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1. Introduction and Preliminaries

The notion of almost convergence was introduced by Lorentz [7]. Matrix
domains of the generalized difference matrix B(r, s) and triple band matrix
B(r, s, t) in sets of almost null and almost convergent sequences have been
investigated by Başar and Kirişçi [3] and Sönmez [18], respectively. Let w
be the vector space of all real sequences. We shall write c, c0 and l∞ for the
spaces of all convergent, null and bounded sequences. Moreover, we write
bs and cs for the spaces of all bounded and convergent series, respectively.
Let X and Y be two sequence spaces and A = (ank) be an infinite matrix
of real or complex entries, where n, k ∈ N. Then we say that A defines a
matrix mapping from X into Y if for every sequence x = (xk) ∈ X, the
sequence Ax = {An(x)} is in Y , where

An(x) =
X

k

ankxk (n ∈N).(1.1)

By (X,Y ) we denote the class of all matrices A such that A : X → Y . Thus
A ∈ (X,Y ) if and only if the series on the right-hand side of 1.1 converges
for each n ∈ N and every x ∈ X and we have Ax ∈ Y for all x ∈ X.

The matrix domain XA of an infinite matrix A in a sequence space X
is defined by

XA = {x = (xk) ∈ w : Ax ∈ X}(1.2)

which is a sequence space.

A B-space is a complete normed space. A topological sequence space
in which all coordinate functionals πk, πk(x) = xk, are continuous is called
a K-space. A BK-space is defined as a K-space which is also a B-space,
that is, a BK-space is a Banach space with continuous coordinates. For

example, the space lp(1 ≤ p <∞) is a BK-space with kxkp =
µ ∞X

k=0

|xk|
p
¶ 1

p

and c0, c and l∞ are BK-spaces with kxk∞ = sup
k
|xk|. A sequence (bn)

in a normed space X is called a Schauder basis for X if for every x ∈ X
there is a unique sequence (αn) of scalars such that x =

P
n αnbn, i.e.,

lim
m
kx−

mX

n=0

αnbnk = 0.

rvidal
Cuadro de texto
638



A relation of Banach limit and difference matrix to generate some...649

The Cesàro matrix C = (cnk) of order one is a triangle matrix defined by

cnk =

(
1

n+1 , 0 ≤ k ≤ n,

0, k > n,

for all n, k ∈N.
One of the best known regular matrix is the Riesz matrix R = (rnk), which
is a triangle matrix and is defined by

rnk =

(
rk
Rn

, 0 ≤ k ≤ n,

0, k > n,

for all n, k ∈ N, where (rk) is a real sequence with r0 > 0, rk ≥ 0 and

Rn =
nX

k=0

rk. The Riesz matrix R is regular if and only if Rn → ∞ as

n → ∞ [13]. The matrix domain XA of a sequence space X has a basis if
and only if X has a basis and A = (ank) is a triangle matrix.
Let r, s be non-zero real numbers and define the generalized difference ma-
trix B(r, s) = (bnk(r, s)) for all k, n ∈ N as follows:

bnk(r, s) =

⎧
⎪⎨
⎪⎩

r, k = n,
s, k = n− 1,
0, 1 ≤ k ≤ n− 1 or k > n.

(1.3)

It is easy to calculate that the inverse B−1(r, s) = (b̂nk(r, s)) of the
generalized difference matrix is given by

b̂nk(r, s) =

(
1
r (−s

r )
n−k, 1 ≤ k ≤ n,

0, k > n.

for all k, n ∈N.

We now focus on sets of almost convergent sequences. A continuous
linear functional φ on l∞ is called a Banach limit if

(i) φ(x) ≥ 0 for x = (xk), xk ≥ 0 for every k,

(ii) φ(xσ(k)) = φ(xk), where σ is shift operator which is defined on w by
σ(k) = k + 1 and
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(iii) φ(e) = 1, where e = (1, 1, 1, ...).
A sequence x = (xk) ∈ l∞ is said to be almost convergent to the gen-
eralized limit a if all Banach limits of x are a (see [7]) and denoted by
f − limx = a. In other words, f − limxk = a uniformly in n if and only if

lim
p→∞

(xn + xn+1 + ...+ xn+p−1)
p

= a, uniformly in n. We denote the space

of all almost convergent and almost null sequences by f and f0, respectively.

In [21] Zararsız and Şengönül defined the concepts of the spaces of rf -
convergent and rf -null sequences and it is proved that the spaces rf and
rf0 are Banach spaces with the norm

kxkrf = kxkrf0 = sup
m

¯̄
¯̄
¯̄
1

Rm

mX

k=0

rkxk+n

¯̄
¯̄
¯̄, uniformly in n.

In addition to these spaces, Zararsız [22] introduced two convergent
sequences brf and brf0 as the sets of all sequences such that their B(r, s)-
transforms are in the spaces rf and rf0, respectively.
Let us define the sequence z = (zk) as the B(r, s)-transform of a sequence
x = (xk), that is,

zk = sxk−1 + rxk (k ∈ N).(1.4)

Corollary 1.1. [22] The space brf does not have a Schauder basis.

A set λ ⊂ w is said to be convex if x, y ∈ λ implies C = {z ∈ w : z =
tx+ (1− t)y, 0 ≤ t ≤ 1} ⊂ λ.

An Orlicz functionM : [0,∞)→ [0,∞) is a continuous, non-decreasing and
convex function such thatM(0) = 0, M(x) > 0 for x > 0 andM(x) −→∞
as x −→∞. Lindenstrauss and Tzafriri [6] used the idea of Orlicz function
to define the following sequence space,

cM =

½
x = (xk) ∈ w :

∞X

k=1

M

µ
|xk|

ρ

¶
<∞, for some ρ > 0

¾

is known as an Orlicz sequence space. The space cM is a Banach space with
the norm

||x|| = inf

½
ρ > 0 :

∞X

k=1

M

µ
|xk|

ρ

¶
≤ 1

¾
.
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A sequenceM = (Mk) of Orlicz functions is said to be Musielak-Orlicz
function (see [9], [12]). A Musielak-Orlicz function M = (Mk) is said to
satisfy ∆2-condition if there exist constants a, K > 0 and a sequence
c = (ck)

∞
k=1 ∈ l1+ (the positive cone of l

1) such that the inequality

Mk(2u) ≤ KMk(u) + ck

holds for all k ∈ N and u ∈ R+, whenever Mk(u) ≤ a. The reader can
refer to the textbook Başar [2] containing the chapters entitled Normed
and Paranormed Sequence Spaces and Matrix Domains in Sequence Spaces
together with the paper Dutta and Başar [4] devoted to the generalization
of Orlicz sequence spaces. For more details about sequence spaces see For
more details about sequence spaces see ([10], [11], [14], [15], [16], [17], [20])
and references therein.

Definition 1.2. Let X be a linear metric space. A function p : X → R is
called paranorm, if
(P1) p(x) ≥ 0 for all x ∈ X,
(P2) p(-x) = p(x) for all x ∈ X,
(P3) p(x+y) ≤ p(x) + p(y) for all x, y ∈ X,
(P4) if(λn) is a sequence of scalars with λn → λ as n→∞ and (xn) is a
sequence of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn − λx) →
0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known
that the metric of any linear metric space is given by some total paranorm
(see [19, Theorem 10.4.2, p. 183]).

LetM = (Mk) be a sequence of Orlicz functions, p = (pk) be any bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly
positive real numbers. By making the use of B(r, s)-transform of sequences
x = (xk), we define the following sequence spaces:

[brf,M, u, p] =

⎧
⎨
⎩x = (xk) ∈ w : ∃a ∈ C 3 lim

m

1

Rm

mX

k=0

⎡
⎣ukMk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦
pk

=

a, uniformily in n and some ρ > 0

⎫
⎬
⎭
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and

[brf0,M, u, p] =

⎧
⎨
⎩x = (xk) ∈ w : lim

m

1

Rm

mX

k=0

⎡
⎣ukMk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦
pk

= 0,

uniformily in n and some ρ > 0

⎫
⎬
⎭.

If Mk(x) = x for all k ∈ N and ρ = 1, then above sequence spaces
reduces to [brf, u, p] and [brf0, u, p], where

[brf, u, p] =

⎧
⎨
⎩x = (xk) ∈ w : ∃a ∈ C 3 lim

m

1

Rm

mX

k=0

∙
uk

µ
rk|sxk+n−1+rxk+n|

¶¸pk
= a,

uniformily in n

⎫
⎬
⎭

and

[brf0, u, p] =

⎧
⎨
⎩x = (xk) ∈ w : lim

m

1

Rm

mX

k=0

∙
uk

µ
rk|sxk+n−1+rxk+n|

¶¸pk
= 0,

uniformily in n

⎫
⎬
⎭.

By taking (pk) = 1 and (uk) = 1, for all k ∈ N, then we get the following
sequence spaces:

[brf,M] =

⎧
⎨
⎩x = (xk) ∈ w : ∃a ∈ C 3 lim

m

1

Rm

mX

k=0

⎡
⎣Mk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦ = a,

uniformily in n and some ρ > 0

⎫
⎬
⎭
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and

[brf0,M] =

⎧
⎨
⎩x = (xk) ∈ w : lim

m

1

Rm

mX

k=0

⎡
⎣Mk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦ = 0,

uniformily in n and some ρ > 0

⎫
⎬
⎭.

With the notation of 1.1, the sequence spaces [brf,M, u, p] and [brf0,M, u, p]
can be redefined as follows:

[brf0,M, u, p] = {[rf0,M, u, p]}B(r,s) and [brf,M, u, p] = {[rf,M, u, p]}B(r,s).
(1.5)

The following inequality will be use throughout the paper. If 0 ≤ pk ≤
sup pk = H, K = max(1, 2H−1), then

|ak + bk|
pk ≤ K{|ak|

pk + |bk|
pk}(1.6)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.

In this paper, we introduce the sequence spaces [brf,M, u, p] and [brf0,M, u, p].
We investigate some topological properties of these new sequence spaces
and establish some inclusion relations between these spaces. Also we de-
termine the α−, β− and γ− duals of these spaces and construct the matrix
transformation of these spaces.

2. Main Results

Theorem 2.1. LetM = (Mk) be a sequence of Orlicz functions, p = (pk)
be a bounded sequence of positive real numbers and u = (uk) be a sequence
of strictly positive real numbers. Then [brf,M, u, p] and [brf0,M, u, p] are
linear spaces over the complex field C.

Proof. It is a routine verification so we omit the proof. 2

Theorem 2.2. Let M = (Mk) be a sequence of Orlicz functions and
p = (pk) be a bounded sequence of positive real numbers and u = (uk)

rvidal
Cuadro de texto
643

rvidal
Cuadro de texto



654 K. Raj and Ch. Sharma

be a sequence of strictly positive real numbers. Then [brf,M, u, p] and
[brf0,M, u, p] are paranormed spaces with the paranorm defined by

g(x) = inf

⎧
⎨
⎩(ρ)

pk
M :

⎛
⎝ 1

Rm

mX

k=0

⎡
⎣ukMk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦
pk
⎞
⎠

1

M

≤ 1,

uniformly in n > 0, ρ > 0

⎫
⎬
⎭,

where 0 ≤ pk ≤ sup pk = H, M = max(1,H).

Proof. For the proof verification see [15]. 2

Theorem 2.3. LetM = (Mk) be a sequence of Orlicz functions, u = (uk)
be a sequence of strictly positive real numbers. If p = (pk) and q = (qk)
are bounded sequences of positive real numbers with 0 ≤ pk ≤ qk <∞ for
each k, then [brf0,M, u, p] ⊆ [brf,M, u, q].

Proof. It is easy to prove. 2

Theorem 2.4. Let M = (Mk) be a sequence of Orlicz functions which

satisfies the ∆2-condition and β = lim
t→∞

Mk(t)

t
> 0 for all k ∈ N. Then

[brf0,M, u, p] ⊆ [brf0, u, p].

Proof. It is easy to prove. 2

The following theorems can be proved in a similar way as in [15].

Theorem 2.5. If M0 = (M 0
k) and M

00 = (M 00
k ) are sequences of Orlicz

functions satisfying the ∆2-condition, then

[brf0,M, u, p] ∩ [brf0,M0, u, p] ⊆ [brf0, (M0 +M00), u, p].

Theorem 2.6. LetM = (Mk) andM
0 = (M 0

k) be two sequences of Orlicz
functions, then

[brf0,M
0, u, p] ⊆ [brf0,M ◦M0, u, p],

whereM ◦M0 is the composition ofM andM0.
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Theorem 2.7. The spaces [brf,M, u, p] and [brf0,M, u, p] are BK-spaces
with the norm defined by

kxkbrf0,M,u,p = kxkbrf,M,u,p(2.1)

= sup
m

¯̄
¯̄
¯̄
1

Rm

mX

k=0

⎡
⎣ukMk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦
pk
¯̄
¯̄
¯̄, uniformly in n.

Proof. Since 1.4 holds, brf and brf0 are the BK-spaces with respect
to their norms (see Theorem 3.3 in [22]) and the matrix B(r, s) is nor-
mal, Theorem 4.3.12 of Wilansky [19] gives the fact that [brf,M, u, p] and
[brf0,M, u, p] are BK-spaces with the given norms. This completes the
proof. 2

Theorem 2.8. The spaces [brf,M, u, p] and [brf0,M, u, p] are linearly
isomorphic to the spaces brf and brf0, respectively.

Proof. We only consider the sequence spaces [brf,M, u, p] and brf
and other will follow similarly. To show the theorem, we must show the
existence of linear bijection between the spaces [brf,M, u, p] and brf . For
this, we consider the transformation T defined with the notation 1.4, from
[brf,M, u, p] to brf by x→ y = Tx. The linearity of T is obvious. Further,
it is trivial that x = θ = (0, 0, 0...) whenever Tx = θ and hence T is
injective. Next, let y = (yk) ∈ brf and defined the sequence x = (xk) by
({B−1(r, s)y})k for all k ∈N. Then, it is clear that

{B−1(r, s)y}k = sxk−1+rxk =
k−1X

j=0

s

r

µ
− s

r

¶j
yk−j−1+

k−1X

j=0

µ
− s

r

¶j
yk−j = yk

for all k ∈N which shows that

lim
m

1

Rm

mX

k=0

⎡
⎣ukMk

⎛
⎝rk|sxk+n−1 + rxk+n|

ρ

⎞
⎠
⎤
⎦
pk

= lim
m

1

Rm

mX

k=0

⎡
⎣ukMk

⎛
⎝rk|yk+n|

ρ

⎞
⎠
⎤
⎦
pk

= [brf,M, u, p]− lim yk, uniformly in n.
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Thus, x = (xk) ∈ [brf,M, u, p]. Consequently, it is clear that T is
surjective. Because of the fact that is linear bijection, [brf,M, u, p] and
brf are linearly isomorphic. This completes the proof. 2

Theorem 2.9. The spaces [brf0,M, u, p] and [brf,M, u, p] are convex spaces.

Proof. The proof is clear from the definition of convexity. 2

Corollary 2.10. The space [brf,M, u, p] does not have a Schauder basis.

3. β and γ-Duals

In this section, we determine the β and γ-duals of the spaces [brf,M, u, p]
and [brf0,M, u, p]. For the sequence spacesX and Y , define the set S(X,Y )
by

S(X,Y ) = {z = (zk) ∈ w : xz = (xkzk) ∈ Y for all x = (xk) ∈ X}.(3.1)

With the notation of 3.1 the α-, β- and γ-duals of a sequence space X,
which are, respectively, denoted by Xα,Xβ and Xγ are defined by S(X, l1),
S(X, cs) and S(X, bs).
The following theorems are proved by using some lemmas of [21].

Theorem 3.1. The γ-dual of the space [brf,M, u, p] is the set d1(r, s),
where

d1(r, s) =

⎧
⎨
⎩a = (ak) ∈ w : sup

n

nX

k=0

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
aj |

ρ

⎞
⎠
⎤
⎦
pk

<∞
⎫
⎬
⎭.

Proof. The proof of the theorem is clear, so we omit it. 2

Theorem 3.2. Let us write the sets d2(r, s), d3(r, s) and d4(r, s) by

d2(r, s) =

⎧
⎨
⎩a = (ak) ∈ w : lim

n

nX

k=0

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
aj |

ρ

⎞
⎠
⎤
⎦
pk

exists

⎫
⎬
⎭,

d3(r, s) =

⎧
⎨
⎩a = (ak) ∈ w : lim

n

nX

k=0

⎡
⎣ukMk

⎛
⎝

¯̄
¯̄∆
µ
Pn

j=k
1
r

µ
− s

r

¶j−k
aj − ak

¶¯̄
¯̄

ρ

⎞
⎠
⎤
⎦
pk

= 0

⎫
⎬
⎭,
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where

∆

µ nX

j=k

1

r

µ
− s

r

¶j−k
aj−ak

¶
=

nX

j=k

1

r

µ
− s

r

¶j−k
aj−

nX

j+1=k

1

r

µ
− s

r

¶j+1−k
aj+1−

ak + ak+1.

d4(r, s) =

⎧
⎨
⎩a = (ak) ∈ w : lim

n

nX

k=0

⎡
⎣ukMk

⎛
⎝

¯̄
¯̄
∙
1−(− s

r
)k+1

1+ s
r

ak

¸¯̄
¯̄

ρ

⎞
⎠
⎤
⎦
pk

exists

⎫
⎬
⎭.

for all j, k ∈N. Then, D = [brf,M, u, p]β =
T4
i=1 di(r, s).

Proof. Let us define the matrix V = (vnk) via the sequence z = (zk) ∈ w
by

vnk =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nX

k=0

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
zj |

ρ

⎞
⎠
⎤
⎦
pk

, 0 ≤ k ≤ n,

0, k > n,

for all n, k ∈N. By considering the relation

xk =
nX

k=0

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
yj |

ρ

⎞
⎠
⎤
⎦
pk

, we have

nX

k=0

zkxk =
nX

k=0

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
zjyk|

ρ

⎞
⎠
⎤
⎦
pk

= (V y)n (n ∈N).(3.2)

From 3.2, we see that zx = (zkxk) ∈ cs whenever x = (xk) ∈ [brf,M, u, p]
if and only if V y ∈ c whenever y = (yk) ∈ brf . Then, we have [brf,M, u, p]β =T4
i=1 di(r, s). 2

4. Matrix Transformations

Başar [1], Kuttner [5] and Lorentz and Zeller [8] have been used the methods
of dual summability. Now, let us review these methods.
Let us suppose that the sequences x = (xk) and y = (yk) are connected
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with 1.4 and let A-transform of the sequence x = (xk) be z = (zk) and
B-transform of the sequence y = (yk) be t = (tk), that is,

zk = (Ax)k =
X

k

ankxk, (k ∈N)(4.1)

tk = (By)k =
X

k

bnkyk, (k ∈N).(4.2)

Method B is applied to the B(r, s)-transform of the sequence x = (xk)
while the method A is directly applied to the terms of the sequence x =
(xk). So it is clear that A and B are essentially different [1]. Let us
suppose that the matrix product BB(r, s) exists. If zk turns into tk (or
vice versa), under the application of the formal summation by parts, then
the methods A and B as in 4.1 and 4.2 are called generalized difference
dual type matrices. It means that BB(r, s) exists and is equal to A. This
condition is equivalent to the following equality:

bnk =
nX

k=0

⎡
⎣ukMk

⎛
⎝
|1r
Pn

j=k

µ
− s

r

¶j−k
anj |

ρ

⎞
⎠
⎤
⎦
pk

(4.3)

or ank =
nX

k=0

⎡
⎣ukMk

⎛
⎝ |sbn,k−1 + rbnk|

ρ

⎞
⎠
⎤
⎦
pk

,

for all n, k ∈N.

Theorem 4.1. Let µ be any given sequence space and the matrices A =
(ank) and B = (bnk) be generalized difference dual type matrices. Then,
A ∈ ([brf,M, u, p] : µ) if and only if B ∈ (brf : µ) and (ank)k∈N ∈
[brf,M, u, p]β for all n ∈ N.

Proof. Let µ be any sequence space and A = (ank) and B = (bnk) be
generalized difference dual type matrices, that is, 4.3 holds. Furthermore,
the spaces [brf,M, u, p] and brf are isomorphic. Let A ∈ ([brf,M, u, p] : µ)
and y = (yk) ∈ brf . Then BB(r, s) exists and (ank)k∈N ∈ D, it means that
(bnk)k∈N ∈ l1 for each n ∈ N. Hence, we have

X

k

bnkyk =
X

k

ankxk,(4.4)
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for all n ∈ N which concluded that B ∈ (brf : µ). On the contrary, let
(ank)k∈N ∈ [brf,M, u, p]β for each n ∈ N and B ∈ (brf : µ) and x =
(xk) ∈ [brf,M, u, p]. Then it is clear that Ax exists. Thus, we attain from
the following equality for all n ∈ N

mX

k=0

ankxk =
mX

k=0

⎡
⎣ukMk

⎛
⎝
|1r
Pn

j=k

µ
− s

r

¶j−k
aj |

ρ

⎞
⎠
⎤
⎦
pk

yk =
mX

k=0

bnkyk

asm→∞ that Ax = By and it is easy to show that A ∈ ([brf,M, u, p] : µ).
This completes the proof. 2

Theorem 4.2. Let us assume that the components of the infinite matrices
A = (ank) and E = (enk) are connected with the following relation

enk =
nX

k=0

⎡
⎣ukMk

⎛
⎝ |san−1,k + rank|

ρ

⎞
⎠
⎤
⎦
pk

,(4.5)

for all n ∈ N and µ be any given sequence space. Then, A ∈ (µ :
[brf,M, u, p]) if and only if E ∈ (µ : brf).

Proof. It is easy to prove. 2
Now, we list the following conditions;

sup
n

nX

k=0

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
anj |

ρ

⎞
⎠
⎤
⎦
pk

< ∞,(4.6)

lim
n

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
anj |

ρ

⎞
⎠
⎤
⎦
pk

= ak ∀k ∈N,(4.7)

lim
n

nX

k=0

⎡
⎣ukMk

⎛
⎝

¯̄
¯̄∆
µ
Pn

j=k
1
r

µ
− s

r

¶j−k
anj − ak

¶¯̄
¯̄

ρ

⎞
⎠
⎤
⎦
pk

= 0,(4.8)
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for each fixed k ∈N,

where ∆

µ nX

j=k

1

r

µ
− s

r

¶j−k
anj − ak

¶

=
nX

j=k

1

r

µ
− s

r

¶j−k
anj −

nX

j+1=k

1

r

µ
− s

r

¶j+1−k
an,j+1 − ak + ak+1.

brf − lim
n

⎡
⎣ukMk

⎛
⎝
|
Pn

j=k
1
r

µ
− s

r

¶j−k
anj |

ρ

⎞
⎠
⎤
⎦
pk

= ak(4.9)

exists for each fixed k ∈N,

sup
n

X

k

⎡
⎣ukMk

⎛
⎝ |san−1,k + rank|

ρ

⎞
⎠
⎤
⎦
pk

< ∞,(4.10)

brf − lim
n

⎡
⎣ukMk

⎛
⎝ |san−1,k + rank|

ρ

⎞
⎠
⎤
⎦
pk

= ak,(4.11)

exists for each k ∈ N,

brf − lim
n

⎡
⎣ukMk

⎛
⎝ |san−1,k + rank|

ρ

⎞
⎠
⎤
⎦
pk

= a,(4.12)

By using the lemmas of [21] and Theorems 4.1 and 4.2, we derive the
following results:

Corollary 4.3. The following statements hold:
(i) A = (ank) ∈ ([brf,M, u, p] : l∞) if and only if (ank)k∈N ∈ [brf,M, u, p]β

for all n ∈ N and 4.6 holds.
(ii) A = (ank) ∈ ([brf,M, u, p] : c) if and only if (ank)k∈N ∈ [brf,M, u, p]β

for all n ∈ N and 4.6, 4.7, 4.8 and 4.9 hold.
(iii) A = (ank) ∈ (l∞ : [brf,M, u, p]) if and only if 4.10, 4.11 and 4.12 hold.
(iv) A = (ank) ∈ (c : [brf,M, u, p]) if and only if 4.11 and 4.12 hold.
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