI electronic wave functions |f) or ¥, at a nuclear con-
figuration Q are the linear combinations of Slater determi-
nant wave functions P, :

V,(0) =TS Cuo (DD, (), (9)

where CI coefficients C,, are Q dependent as are the Slater
determinants

@, (Q) = (V)2 Det|d,, (4,,Q)8s, (4Q) "

X@a, (95D e, (qn, D) |- (10)
In Eq. (10) ¢, is the pth molecular orbital, which is the
linear combination of primitive basis functions y;:
¢p(Q)=chi(Q)Xi' (1)
The Q dependency of y, is reflected through the assignment
of basis centers.
The functions y; are linear combinations of M Gaussian
components. According to the GLO approach, the latter are
the linear combinations of lobes which always are s-type

Gaussians whose centers are located around the basis center
A (see Refs. 24 and 25):

M L
X:(A) = Zl kz_:l( - 1)k+ldimNm exp( _amrzzl,,.k)’
o (12)

where M is the number of components, L is the number of
lobes, which is equal to 1, 2, and 4 for s-, p-, and d-type basis
functions, respectively. d,,, is the normalized combination
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coefficients of the mth component, 4,, and N,, are the expo-
nent and the normalization constant of the mth component,
respectively, 4, is the center of the k th lobe in the mth
component, which is displaced from the basis center 4 for p
and d functions. The magnitudes of these displacements of
lobe centers are the same for a given component, but differ-
ent lobes are displaced in different directions.?*2¢

The overlap integral between two basis functions
Yi(A) and y;(B) is

W,=xDlyB)=3 wo,

mnki

(13)

where we use the collective subscript 7 to represent the sub-
scripts mnki, and the lobe overlap integrals W (¥’ are

im*jn

- v 372
WS = (= 1)k+id d N,,,N,,(—————)
a, +b,

X exp( — 0,y | Ay By %), (14)

where Omn = ambn/(am + bn )’IAkanI, = 'Bnl - Amkl
and A,,, is the center of the k th lobe of the mth component of
the ith basis function.

Operators (1)-(4) are ordinary one-electron operators.
Operator (8) is an ordinary separable two-electron opera-
tor. The transformation of expectations for these operators
from CI wave functions to the GLO basis can be accom-
plished by straightforward application of the Slater rules.

However, operators (5)—(7) are special cases. In the
transformation from CI wave functions to Slater determi-
nants, it should be noted, as many authors have mentioned
previously, that they are differential operators. Thus

<\PI’WJ')=ZCHIC]’G +chaqﬂ(q)a|q)é)9 (15)
a aff
(‘yilql;’> = z CiaC;; +2 2 Ciacfﬁ<q>a [CI)&)
a a,B
(16)

+ Z Ciaqﬁ<¢a|¢g>’
a.B
<\P1’|\I’;> = z C;ac.;a + Zﬁ[cl’aqﬁ<¢a,¢b)

+ C:acjlﬂ<q>¢'x|q>3>] + Zﬂ Ciacvjﬁ(¢:x|q>b>-
(17)

In the transformation of expectations from Slater deter-
minants to molecular orbitals operator (5) complies with
the Slater rule for one-electron operators, even though the
operator itself does not contain any electronic coordinates.
But the other two operators, which are *“zero-electron opera-
tors,” do not obey the standard Slater rule. Instead, they
obey a rule that is similar to the Slater rule.

(1) If ®, and ®; are the same then

(D, |P5) = 3(d,18;) + 3 (B, 16:0)7, (18)
4 pP#4q

(P [Pp) =D (g, 18,) — 3 ({,16:))? (19)
P pP#q

where the prime refers to derivative with respect to a nuclear
coordinate. Equation (19) was pointed out previously by
Sellers and Pulay.”
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(2) If &, and P, differ in only one orbital, after a suit-
able permutation they may be written as

(I)a = |¢1¢2.“¢k—l¢rl’
CDB = |$1d2 b1 95,

where r+s. In this case

(@,1B5) = (B,187) +2 S (dm|8) (B0, (20)

m=1

(@105 = (G114 —2 3 (Bl (Bal6). 21)

(3) If ¢, and P, differ in two orbitals, after a suitable
permutation they may be written as

q’a = |¢I¢2“.¢k—2¢r¢ui’
"Dﬁ = |¢1¢2"'¢k—2¢s¢u|-

so that we have

(@, |Ps) =2[(d,|9:)(B.16,) — (b.16.)(Bul0:)], (22)

(P |Dp) = —2[(8,|9:)(S.|8.) — (S,18.) (. |8:)]-
(23)

(4) If @, and @, differ in three or more orbitals,
(®,|P;) and (P, |P}) vanish.

In the last transformation, that of expectations from
molecular orbitals to the GLO basis, operators (5)—(7)
have similar transformations to those from CI wave func-
tions to Slater determinants:

<¢p|¢;> =Zcpic:y()(i|)(j) +chicqj<)(il)(;)’ (24)
&f i

(8,187) = 3 cnicglxilxy) +2 3 epcyxilx)
ij W

+ }J) iy XX )s (25)
(¢,d;) = % cpicy xilxy)
+ EJ Lencg {xilx)y + cpuclxiln) ]
(26)

+ z Cpicqj<X;|X;>'
i

On the other hand, the generalized coordinates Q are
linear combinations of nuclear coordinates, and transforma-
tion from these generalized coordinates to the ordinary Car-
tesian coordinates, which are used in most quantum chemis-
try programs, produces cross terms. Taking all of the results
into account, we finally arrive at the following expectations
of these operators in the GLO basis:

i (DI(Ve N x; (B, (27
()(i(A)|(VDVCV)|Xj(B)), (28)
i (DI(VEVLY N |y, (B)Y), (2%9)
i DN(VVV VN |y (B)), (30)
(D[ Vely; (B)), (31)
X (Do Vcly, (B)), (32)
<VDXi(A)|Vc)(j(B)>, (33)

(DY y; (B)), (34)

where the expectation of Eq. (34) originates from operator
(8) since it is a separable two-electron operator.

IV. EVALUATION OF EXPECTATIONS IN THE GLO
BASIS

For convenience, the lobe functions at the center 4,,,,
are written as

).

The two-lobe integrals that appear in the electron—nuclear
attractive potentials are

(am’Amkll/rCIbnﬁBnl) =KTF0(tr)’ (35)

where r is the position of the electron with the nucleus C as
origin and

|am’Amk) = exp( - amrim

k

K,=—2" _exp(—0,,|d,B."), (36)

@b (37)
T = ——7—

a, +b,
1 1 t
F(t)=J e_"‘zdu=-—J-fe_“zdu, 38)
¢ o Ji Jo (
t, = (a,, +b,)|C-P,|% (39)
and

A +bB

p, = ImAmk t OnBut (40)

am + bn ’

The subscripts 7 = mnkl, indicate that X, ¢, and P are lobe-
pair dependent. The function F;(#) of Eq. (38) is the special
case of the error functions with m = 0:

1
F ()= j wme =" du (40a)
(4]
that obey the recursion relation
a
EFm(t)= —F, (D). (41)

Combination of Egs. (12) and (35) gives the three-center
potential integrals

((DIVely (B))
= —Z; 3 (- 1**'d,,d,N,N,K,Fyt,),

mnkl

(42)

where 7. depends on all three centers 4, B, and C and K
depends on 4 and B.

A. (x,(A)|(Vc V)/x,(B))
For the simplest case, C # Band C #A4 it is evident that
DNV V ;B = Ve[ (i (DIVely;(B) ]
=Z. 27:1( - H**d,d,N,N,K F(t)[Vct.].
(43)

Using Eq. (39) and the lobe overlap integrals shown in Eq.
(14), we have
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X DIVV [y (B))

_1_ Z (am +b")3/2

T mnki
XWPF (:)(C—P,). (44)
If C = B # A thesituation is not as obvious as the above
case:

DV |y, (B)) =y (D [(V Vi) |y, (B))
=V [{x:i (DIVax;(B))] — (xi (V5 V5 x;(B)).
(45)
The first term on the right-hand side is easy to obtain by
taking the gradient of Eq. (42) with respect to the coordi-
nates of nucleus B. However, it is important to realize that
both K, and ¢, are dependent upon the coordinates of nu-
cleus B:

Ve[ i (DI Velx;(B))]
= _ZB z(_ 1)k+l imdjnNmNn

mnki

X [(VaK,)Fo(t,) — K, F(£,)(V3t,)]

= —4Z; \/—_lj z (a,, +b,,)”2W§"f’
T mnki

X [bn (Bnl - Pr)FO(tr) + am(B - Pf)Fl(tT)]‘
(46)
Using the general formula for attractive integrals of
Cartesian Gaussians®—7 we have the second term of Eq.
(45):

i (DI V|Vx;(B))

= —4ZB£ Z (am +bn)1/2W1(_ii)
T mnkl

X [b,(By —P)Fy(t,) —b,(B—P)F(¢,)].
Combining this equation and Eq. (46) and using Eq. (14)
we obtain
()(i(A)lvaV’Xj(B))

l Z (am +bn)3/2
T mnkl

XWIF (t,)(B—P,).
If C = A4 # B a similar result can be derived.
For the last case, C = B = A4, we have
DIV Dy () = (i (A [(V V) x;(4))
=V, [(:( DV, x; ()] — i (D V,V 4 ]x;(4))
— (Vi (DD Vg ().
The first term on the right-hand side vanishes since a one-
center integral is independent of the choice of origin. By the

same procedure as the case of C = B £ A4, evaluating the re-
maining two terms we find that

i (AD]V, VIX,-(A))

_1_ Z (am +b")3/2

T mnkl
XWDF (1) (A—P,). (48)
Comparison of Eq. (44) with Egs. (47) and (48) shows
that they actually have the same form although they have

= —4Z,

= —4ZB

(47)

= -4ZA

been obtained by different derivations. Therefore Eq. (44) is
the correct form for the expectations for operator (1) in the
GLO basis, disregarding the relations among 4, B, and C.
We also can write Eq. (44) as

X (DI [ (O)

= - ZC z ﬂ’mn,l Wiq)Fl(t‘r)(C - Pr)’ (49)

mnkl
where A,,,, is the k=1 case of the following defining
expression:

—k+1 i k+1/2
e =2 (a, +b,) .
T

B. (xAA)|V, ¥V VIX/(8))

This is a second-rank tensor operator with nine compo-
nents. It is easy to see that the expectation vanishes unless
D = C, so the nine components can be represented simply by
the subscripts xx, yy, zz, xy, xz, yx, yz, zx, and zy.

For the simplest case of C #B, C #A, apparently we
have

i (DIVpVV |y (B)) =V Ve lxi (A)|Vely; (B))pe-
(51)

However, Eq. (51) does not involve the singularity at r.
which appears for this operator. Using the identity

(50)

va Lo _arsere)

re

= —478(x — Xc)6(y — Y )8(z— Z;), (52)

where x, y, and z are the electronic coordinates and
X¢, Y, and Z are coordinates for nucleus C, we have the
following expression for an arbitrary component af of this
operator;

[(Xi(A)WDVcVI)(j(B))]aﬂ
= [VDVC<Xi(A)'VClXj(B))]aﬁ‘sDc

4.

z
T (D [y, (B))Sp8nc.

+ (53)

By using Eqs. (42), (41), and (39), we found the first term
on the right-hand side of the above equation to be

[VDVcXi (A Ve lx;(B)) ]asdpc

= T 4c 2 Wv('ij)[imn,ze(t,-)(C—-P,)aﬁ

mnkl
- /Imn,l Fl (tf )5aﬁ]6DC’
where a special notation is introduced:
(C - P'r)aB--'w = (C - Pr)a(c - Pr)B. “(C - P‘r)an
(55)

and a,f=x, y, or z. In Eq. (54) F,(z,), F,(¢t.), and
A nts Amna aredefined in Eqs. (40a) and (50), respectively.

The second term on the right-hand side of Eq. (53) may
be evaluated by the property of the § function:

f S8 —dx=f (), if e,
(¢}

Thus it is not difficult to see that

(54)

(56)
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(x:(4)|8(rc) |y; (B)) =ﬁ > A WP (57)

mnkl

Combining Egs. (54) and (57) we have
[ DIV I Dy (B)) ap
=—Zc Y WP, F(t,)(C—P,) 4

mnk!

— A [F1(2,) + 4™ "] 8.5}0pc. (58)

For the case D = C = B #A the following relation is

easily derived:
|

Zhang et al.: The Born couplings

[(Xf(A)|(VBVBV)|Xj(-B))]aﬁ
= [ (D](VeVV5) x;(B)) |as
= [VaValx:(D|Vs|x;(B)) ]ap
—2[Valx: (D |V V511, (B)) |
+ [ (DIVeV V511 (B)) ] ag

41

Z
+— Z(x:(A)|6(rs) |y, (B))S 5. (59)

By a method similar to that for (y,;(4)|(Vc My, (B)), we
have

VBVB[<X1(A)|VBIXJ(B)>] = —ZB z’dlmn,o W‘(ry) {[4bi(Bnl —Pr)(Bnl - Pr) _2amn]F0(tf)

2a,,
— [ —8a,,b,(B, —P,)(B—P,) +

2

]F.(z,) +4a:,(B—P,)(B - P,)Fz(t,)] ,
(60)

a

m n

VB[(X.'(A)‘VBVBIXJ'(B»] = ~Zy z /lmn,o Wiij){[4bﬁ(B,.1 —P)B,—-P) —zamn]Fo(tf)

mnkl

~ [46%(B,, —P,)(B—P,) —4a,b,(B,, —P,)(B—P,) —20,,]F(t,)

~4a,,b,(B—P,)(B—P)F (1)},

) 2b2
(D VpVaVslY(BY) = —Z5 > Apno WP {[4173,(3,.1 -P)(B,-P,) +———b—

mnkl

Substituting Eqgs. (57) and (60)-(62) into Eq. (59) and
simplifying, we find the basis expectations in this case have
the same form as Eq. (58). In the same way for
A = B = C = D, we use the relation
[<X:’(A)|(VAVA V)|XJ(A)>]aB
= [{(V VX (DY, |x; (A)) ] ap
+ [(Xi(A)lVAVAVA |)(j(A))]aB
+ 2[{Vx: (DY, V 1 x;(4)) g

4nZ
”3 €y (D) |y, (4))8,5

+ (63)

to show that Eq. (58) is also valid for this particular case.

C. (xAA)(VeVo Ve W)|x,(B)) and
XAA)(VEVEVL Ve VX ,(B))

These are the third-rank tensor operator with 27 com-
ponents and the fourth-rank tensor operator with 81 compo-
nents, respectively.

|

[ (D) (VT VN Y (B)) Laprs =

mnkl

(61)
2

2b,,] Fy(t,)

2

—z—b—"b—]Fn(tf) +4b7(B—P,)(B— PT)Fz(tf)}- (62)

m n

r

For these two operators the singularity at r. produces
the derivatives of the & function. These terms can be evaluat-
ed by the property of the § function:

f F08 (x = dx=f(), if et (64)
0

and
f F)8" (x = pdx=f" (), if yeQ.
0

Then by essentially the same technique we have applied
above, but one which is somewhat more tedious and compli-
cated, the expectations for these two operators in the GLO
basis are also obtained:

[(X:(A)l(VEVDVCV)|XJ(B)>]¢1E7
= _ZC 2 W(r"j){;"mn,S (C_Pr)aﬂyFB(tr)

mnkl

(65)

— Az [Fo(t.) + 17 "] [(C = P,) .55,
+ (C—P, )y + (C— Pr)r‘saﬁl}‘sscapc» (66)

- Zc z Ws'ij){/lmn,tl (C - P‘r)aBy:SFtt(t-r)

— Ay [F3(8,) + 167 "] [(C— P, ) g8, + (C—P,),, 85
+(C—P,) s, + (C—P g8, + (C—P,)pb,, + (C—P,),5.]

+ /{mn,z [F2(t'r) + Zlie - tf] [6aﬁsys + 6:176Bs + 6a666'y ] }6FC65C6DC9

disregarding the relationship between C, 4, and B.

(67)

J. Chem. Phys., Vol. 88, No. 12, 15 June 1988
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D. (x/(A)|Vc|x,(B) (x:(A)|Vo 7 |x,(B)) and
(Vox,(A) Vo x,(B))
The operator V. is a vector operator, the other two are

the second-rank tensor operators with nine components.
From Eq. (12) it is easy to get

Vely; (B))
= 3(= D24, N,b, By —1)exp( = b,75, Yoca,
(68)
and
[VoVely; (B)) ]as
= ;( — 1)'d;, N, (26,845
— 457 (B, — 1) Jexp( — 0,75, )8pcbca-  (69)

With these expressions the basis expectations can be ob-
tained:

DVl (B = — 3 20, WP (A —B,)dcs,
mnkl
(70)
[ (Vo Vclx; (B)) g

= 20, Wf—w [20'mn (A —By)os — 5@]5035@

mnkl
(71)
and
[{Vox: (DY ex; (B)) ] as
= — 2120,,,,, WP [20 (A — B ag
mnki
- 5aﬂ]5m5cn~
(72)

It is worth noticing that in Egs. (71) and (72) the coordi-
nates of nucleus C appear only in § symbols. This is helpful in
programming.

E. (x,/(A)|V|x,(8))

Here the gradient is taken with respect to electronic co-
ordinates. The formula for this expectation is the same as Eq.
(70) except for the sign:

TABLE 1. 4b initio calculation of orbital stress for N,.*

7667

<X:(A)|V|X](B)> =2 Z Onun W'(rij)(Amk - Bnl)'
mnkl
(73)
V. APPLICATIONS

As described in Sec. 1, these operators can be applied to
a variety of problems. With the GLO as basis functions and
based on the Whitten SCF/CI programs, we have revised the
SCF/CI programs to include the expectations of the above
operators and those for the Born correction, Born couplings,
etc. In this section we give just a few examples of the calcula-
tions. Further applications will be reported elsewhere.*®

A. The orbital stress for N,

The orbital stress was shown to be an important proper-
ty of molecular orbitals, and the transition stress, which is
the difference between the orbital stress for an upper molecu-
lar orbital and the one for a lower molecular orbital, was
demonstrated to be one of the fundamental properties of
electronic states.>®?® However, it is hard to obtain practical-
ly useful numerical values for orbital stress because of the so-
called Hellmann—Feynman error.'® Therefore, in previous
work the orbital stresses were obtained from Hartree~Fock
accuracy wave functions.>* Here we give the ab initio results
for the orbital stress of N, (see Table I) by using Eq. (49)
and various basis sets. The last column in Table I is the net
stress:

_Z4 22'3 +T A,

R3 J

where R, is the equilibrium bond length of the ground state,
A, is the occupation number in the jth molecular orbital, and
s; is the orbital stress of this molecular orbital. Theoretically,
the net stress should be equal to zero. Table I demonstrates
that poor basis sets give larger net stress and better basis sets
give smaller net stress, as would be expected. The calculated
values demonstrate that the so-called hard polarized basis'®
effectively improves the calculated results for orbital stress.
A hard p-type GLO evidently increases the orbital stress for
the two core orbitals and a relatively hard d-type GLO
strongly improves the evaluation for the orbital stress of the

S

net

(74)

Basis Source of wfs Egcr lo, lo, 20, 20, 1, 3o, Net stress’
STO 2slp Ref. 34 — 108.6336 ~0.876 —0.919 —2.137 0.522 —0.704 0.217 1.950
GLO [3s52p)* This work — 108.8780 —0.876 —0.862 —2.186 0.418 —0.739 0.133 1.757
GLO [3s3p]® This work — 108.8793 — 1.016 ~0.988 - 2.151 0.376 —0.738 0.118 1.182
GLO [3s2pld])* This work — 108.9584 — 0.861 —0.852 —2.263 0.401 —0.965 —0.031 0.387
GLO [3s3p1d]? This work — 108.9597 —0.941 - 0917 - 2.209 0.384 —0.964 — 0.050 0.135
STO [5s3p3d 1f |* Ref. 33 — 108.9928 — 0.949 —0.890 -2.175 0.382 —0.997 —0.125 —0.048

2 All numbers are in a.u.

®[3s2p] plus one p basis with ¢ = 10.0.

¢ [3s2p] plus one d basis with ¢ = 1.10.

[3s2p] plus one p basis with £ = 10.0 and one d basis with £ = 1.10.
¢This result has achieved true Hartree—Fock accuracy.

f Accuracy and consistency of the numerical results are measured by smallness of the net stress (see the text).
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TABLE II. The Born correction for regular states and the avoided crossing states of N,.*

Nuclear separation (a.u.)

Items States 1.800 2.000 2.0680 2.100 2300 2400 2500 2.540 2560 2.580 2.590 2600 2.620 2.650 2.700 2.800 3.000
h3 X 12: 147.6 1476 1475 1475 147.8 1477 1474 1474 1473 1473 1473 1473 1473 1474 1474 147.6 1480
12: n 1423 143.8 1436 1435 1447 1452 1456 1457 1457 1458 1459 1459 146.0 1460 1462 146.5 1460
c,C', 1462 1458 1456 1459 1480 1556 2364 3999 5776 7232 7559 6850 5054 2759 173.1 151.8 147.6
M, U 146.9 1462 1463 1466 148.0 1543 2315 3948 5747 7257 7659 701.1 542.1 3644 5057 303.0 149.0
hy =hj X'Z: 1428 1429 143.0 1430 1435 143.7 1439 1440 1441 1441 1441 1442 1442 1443 1444 1446 1449
'3 dD 147.8 1460 1468 1467 1464 1463 1463 1463 1463 1463 1463 1463 1463 1463 1463 1463 1463
C,C' 1, 142.8 1431 143.0 1429 1431 143.2 1435 1438 1441 1444 1446 1449 1451 1454 1455 1456 1456
M, UnD 1452 1462 1460 1458 1456 1454 1454 1452 1450 1447 1445 1443 1442 1441 1444 1451 1453
hy+hy X 'E;’ 5014 4956 4945 4935 4907 489.6 489.0 4887 4887 4887 488.5 4883 488.2 4880 487.8 4873 486.6
'2,* un 5115 507.1 5062 5054 501.8 500.3 49389 4984 4982 498.0 4970 4977 4975 4972 496.7 4957 4940
C,C' 3, 507.9 502.7 500.8 - 499.1 4957 4942 4931 4930 493.0 493.0 493.0 493.0 4929 4926 492.1 490.5 4883
M, (I 507.3 5032 5014 5000 4964 4946 4934 4924 4923 4920 4918 4917 4914 4911 4908 4898 4883
h X '2‘* 934.6 929.0 928.0 927.0 9255 9247 9242 9241 9242 9242 9240 9240 9239 9240 9240 9241 9244
'2;’ n 949.4 944.7 9435 9423 9393 9381 937.1 9367 9365 9364 9363 9362 9361 9358 9355 9348 9335
cC'l, 939.7 9347 9324 9308 9299 9362 1016.5 1180.5 1358.8 1505.0 1538.1 1467.8 1288.5 1059.3 956.2 933.5 927.1
n, (I 944.6 941.8 9397 938.2 9356 939.7 10157 1177.6 1357.0 1507.1 1546.7 14814 1321.9 1143.7 12853 1083.0 9279

* All data for the Born correction are in cm™".

17, orbital. These calculated orbital stresses from a [ 3s2p]
basis set*? plus one hard p function and one d function are in
good agreement with the values obtained earlier* from the
Hartree—Fock accuracy wave functions.*

B. The Born correction for N,

The Born corrections allow more accurate calculation
of potential-energy surfaces. The Born corrections have been
calculated for a few electronic states of H, and several other
molecules.*'2 For a BO electronic state ¥, of the diatomic
molecule AB, the Born correction is a sum of three parts'®:

h=hl+h2+h3, (75)
where

= — = (0, |V3 W), (76)
2u
1

hy= ——(V,|Y VHV¥,), 77

> 2M< |Z |¥;) an
1

hy= ——(¥,|3 V,-V,|¥,), (78)
M

TABLE III. The comparison of two methods to calculate the Born correction.®

and y is the reduced mass of the two nuclei and M is the sum
of masses for the nuclei 4 and B. The A, defined in Eq. (76) is
the sum of three terms:

hy=hi+h] +h7, (79)
where
1 3? 1 32
Y= ——(V,|-2—|¥,), A= ——(¥,|2—|¥,),
i 2u< |3X2| ), R 2#< layzl )
B = — w1 2wy, (80)
2u 9z*

and X=X, —X,, Y=Y, —Y,,Z=2Z, — Z, aretherel-
ative nuclear coordinates.

The calculation of 4, will be discussed in detail later.
The term A, actually is the electronic kinetic energy divided
by a constant. The term 4, can be evaluated by means of Eq.
(73).

Using the [3s3pld] basis which is the widely used
[352p] basis®* augmented by a p function and a d function
(see footnote c in Table I), we carried out the calculations of
the Born corrections for X '3.*, 'S+ (II), C,C'°Il,, and

Nuclear separation (a.u.)

Items States Methods  1.80 2.00 2.20 2.40 2.60 2.80 3.00
hi X'z} A 146.6 147.2 147.9 148.7 148.5 147.7 147.4
X'z} B 147.6 147.6 147.7 147.7 147.3 147.6 148.0
C, C' I, A 145.2 145.3 146.5 156.4 689.8 151.7 146.7
C,C'*, B 146.2 145.3 146.4 155.6 685.0 151.8 147.6
hi=h} X'} A 143.3 142.2 143.6 144.2 144.5 144.6 144.8
x'z; B 142.8 142.9 143.3 143.7 144.2 144.6 144.9
c¢cr, A 143.2 143.2 143.2 143.8 144.9 145.2 145.0
cC", B 142.8 143.1 143.0 143.2 144.9 145.6 145.6

® All numbers for the Born correction are in cm™~".
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11, (1) for N, at several nuclear separations. The results
are shown in Table II.

1. The comparison of two numerical methods

As is easily seen, the term A, actually is the electronic
kinetic energy divided by a constant. The term 4, can be
evaluated simply by means of Eq. (73). However, the calcu-
lation for A, is the central point for the Born coupling calcu-
lation. It can be calculated by either Eqs. (16), (18), (20),
(22), (25), and (71) or Egs. (17), (19), (21), (23), (26),
and (72), namely based on operator (6) or (7). We will call
the former method A and the latter method B, respectively.
Method B, proposed first by Sellers and Pulay,”® has two
evident advantages. First, it requires less computer time for
the present calculation. Method A requires five full calcula-
tions of the electronic wave functions (i.e., at Q,, Q, + AX,
Qo + 2AX, Q, + AY, and Q, + 2AY, respectively) if the
equivalence of #{ and 47 is used, while method B requires
only three such calculations. Second, converged results are
easy to obtain by method B and the calculated values are
reasonably stable in a wide range of AJX, etc., since only the
first derivatives of CI and MO coefficients are involved,
while for method A there is only a rather narrow region
which gives the stable results. To search this narrrow stable
region also takes much computer time.

The better method is therefore method B, unless a si-
multaneous calculation of the Born couplings and the Born
corrections is required. However, the calculated values by
method B, that have been reported so far, are much lower
than those from other methods. The only available quantita-
tive comparison is for the Born correction for the ground
state of the hydrogen molecule. Method B gives only about
one quarter® of the accurate values obtained by Kolos and
Wolniewicz.* Thus, the practical reliability of method B,
though there is no problem theoretically, must be demon-
strated.

Our program with the GLO as basis demonstrates that
these two methods are practically equivalent. The calculated
results for the Born couplings for the ground states and low-
er electronic excited states of hydrogen molecules with both
method A and method B are in good agreement with the
previous accurate values.®® In this work, the calculation of
the Born corrections for the ground state and several elec-
tronic excited states, including the state C,C"’ *II,,, an avoid-
ed crossing state, again shows the equivalence of these meth-
ods. As an example, Table ITI shows the Born corrections for
the ground state X '2;" and the avoided crossing valence
state C,C ' *II,. These data demonstrate that the coincidence

of results for these two methods is about 99%. Thus we have -

shown that method B, based on operator (6), is an economi-
cal and practical method for the calculation of the Born cor-
rections. The role of operator (6) in the calculation of the
Born couplings is discussed elsewhere.?®

2. The Born correction of the avoided crossing states

The electronic states X ‘E;’ and 'E; (II) are “regular”
states, i.e., far away from crossings or avoided crossings. The
values of the Born correction for these states are very slowly
varying. In a large region of nuclear separations these values
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remain almost constant. On the other hand, the electronic
state C,C "’ I, is a double-well state (see Ref. 39). Its first
well is designated C°I1, with 20}, 175302 177, as its main
electronic configuration; the second well, which is very shal-
low, is denoted by C' *II,, with 207 1, 30, 1% as the main
electronic configuration. An unobserved *I1, (IT) state® is
located above this double well state C,C’ °I1,,. There is an
avoided crossing between these two states, *I1, (/) and
C,C'*1,.

The values obtained (see Table IT and Fig. 1) for these
states show that Born corrections of the states involved in an
avoided crossing peak sharply near the avoided crossing re-
gion, as shown in Fig. 1. Meanwhile, the values of the Born
correction for *I1, (II) (see the last row in Table II) shows
that there are two peaks. The first one originates from the
avoided crossing with C,C’ I, and the second one is caused
by the interaction with other unobserved states.>®

The data in Table II also shows that this variance, com-
pared with the regular states, is mainly caused by the A}
term.

3. Contribution analysis

Both Egs. (16) and (17) have three terms. Among
them the first term is the contribution from a variety of CI
coeflicients, called the CI contribution. The last term reflects
the effects of nuclear displacement on Slater determinants,
namely on molecular orbitals, so that it may be called the

1700 T T T T T T

1600 o A
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1300

L S SRS SRR S— 1

1200

Born Correction

1100 L
1000 o

900 B

800 — 1 — L —_— I

1.8 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Nuclear Separation

FIG. 1. The Born correction for X '2;* and C,C' *Il, states (incm™') vs
nuclear separation (in a.u.) for N,. Dash line: for X '2;’ ; full line for
C,C’ *I1,, a sharp peak appears near the avoided crossing with *I1, (II).

J. Chem. Phys., Vol. 88, No. 12, 15 June 1988



7670

TABLE IV. The contribution analysis in the Born correction.

Zhang et al.: The Born couplings

Nuclear
States separation a.u. Items Contributions % Items Contributions %
X'z} 2.068 Cl,inh$ 0.22 Ci,in k% 0.00
MO,inh} 99.94 MO, in b} 100.00
mixed, in kA —0.16 mixed, in £} 0.00
2.590 CLinh?} 0.52 Ci,in A% 0.00
MO, inh§ 100.48 MO, in A} 100.00
mixed, in 2§ — 1.00 mixed, in k) 0.00
C,C', 2.068 ClLinh?} 0.63 ClLinh{ 0.00
MO, in h$ 100.18 MO, in A4 100.00
mixed, in &} —0.81 mixed, in 47 0.00
2.590 CLinh{ 80.38 Cl,in A3 0.00
MO, inh} 19.49 MO, in b} 100.00
mixed, in &} 0.10 mixed, in 27 0.00

MO contribution. The second term, which depends upon
both, is called the mixed contribution.

Table IV shows the contribution analysis of the Born
correction near the avoided crossing region and far away
from this region. It is demonstrated that the strong variance
of the Born correction for the states involved in an avoided
crossing is mainly contributed by configuration interaction.

These results and other work to be reported elsewhere®®
demonstrate that the GLO approach is very effective for reli-
able calculations of the Born correction, the Born coupling,
and related quantities.
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