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It is shown that thermal turbulence, not unlike the standard kinetic and magnetic turbulence, can be

an effective driver of a mean-field dynamo. In simple models, such as hydrodynamics and magneto-

hydrodynamics, both vorticity and induction equations can have strong thermal drives that resemble

the a and c effects in conventional dynamo theories; the thermal drives are likely to be dominant in

systems that are endowed with subsonic, low-b turbulence. A pure thermal dynamo is quite different

from the conventional dynamo in which the same kinetic/magnetic mix in the ambient turbulence

can yield a different ratio of macroscopic magnetic/vortical fields. The possible implications of the

similarities and differences between the thermal and non-thermal dynamos are discussed. The ther-

mal dynamo is shown to be highly important in the stellar and planetary context, and yields results

broadly consistent with other theoretical and experimental approaches. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4951725]

I. INTRODUCTION

The problem of explaining the ubiquity of magnetic fields

observed at planetary,1 stellar,2 and cosmic scales,3,4 ranging

from the dilute intergalactic medium (IGM) to the exception-

ally dense neutron stars,5 had led to the “evolution” of what

are generically (and appropriately) called dynamo mecha-

nisms. In this paper, we limit ourselves to the so-called mean-

field (large-scale) dynamos that operate via the conversion of

ambient turbulence into ordered large-scale magnetic fields;

see Refs. 6 and 7 in the context of galactic and extragalactic

magnetic fields. Starting with Parker in the 1950s,8 to explain

solar magnetic activity, the mean-field dynamos received a

major impetus via the pioneering work of Ref. 9 on mean-

field electrodynamics; an excellent account of the classical

theory can be found in Refs. 3, 10, and 11. The next break-

through arose via the use of the Eddy-Damped Quasi-Normal

Markovian (EDQNM) closure by Ref. 12 to account for new

contributions to the a-effect. The subsequent decades wit-

nessed an explosion of activity, as evidenced in Refs. 13–35.

A comprehensive review of dynamo theory can be found in

Refs. 36–38.

There are various sub-mechanisms that contribute to the

broad dynamo paradigm. Originally intended for generating

(mostly long range) magnetic fields, the dynamo theories

have grown to be more encompassing and can be viewed as

theories for generating “Generalized Vorticity” (GV) con-

structed from the electromagnetic (the magnetic field) and

fluid components (vorticity).39,40 Such a unified point of

view becomes necessary as one deals with physical models

that are more general than the standard nonrelativistic mag-

netohydrodynamics (MHD).41,42 For a full covariant formu-

lation of the GV two-form, the reader should consult Ref. 42.

Extended formulations of the dynamo mechanism have been

employed in discussing the creation of flows in general. Of

particular importance is their application to astrophysical

jets40,43,44 which are diverse and abundant in the cosmos.

In most of the MHD-based mean-field theories, the tur-

bulence is kinetic, in which case the (large scale) dynamo

action converts short scale kinetic energy into large scale

magnetic fields.37,45,46 For instance, the a-drive responsible

for the generation of large scale magnetic fields, in the very

early work of Ref. 9, arises entirely from the ensemble aver-

age of the kinetic helicity hv � r � vi. In extended MHD the-

ories, such as Hall MHD,39,40,47–50 the short scale kinetic

helicity is augmented by the (short scale) cross helicity and

magnetic helicity. Together, they create long scale vortical

fields with kinetic and electromagnetic components. One of

the chief consequences of this model is the emergence of a

unified Dynamo-Reverse Dynamo mechanism39,40 present-

ing a comprehensive theory for the simultaneous generation

of large-scale magnetic fields and vorticity.

The exploration of generic dynamo theories in the con-

text of physics models more comprehensive than MHD (the

model used in most extant works) is of essence since many

astrophysical systems do fall outside its domain.51 The

recent exploitation of Hall MHD in astrophysics, in general,

and dynamo theory, in particular, has considerably advanced

the fields.47–50,52,53 In a future publication, we will study, in

detail, even more encompassing (multi-fluid) models than

Hall MHD.

In this paper, however, we plan to take another step

towards an overall unified picture. To the best of our knowl-

edge, barring notable exceptions such as Refs. 54–57, most

of the extant literature, even in extended dynamo theories,

has not paid much attention to the possibility of dynamo

action fueled by thermal energy. It is important to recognize,

however, that thermal drives have been invoked very often

to generate the so-called seed magnetic field needed for a

dynamo to work. The Biermann battery58 has often been
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invoked as a seed field mechanism, but we also emphasize

the existence of a unique (ideal) thermal relativistic drive4,59

that does not possess a nonrelativistic counterpart. To accord

appropriate importance to the “thermal energy,” we will

explore the role of thermal turbulence and thermally driven

mean-field terms in dynamo action; we will also discuss the

regimes (and astrophysical systems) in which the thermal

contributions could be significant, even dominant.

Since this represents our first attempt to directly investi-

gate a thermally driven dynamo, we will limit ourselves to

the simplest fluid models. In Section II, we will first summa-

rize the principal steps of what (for want of a better word)

may be called a closure scheme, and then apply it to a range

of fluid theories to identify the existence, and evaluate the

significance of the thermal-driven terms. In Section III,

exploring ideal MHD, we establish an elegant relation

between the mean magnetic field and vorticity, followed by

an exploration of its stellar and planetary consequences.

After summarizing our main results, we discuss the prospects

for future work in Section IV. In the Appendixes, we present

an alternative derivation of the thermal dynamo contribu-

tions and a discussion of two-fluid effects in the “beyond

MHD” models.

II. TOWARDS ATHEORYOF THE THERMAL DYNAMO

In this section, we present a hierarchy of models, each

of which involves a new contribution arising from thermal

physics. We commence with a detailed discussion of the

underlying assumptions and the closure scheme used

throughout the paper.

A. Mean-field models: Assumptions and closure
scheme

We first describe an internally consistent closure scheme

needed to construct a mean-field dynamo model.

A generic field W is decomposed into a mean-field part
�W and a fluctuating part w; terms linear in the latter vanish

upon a suitable statistical or spatial averaging. The fluctuat-

ing component is further decomposed as w ¼ wð0Þ þ wð1Þ,

where wð0Þ and wð1Þ denote the small-scale fields that exist

independently of the mean fields and the induced small scale

fluctuations, respectively. The field wð0Þ represents the back-

ground turbulence and is the energy reservoir that serves as a

source/driver for the small scale fluctuations wð1Þ and, even-

tually, the mean field �W that is the desired end product of the

large-scale dynamo action. Hence, we refer to wð0Þ as the am-

bient field, while the mean field �W and wð1Þ are perturbations.

It is straightforward to assume jwð1Þj � jw0j.
But the ordering between �W and wð1Þ can be tricky,

especially when we are trying to breed �W, say, from an origi-

nally non-zero but very small magnitude. However, as long

as the induced small scale fluctuations wð1Þ remain bounded

at low enough levels,37,60 it affords great algebraic simplifi-

cation to incorporate jwð1Þj � j �Wj in our closure model. This

genre of closure models, satisfying jwð1Þj � j �Wj, has been

employed in Refs. 47–49, and 52, and also bears similarity

with the approach of Refs. 54 and 61.

A word on the role of dissipation in this paper is also

mandatory. In our treatment, dissipative effects, such as the

resistivity and viscosity, are not explicitly present. This,

however, does not mean that they are unimportant—we

hold it to be self-evident that they play a crucial role in

dynamo theory, as noted in Ref. 37. We do not include

them directly since the dissipative contributions are linear

in the dynamical fields and are, hence, quite straightforward

to incorporate in the mean-field analysis. Because of their

absence in our simplified treatment, we do not tackle the

role of the magnetic Prandtl (Pm) and Reynolds (Rm) in

dynamo theory,37,38 which remains a crucial and pressing

issue.

B. Ideal hydrodynamics

Let us begin with the simplest model of a neutral fluid,

obeying

@q

@t
þr � qVð Þ ¼ 0; (1)

@V

@t
þ V � rV

� �

¼ �
rP

q
; (2)

an appropriate P evolution equation is needed to close the

model. Two commonly used choices are:

• Incompressibility: Assume q¼ const, reducing (1) to r� V
¼ 0. This assumption severely restricts the choice of P,

which is automatically determined by taking the diver-

gence of (2).
• Enthalpy evolution equation: The pressure is assumed to

obey an adiabatic evolution, viz., d=dtðP=qcÞ ¼ 0. We

introduce the enthalpy for the barotropic fluid, which satis-

fies rh ¼ q�1rP and evolves as per

@h

@t
þ V � rhþ c� 1ð Þhr � V ¼ 0; (3)

and it must also be recognized that h ¼ c=ðc� 1ÞP=q
¼ c=ðc� 1ÞkBT=m, where T is the temperature and m is

the total mass. In the barotropic and adiabatic case, note

that P / qc and T / qc�1, and the second equality follows

from the equation of state.

Of the two approaches, in the hydrodynamic case, we

shall adopt the latter. The chief reason is evident: instead of

evolving the density and the pressure (or temperature) dy-

namics separately, we have effectively reduced them to a

single equation. In other words, only one of q, P, and T con-

stitutes an independent variable. Hence, our complete system

of equations, in the (ideal) hydrodynamics model, comprises

(2) and (3), and the continuity equation is rendered superflu-

ous (serving just as a constraint). The governing equations

are as follows:

@V

@t
þ V � rV ¼ �r

ckBT

m c� 1ð Þ

� �

; (4)

@T

@t
þ V � rT þ c� 1ð ÞTr � V ¼ 0; (5)
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as we have used the definition of h in terms of T, since the

latter is a more physically transparent variable. Taking the

curl of (4) yields the equation for vorticity X

@X

@t
�r� V�Xð Þ ¼ 0: (6)

Carrying out the decomposition w ¼ �W þ wð0Þ þ wð1Þ

with w ¼ ½V;X; T�, and introducing the notation �X ¼ r
��V; xð0Þ ¼ r� vð0Þ and x

ð1Þ ¼ r� vð1Þ, we derive the

fundamental equations for a hydrodynamical dynamo (fluid

vorticity generator). The mean-field vorticity evolves as

@ �X

@t
�r� �V � �Xð Þ ¼ r� hv 0ð Þ �x 1ð Þ þ v

1ð Þ �x 0ð Þi

� r� �EX; (7)

where �EX is an effective “electromotive force,” named so in

analogy with the equivalent generator of the magnetic field

in standard dynamo theory. The induced fluctuations are

determined by subtracting the expression for �W from the full

w equation and using the Reynolds relations11 together with

our closure scheme. The induced fluctuations for our hydro-

dynamical model yield

@v 1ð Þ

@t
þ �V � rv

0ð Þ þ v
0ð Þ � r�V ¼ �r

ckBT
1ð Þ

m c� 1ð Þ

 !

; (8)

@T 1ð Þ

@t
þ �V � rT 0ð Þ þ v

0ð Þ � r �T

þ c� 1ð Þ �Tr � v 0ð Þ þ T 0ð Þr � �V
� �

¼ 0: (9)

In the latter two equations, terms proportional to vð1Þ and

Tð1Þ have (mostly) dropped out as per the assumption that

they are much smaller than similar surviving terms involving

the mean or ambient fields. Since there is no contribution

from either �T or Tð0Þ, the only thermally driven contribution

comes from rTð1Þ in (8). Further details regarding the evolu-

tion equations for the small-scale fluctuations can be found

in Refs. 47 and 52.

To proceed further, we use the familiar Reynolds rela-

tions, of which the most crucial assumption is that second and

third order correlations are proportional to the Kronecker delta

and Levi-Civita tensors, respectively. For this analytical

effort, we replace the time derivatives by introducing a corre-

lation time s, i.e., we assume @wð1Þ=@t � wð1Þ=s.
With these assumptions, the “electromotive force” �EX

may be expressed as

�EX ¼ A�V þ aðXÞ �X � bðXÞr� �X þ Cr �P; (10)

with

A ¼ �
2s

3
hx 0ð Þ � x 0ð Þi; (11a)

C ¼ sA; (11b)

a Xð Þ ¼
s

3
hv 0ð Þ � x 0ð Þi þ

s2

3

ckB

m c� 1ð Þ

� �

hrT 0ð Þ � x 0ð Þi

� a
ðXÞ
0 þ a

ðXÞ
T ; (11c)

b Xð Þ
¼

s

3
hv 0ð Þ � v 0ð Þi: (11d)

Before subjecting (10) to a qualitative analysis, we note:

(1) Since the large scale vorticity equation (7) is driven only

by r� �EX, the last term in (10) will be irrelevant.

(2) The first term, with A proportional to ambient enstrophy,

does not appear to have an analog in mean-field MHD

theories.

(3) The second and the third terms, on the other hand, mimic

the a and b effects of the standard MHD theories. The

nomenclature aðXÞ and bðXÞ stresses the formal equiva-

lence to their MHD counterparts under the exchange
�X $ �B.

At this stage, we emphasize a crucial point. The new

term in (11c) can be re-expressed as a
ðXÞ
T / r � hTð0Þ

x
ð0Þi,

which vanishes identically for perfectly homogeneous and/or

isotropic turbulence. There are several new terms that enter

the mean-field equations upon relaxing these assumptions,

but we include only a couple of “thermal” drives—a
ðXÞ
T and

cT—in our analysis; the latter is defined in (17c). If the new

terms are included, it is found that a host of effects open up,

including the possibility of density gradients (operating on

small-scales) driving dynamos, viz., large scale magnetic

fields and the emergence of large-scale temperature and den-

sity gradients as well; we intend to investigate some of these

effects in a forthcoming publication.

The appearance of a new term (driven by the gradient

of the ambient temperature) in the a-effect is a key result of

this section on ideal hydrodynamics. This term (going to

zero with vanishing ambient temperature) is not reflective of

some transformed “baroclinic effect” (invoked for seed gen-

eration), but belongs to the class of other dynamo-like terms

driving, in this case, a vortical dynamo. We can readily com-

pare the magnitude of a
ðXÞ
0 (the pure helicity drive) and a

ðXÞ
T

(the thermal-helicity drive) to define the dimensionless

number

�HD ¼
a Xð Þ
T

a Xð Þ
0

	
c2ssc

V‘T
; (12)

where we have used the fact that cs is the characteristic iso-

thermal sound speed, and kBT 	 mc2s (in dimensional varia-

bles). We note that V is the characteristic ambient velocity,

sc is the correlation time scale, and ‘T is the scale length that

characterizes the (inverse) gradient of the ambient tempera-

ture. Two natural choices for a correlation time scale come

to mind:

• One can envision sc as analogous to a sound-crossing time

implying sc 	 ‘T=cs. This choice leads to �HD 	 cs=V
¼ M�1, where M ¼ V=cs is the Mach number for the

ambient flow.
• It is possible that a constraint similar to causality may

exist at the ambient level, i.e., the length scale ‘T is

bounded by the product of the correlation time sc and the

ambient velocity V. In such an event, sc 	 ‘T=V resulting

in �HD 	 c2s=V
2 ¼ M�2.
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For either of these cases, a most interesting conclusion

follows: the thermal-helicity drive (a
ðXÞ
T ) can become domi-

nant for subsonic (ambient) turbulence. In most astrophysical

scenarios, one observes supersonic turbulence, but environ-

ments such as the intracluster medium (ICM) and the inter-

galactic medium (IGM) have been proposed as sites of

subsonic turbulence.62,63 Furthermore, recent observations

appear to support the existence of subsonic turbulence in

protoplanetary accretion discs.64 We emphasize that the lat-

ter is of considerable importance since (7), (10), and (11c)

govern the mean-field evolution of vorticity, and it is well-

known that vorticity is of critical importance in protoplanet-

ary discs. Vorticity generation is of utmost importance as it

possesses deep connections with angular momentum trans-

port and turbulence,65–67 thereby making it a key player in

the role of planet formation.68,69 Thus, in protoplanetary

discs with subsonic turbulence, it is possible that a thermal-

helicity driven dynamo may play a key role in vorticity gen-

eration and, consequently, in planetesimal formation.

C. Ideal magnetohydrodynamics

Ideal MHD is described by the dimensional equations

@V

@t
þ V � rV ¼ �r

ckBT

m c� 1ð Þ

� �

þ
r� Bð Þ � B

4pq
; (13)

@T

@t
þ V � rT þ c� 1ð ÞTr � V ¼ 0; (14)

@B

@t
�r� V� Bð Þ ¼ 0; (15)

and the factor of q present in the second term on the LHS of

(13) is an implicit function of T since T / qc�1. A fully self-

consistent treatment of this term is a complex task since the

factor of q is situated in the denominator and has a (frac-

tional) power law dependence on T. For this reason, we shall

mirror the approach of the hydrodynamic case and seek only

a thermal drive akin to the a
ðXÞ
T term in (11c). We have al-

ready remarked in Section II B that a variety of other thermal

drives can exist for our model, and that a detailed computa-

tional study of these terms will be undertaken in the near

future.

The discussion could be simplified further if we restrict

ourselves to the earlier stages of dynamo action where the

ambient fields are much more dominant than the small and

large scale fluctuations. Before proceeding further, we note

that incompressibility serves as an alternative approach,

enabling a more comprehensive analysis along the lines of

Ref. 54. However, we must relax their assumptions of statis-

tical homogeneity and isotropy, and we find that the a
ðXÞ
T

and cT (discussed below) contributions can be recovered.

We find that the resulting system, due to the inclusion of

magnetic fields, has a considerably higher number of terms;

simplification is much more difficult. Since the primary

thrust of this paper is to build a case for a thermal dynamo,

we shall focus mostly on identifying and evaluating the role

of a thermal drive, akin to the HD case, in generating large

scale magnetic fields. Repeating the same procedure as

before, we can derive an equation equivalent to (7), with �X

! �B, for the evolution of the long scale magnetic field. The

appropriate electromotive force �E¼hvð0Þ�bð1Þþvð1Þ�bð0Þi
yields

�E ¼ a�B � br� �B þ c �X; (16)

with the coefficients given by

a ¼
s

3

*

� v
0ð Þ � x 0ð Þ þ

b 0ð Þ � r � b 0ð Þ

4pq 0ð Þ

+

� aV þ aB; (17a)

b ¼
s

3
hv 0ð Þ � v 0ð Þi; (17b)

c ¼
2s

3
hv 0ð Þ � b 0ð Þi þ

s2

3

ckB

m c� 1ð Þ

� �

hrT 0ð Þ � b 0ð Þi

� c0 þ cT : (17c)

It must be noted that the current helicity term in (17a)

involves a factor of q(0) in the denominator, which is implic-

itly a function of T(0), given that we have adopted a baro-

tropic (and adiabatic) equation of state. Based on our

simplifying set of approximations, the a and b terms have no

thermally driven contributions, and the c term does indeed

show a non-trivial temperature gradient drive cT, in addition

to the cross helicity drive c0.
70 We reiterate that the turbulent

electromotive force (16) also follows if we assume that the

model is near-incompressible, akin to Ref. 54, but only when

the homogeneity and isotropy constraints are violated (as

otherwise the thermal drive considered herein vanishes).

To assess the importance of the thermal MHD drive, we

define another dimensionless number

�MHD ¼
cT
c0

	
c2s sc

2V‘T
; (18)

where cs is the sound speed, sc is the correlation time, V is the

ambient velocity, and ‘T is the scale length corresponding to

the (inverse) gradient of the ambient temperature. It is striking

that (12) and (18) are identical to one another, apart from a

factor of 2; the mystery disappears somewhat if we realize

that both these numbers are computed from the contribution

to the electromotive force that is proportional to the mean

fluid vorticity. Hence, we can easily conclude that, as dis-

cussed in Section IIB, cT is dominant when the turbulence is

subsonic, i.e., it is likely to be of importance in environments

such as the ICM, IGM, and protoplanetary accretion discs.

The relative magnitudes of the thermal and the standard

fluid helicity drives are reflected in the following dimension-

less ratio:

lMHD ¼
cT
aV

�X

�B
	

‘V
‘T

� �

c2sVB

V2

� �

sc

LV

� �

�MA; (19)

where ‘V and ‘T are the length scales associated with the

(inverse) gradients of the ambient velocity and temperature,

respectively. Furthermore, cs is the ambient sound speed, VB

and V denote the ambient Alfv�en and kinetic velocities, sc
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serves as the correlation time, and LV is the length scale asso-

ciated with the large scale velocity, emerges from the factor
�X in (19). Also note that �MA ¼ �V=�VB is the large scale

Alfv�en Mach number. At first glimpse, it may appear odd

that (19) involves both large and small scale quantities.

When we recognize the fact that it represents a ratio of two

terms in the electromotive force, we see that both large and

small scale factors enter; the former through the mean fields

and the latter through the coefficients.

In order to perform a detailed analysis, we assume

‘V� ‘T, introduce the quantity fV¼ ‘V/LV, and consider three

different choices for the microscopic length scale ‘V. To be

consistent, ‘V must be “constructed” from the small scale

quantities intrinsic to the system:

• We can work with ‘V/sc	 cs, implying that sc serves as

the sound-crossing time for L. If so, l
ð1Þ
MHD 	 ðcsVBÞ=

V2ðfV �MAÞ ¼ M�1M�1
A ðfV �MAÞ, where M ¼ V=cs and

MA ¼ V=VB are, respectively, the ambient Mach and the

Alfv�en Mach numbers, respectively.
• A choice of ‘V=sc 	 VB is possible, suggesting that sc
behaves as an Alfv�enic sound-crossing time. For this choice,

we find that l
ð2Þ
MHD	 c2s=V

2ðfV �MAÞ¼M�2ðfV �MAÞ.
• Finally, we can suppose that a constraint akin to causality

exists, and we can study the implications of the relation ‘V
	 Vsc. Upon simplification, (19) yields l

ð3Þ
MHD 	 ðc2sVBÞ=

V3ðfV �MAÞ ¼ M�2M�1
A ðfV �MAÞ.

In each of the three cases, we see that the value of l is

governed by the inverse powers of the ambient Mach num-

bers. Thus, we theorize that the existence of turbulence that

is simultaneously subsonic and sub-Alfv�enic in nature may

ensure that cT in (17c) serves as the dominant factor in gov-

erning the evolution of large scale magnetic fields.

Alternatively, the different possibilities for l, measuring

the relative strength of the thermal dynamo, could be

expressed in terms of the plasma beta, b ¼ c2s=V
2
B. We list

the resultant scalings below:

(i) l
ð1Þ
MHD 	 M�2b�1=2ðfV �MAÞ;

(ii) l
ð2Þ
MHD 	 M�2ðfV �MAÞ;

(iii) l
ð3Þ
MHD 	 M�3b�1=2ðfV �MAÞ:

Hence, the subsonic turbulence may not be a necessary

condition to ensure that cT is the major driver of large scale

magnetic fields. For instance, a combination of M 	 1 and

b� 1 may also ensure the preponderance of cT. The condi-

tion b� 1 has been investigated in the context of a wide

range of astrophysical systems, such as solar coronal

holes71,72 and black hole accretion discs.73 Lastly, reconsi-

dering (19), we observe that cT may emerge as the dominant

term provided ‘V
 ‘T, that is, if the ambient temperature

(or pressure) gradients are stronger than the velocity gra-

dients. Of course, we wish to emphasize that each of these

claims is only correct modulo the factor fV �MA. For instance,

it is likely that fV� 1, while �MB is determined through the

evolution of the vorticity and the magnetic field. Thus, our

results have a greater chance of being valid when M � 1

and b� 1 hold true simultaneously, and even this may not

suffice to guarantee the dominance of the cT term.

Although we have compared cT and aV, we note that the

latter can be replaced by the beta effect (17b) and qualita-

tively similar results, albeit with different power laws, will

follow. We present the final versions below, as the interme-

diate steps are quite similar. We introduce the dimensionless

ratio

�MHD ¼
cT
b

�X

jr � �Bj
; (20)

which quantifies the ratio of the two contributions to the

electromotive force arising from cT and b. We end up with

three possibilities, depending on the choice of ‘T in terms of

sc, V; VB, and cs. They are given by

(i) �
ð1Þ
MHD 	 M�2b�1=2 �MA;

(ii) �
ð2Þ
MHD 	 M�2 �MA;

(iii) �
ð3Þ
MHD 	 M�3b�1=2 �MA:

Note that the expressions for �MHD and the correspond-

ing ones for lMHD differ only by the factor of fV, which is

along the expected lines (from dimensional analysis).

III. SUPPLEMENTING IDEAL MHD—DISCUSSION AND
IMPLICATIONS

Here, we shall present our coupled system of equations

in the ideal MHD case and discuss some of the stellar and

planetary astrophysical implications of our model.

A. Closed ideal MHD system

In order to put the thermal drive in perspective, we will

supplement the content of Section II by concentrating on the

equations describing the mean fields: the induction equation

driven by the electromotive force

@ �B

@t
¼ r� �V � �Bð Þ þ r � �E ; (21)

and the equation for the evolution of vorticity

@ �X

@t
¼ r� �V � �Xð Þ � r �

�B � r� �Bð Þ

4p�q

 !

þr� �EX;

(22)

where �E is given in (16) and �EX has the form

�EX ¼ a
ðXÞ
V

�X � b
ðXÞ
V r� �X

þ a
ðXÞ
B

�B � b
ðXÞ
B r� �B þ � � � (23)

and the coefficients in the above expression are given by

a Xð Þ
V ¼

s

3
hv 0ð Þ � x 0ð Þi þ

s2

3

ckB

m c� 1ð Þ

� �

hrT 0ð Þ � x 0ð Þi

� a Xð Þ
0 þ a Xð Þ

T ; (24a)

b Xð Þ
V ¼

s

3

�

v
0ð Þ � v 0ð Þ þ

b 0ð Þ � b 0ð Þ

4pq 0ð Þ

�

; (24b)
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a Xð Þ
B ¼

2s

3

�

x
0ð Þ � r � b 0ð Þ

4pq 0ð Þ

�

; (24c)

b Xð Þ
B ¼

2s

3

�

x
0ð Þ � b 0ð Þ

4pq 0ð Þ

�

: (24d)

This system may be viewed as a “complete” picture of an

ideal MHD dynamo (including only the primary first-order

spatial derivatives in the electromotive force). We have used

“…” in (23) to indicate the additional existence of higher

order spatial derivative terms; a term proportional to r�
ðr � �BÞ is an example. Such higher order terms, with multi-

ple derivatives of large-scale quantities, will not be analyzed

in this paper. In addition, as we have stated earlier, there are

other thermal drives that we do not discuss here, as our objec-

tive was to isolate the contributions that are akin to the HD

case. There is also a term in (23) proportional to r �T , but it is

rendered void when the curl is taken, as seen from the last

term on the RHS of (22). Moreover, it must be recognized

that all factors of q that occur in the preceding expressions are

implicitly a function of the corresponding temperature, if we

assume the existence of a barotropic equation of state.

Let us draw the reader’s attention to the thermal drives:

a
ðXÞ
T in (24a) for �X, and cT in (17c) for �B. Both these terms,

proportional to the small-scale temperature gradients, repre-

sent the thermal-driven contributions to the mean-field equa-

tions. In Sections II B and II C, we have already explored the

domain where they may be dominant—subsonic, low-b sys-

tems. Let us further go on to study an extreme approxima-

tion, where we neglect all but the thermal-driven terms to

simplify our rather complex system, represented by (21) and

(22). Furthermore, by ignoring the non-linear terms in (21)

and (22) which come into play only at “later” times, the

essence of the “very initial” (i.e., starting from infinitesimal

mean fields) dynamo evolution is captured by

@ �B

@t
¼ cTr� �X;

@ �X

@t
¼ a Xð Þ

T r� �X; (25)

where we have supposed the homogeneity of cT and a
ðXÞ
T .

This leads us to the remarkable conclusion that

�B ¼
cT

a Xð Þ
T

�X: (26)

Of course, it must be understood that (25) is likely to be valid

only in the highly simplified limit of (i) “early” time regime

(before the non-linear dynamo terms are operational); (ii)

highly subsonic and low-b systems; (iii) “small” thermal

conductivity, which occurs when the P�eclet number (Pe) sat-

isfies Pe 
 1.

The relation (26) pertaining only to a pure thermal dynamo

(�TD) is reminiscent of a “similar” relation, derived in

Refs. 39 and 40, relating the macroscopic velocity (of the flow)

and the magnetic field. In Refs. 39 and 40, however, the ther-

mal drive was neglected in analyzing the Dynamo–Reverse

Dynamo (�DRD) action. The DRD mechanism involved the

production of large-scale flows and magnetic fields, created

from a mix of short-scale kinetic and magnetic turbulence. Let

us compare and contrast the TD and DRD studies:

(1) For TD, the ratio j�Bj=j �Xj, estimated from (24a) and

(17c), comes out to be cT=a
ðXÞ
T 	 bð0Þ=xð0Þ.

(2) The equivalent ratio for the DRD that relates (in dimen-

sionless units) the magnetic field with the flow speed

yielded j�Bj=j�Vj 	 v
ð0Þ=bð0Þ.

(3) Notice the starkly opposite scaling of the ratio. For a

pure thermal-driven dynamo, the generated macroscopic

magnetic field (vorticity field) is directly proportional to

the short-scale magnetic (kinetic) content of the ambient

turbulence. On the other hand, the non-thermal DRD

mechanism generates macroscopic magnetic (velocity)

field inversely proportional to the ambient magnetic

(kinetic) content.

(4) The new thermal drive introduces a potentially interest-

ing, and qualitatively different, chapter into the book of

the dynamo mechanism.

It is perhaps pertinent, at this stage, to emphasize that all

thermal drives share a common feature—they are correlators

of the thermal gradients (the simplest vectorial expression of

available thermal free energy) with a vorticity (magnetic or

kinematic). In a turbulent system, such a correlation will

likely come about through a temperature-driven small-scale

instability for which the perturbed amplitudes of the mag-

netic and velocity fields are related to rT. Thus, the thermal

drive is a somewhat disguised form of the velocity-vorticity

generator. Barring some highly symmetric systems, these

small-scale perturbations will have a finite correlation with

other small-scale quantities and yield finite thermal drives.

A nontrivial consequence of these different behaviors is

that we have an effective diagnostic tool. From very qualita-

tive characteristics of observed macroscopic fields, one can

“gain” knowledge about the microscopic content and nature

of turbulence that caused them, in addition to estimating

the relative strengths of various processes that channelize

turbulent energy (kinetic, magnetic, thermal) into long-scale

kinetic and magnetic energies. The exact process of the

extrapolation from macroscopic content to the microscopic

initial state will, of course, be highly involved since all

the dynamo terms will be operating simultaneously with no

a priori specifiable ordering.

B. Implications in stellar astrophysics

Let us work out a simple example to illustrate the utility

of the simple relation �B
2
/ �X

2
, which is implied by (26). It

is well known that the total X-ray luminosity is proportional

to the magnetic energy density ðLX / �B
2
Þ, and the Rossby

number Ro is inversely proportional to the angular velocity

ðRo / �X
�1
Þ; see, e.g., Refs. 74 and 75 for more details. If a

thermal dynamo was responsible for these large-scale fields,

one would predict that, for such thermal-driven systems,

LX / Ro�2.

Such conclusions, arrived at by very simple (though

quite robust) scaling arguments, must be taken with a high

degree of caution, in view of the many assumptions invoked.
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The scaling may turn out to be consistent with the predic-

tions from the classical dynamo theory,10,11 but the issue has

not yet been conclusively settled from an observational

point-of-view. For relatively high values of Ro, current evi-

dence appears to support a scaling of LX / Ro�q, where

2< q< 3.74–76

The simplified relation (26) also permits us to “guess” at

the knowledge of the (large-scale) magnetic field profile if

we know the angular velocity profile and vice-versa. We

conjecture that (26) may pave the path towards a better

understanding of the rotation profile observed in some

regions of the Sun, where the thermal dynamo may, indeed,

be dominant. An important limitation of our theory has been

the elimination of stratification effects, which play a key role

in such instances.28 As our relation (26) holds true at all

times, it is also likely to pinpoint the manner in which stellar

spin-down is correlated with the corresponding decay of

magnetic fields. A more detailed analysis of (21) and (22) is

likely to enable a better understanding of this phenomenon,

potentially advancing the work undertaken in Ref. 77.

C. Planetary and solar dynamos: A discussion

We note that there is an important class of astrophysical

systems where thermal dynamos are important, and they have

been widely studied, see, e.g., Refs. 55 and 78 for recent

reviews of this subject. But, there are a couple of subtle differ-

ences between our approach, and the one adopted in most

studies of planetary (and stellar) dynamos. First, we note that

the latter typically focus on determining the scaling relations

between magnetic fields and planetary parameters (radius and

rotation rate). On the other hand, our approach is geared

towards the formulation of a coupled vorticity-magnetic field

model of the mean fields.

Second, we wish to note that conventional studies have

been directed towards determining the magnetic field as a

function of the convective flux.55,79 The dynamo action

emphasized in this paper, however, originates in rT (or rP

in compressible systems). Yet, it is important to recognize

that there exists a deep duality between the temperature gra-

dient and the associated heat flux—a fact that is widely rec-

ognized in the solar dynamo literature, see, e.g., Eqs. (4) and

(5) in Ref. 80. It is known that the heat flux can drive a sus-

tained (and enhanced) temperature gradient, while the con-

verse is also true. In mathematical terms, the heat flux is

(tensorially) proportional to the specific entropy gradient, the

latter of which can be written in terms of the temperature

gradient.80 Furthermore, in astrophysics, the Schwarzschild

criterion quantifies the critical temperature gradient required

for convection to occur,81 which in turn can drive a convec-

tive heat flux and thereby give rise to magnetic fields, which

are in accordance with the scaling laws of Refs. 55 and 79.

As we have shown, in accordance with the previous lit-

erature on solar (and planetary) dynamos,2,55,82 that the tem-

perature gradient is the root cause of the convective flux and

the thermal dynamo, it is reasonable to enquire whether any

viable temperature gradient instabilities exist in plasmas.

The answer is in the affirmative and has been well-known to

plasma physicists since the 1960s,83,84 although it has been

rarely situated in the astrophysical context.85 Hence, we con-

jecture that such temperature gradient driven instabilities

might lie at the heart of thermal dynamo action, generating

magnetic fields by means of convection, thereby agreeing

with the predictions of scaling theories. Indeed, we anticipate

that a more generalized treatment would account for both

temperature and density gradient driven instabilities (treating

the two as independent variables), but such analytical and

computational explorations are left for future studies. It is

also worth mentioning that the temperature gradient driven

instabilities are closely connected with angular momentum

transport in tokamaks86 and may thus play a role in enhanc-

ing our understanding of stellar spin-down.87

We also wish to point out the importance of these thermal

dynamos in astrobiology,88 which is concerned with the

potential existence of life elsewhere in the universe. Finite

rT-driven convection results in the production of large scale

magnetic fields, which are well established as crucial media-

tors of habitability.89 In particular, magnetic fields are respon-

sible for shielding a planet from the incident stellar radiation

and preventing the erosion of the atmosphere.89 Thus, it

appears to be quite natural to conclude that the rapidly bur-

geoning field of exoplanetary science90 would need to take

into consideration thermal dynamos for evaluating which

class of planets can sustain magnetic fields, and enable life to

originate (abiogenesis). In this respect, we point out recent

studies such as Refs. 91 and 92 which have already considered

the role of magnetic fields generated in M-dwarfs, as these

stars have been subjected to exhaustive analyses in the realm

of habitability and astrobiology.93,94

IV. CONCLUSION

In the early and traditional (typical) dynamo theories, the

magnetic-field evolution is considered in isolation, with the

velocity field being supplied as a kinematic input. This para-

digm underwent a change in the last few decades, and most

current dynamo models co-evolve the magnetic and velocity

fields. These models, thus, investigate the interaction and

exchange of kinetic and magnetic energies. Most theories,

however, are not wholly (and explicitly) cognizant of the ther-

mal energy since the role of temperature (or pressure, quanti-

fying the thermal contributions) in the energy exchange

process is often neglected. The purpose of this paper was to

extend the reach of dynamo theories by specifying the tempe-

rature as a dynamical variable so that we could explore

• whether thermal interactions appropriately couple to the

magnetofluid motion,
• the regimes in which the thermal-driven terms may play a

significant role, and
• the resultant consequences of the thermal terms to the

dynamo dynamics, if such regimes were identified.

Within the framework of simple HD and MHD models,

we demonstrated that the thermal-driven terms contributed

to vorticity production, both in the magnetic field and the

vorticity evolution equations. We further showed that these

terms were likely to be important, possibly dominant, in sys-

tems such as protoplanetary discs and coronal holes where
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the ambient turbulence is subsonic and/or low-b. A qualita-

tive exploration of “beyond MHD” effects in Appendix A

added additional pathways through which thermal contribu-

tions could become increasingly important. In Appendix B,

we use dimensional analysis to arrive at qualitatively similar

conclusions as the ones presented in the main body of the

paper.

After these initial considerations, we turned to a more

exhaustive analysis of ideal MHD and presented the coupled

evolution equations for the mean-field vorticity and the mag-

netic field. By considering the simplified limit where thermal

contributions are dominant, we arrived at a remarkably sim-

ple expression, represented by (26), relating the large-scale

magnetic field and the vorticity. The scaling of this ratio

implied j�Bj=j �Xj 	 bð0Þ=xð0Þ, revealing that the generated

macroscopic magnetic field (vorticity field) is directly propor-

tional to the short scale magnetic (kinetic) content of the am-

bient turbulence. It was shown that this result comes out to be

exactly opposite to earlier results from the Dynamo-Reverse

Dynamo mechanism.39,40 We rounded off our discussion by

discussing the relevance of our work in astrophysics, high-

lighting stellar and planetary systems in particular, where

such dynamos are expected to play an important role.

It is clear, from the reasons outlined above, that the ther-

mal dynamo may constitute a qualitatively different and pro-

found step in the progress of dynamo theory. Further steps in

the development of a fuller and more complete dynamo

theory will consist of including important effects such as

stratification, multi-fluid effects (for the most part), dissipa-

tion, and relativity. We also plan to apply the results of this

work, and earlier papers, to astrophysical systems, in greater

detail.

We could, for instance, use Eq. (26) and its counterpart in

Refs. 39 and 40 as probes to expose the nature and content of

the underlying microscopic turbulence. We also intend to

invoke them as a starting point for more detailed investiga-

tions of the relationship between the macroscopic angular ve-

locity and the magnetic field. Such relations in the context of

stars and planets have been widely studied and debated owing

to the existence of remarkable correlations between these two

quantities, in addition to their importance in governing stellar

spin-down and evolution. Thermal dynamos, in the solar and

planetary context, will also have important ramifications in

the field of astrobiology. They may indicate which class of

planets and host stars is likely to be most accessible, with all

other factors being held fixed, to sustained dynamo action,

thereby increasing the chances of abiogenesis.

Thus, we believe that it is truly important for future sim-

ulations and analyses to consistently take into account the

effects of thermal turbulence, as the ensuing implications are

likely to be far-reaching.
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APPENDIX A: DISCUSSION OF THE “BEYOND MHD”
MODELS

We believe that we have made a preliminary case for a

predominantly thermal driven dynamo in the simplest HD and

MHD models. In this Appendix, we will attempt to extend

this understanding, at a very conceptual level, to a wide array

of models more complex than MHD. Our discussion will be

concerned more with 2-fluid effects (rather than thermal ones)

as this is another area that has been mostly neglected by the

dynamo community, with some recent exceptions.

We focus primarily on Hall MHD, the simplest and

most widely studied of the lot, and then indicate how many

of its properties carry over to even broader and complex

models. The equations of Hall MHD are very similar to ideal

MHD, and the Equations (13) and (14) stay the same, while

(15) is modified by replacing V with Ve ¼ V� kHr� B in

the incompressible limit, where kH ¼ ki=L is the dimension-

less Hall parameter and ki is the (dimensional) ion skin

depth. The ensuing equations, for the mean fields and the

fluctuations, are rendered even more complex, and we shall

not report on the results here.

Instead, we merely observe that the c-effect is still pres-

ent, but the coefficient is no longer identical to its ideal MHD

counterpart, the latter of which is given by (17c). However,

we do find that cT in (17c) stays the same as before, and c0
can be approximated by replacing v

(0) by the ambient electron

velocity vð0Þe ¼ vð0Þ � �r� bð0Þ. Hence, much of the analysis

undertaken in Section IIC is also applicable herein; in addi-

tion, most conventional plasmas satisfy the criterion kH � 1.

Nevertheless, we wish to point out an important, and mostly

neglected, feature of Hall MHD. The governing equations can

be rewritten41 to yield

@Xa

@t
�r� Va �Xað Þ ¼ 0; (A1)

where X0
as and Va’s serve as effective vorticities and associ-

ated velocities, respectively, expressed as

X1 ¼ B; V1 ¼ V� kHr� B;

X2 ¼ Bþ kHr� V; V2 ¼ V: (A2)

The similarity between (6) and (A1) is manifest—Hall MHD

engenders the simultaneous production of “generalized vorti-

city” and magnetic fields. Hence, we can import the results

from Sections IIB and IIC on the conceptual level; a more

comprehensive analysis is obviously warranted, which will be

tackled in subsequent investigations. The presence of neutrals

or dust, however, can change the dynamics significantly.

Bypassing the details, we present a qualitative overview of

the relevant features.

Let us consider the effect of neutrals first. It is known that

a three species system, with neutrals as the third species, can

be duly manipulated to obtain a structure akin to that of Hall

MHD.95 As a result, one must replace ki with ki
ffiffiffiffiffiffiffiffiffiffiffi

qn=qi
p

, and

since
ffiffiffiffiffiffiffiffiffiffiffi

qn=qi
p


 1 in protoplanetary discs, a modified (ion)

skin depth of approximately 0.4 AU96 is obtained. As a result,

the Hall parameter can be large, even of order unity, and this

in turn can significantly reduce the value of vð0Þe . In (19), the
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quantity V quantifies the ambient velocity, and in the three

species model, one must (effectively) replace it with the ambi-

ent electron velocity Ve. Since the latter is much reduced

owing to the “large” value of kH, we find that l 
 1 can be

satisfied via a different pathway—a decrease in the ambient

velocity owing to the existence of a non-negligible Hall

effect.

Next, let us consider the effects of dust via a three species

model wherein we have inertialess ions and electrons and

charged (either positive or negative) dust. It was shown in

Ref. 97 that this system is formally equivalent to that of Hall

MHD, but the Hall parameter now becomes the dust parame-

ter kD ¼ Kd=L, where Kd serves as the dust skin depth. In

general, it is well known that the dust skin depth is much

greater than its (fully) ionic counterpart, and this serves to

increase kH and drive down the ambient velocity, as the latter

is determined through v
ð0Þ
d ¼ vð0Þ � kDr� bð0Þ. As a result, it

is possible to achieve l 
 1 in (19), establishing preeminence

of the thermal-driven dynamo term. In summary, we conclude

that neutrals and dust, through different mechanisms, could

reduce the ambient velocity ensuring that the required condi-

tion l
 1, considered in (19), is more easily achievable.

Lastly, we emphasize that the dual vorticity structure of

(A1) is near-ubiquitous, which allows us to highlight the kin-

ship of a vast array of models with the vorticity equation of

ideal hydrodynamics. These models include relativistic plas-

mas,42 quantum plasmas with spin-1/2 effects,98,99 multi-

species,97,100 and extended MHD101,102 plasmas. Owing to

this commonality, we believe that most of the qualitative

results obtained in context of the thermal-driven dynamo are

also equally applicable to these complex models.

APPENDIX B: A DIMENSIONAL ANALYSIS APPROACH
TO THERMAL DRIVES

First, let us begin by supposing that we consider an

incompressible magnetofluid system where the magnetic

field B, the velocity (vorticity) V(x), and the temperature

T are the sole variables. In order to construct coefficients

involving T and a different variable, we are required to con-

struct scalar quantities that are quadratic in the fields. The

first possibility is to make it a product of two scalars, such as

Tðr � BÞ which vanishes. The other is to make it the scalar

product of two vectors. One vector that arises immediately is

rT and the other can be chosen to be B or x. Thus, we

would end up with rT � B or rT � x, and these are the pre-

cise thermal drives identified in the paper. With the addition

of compressibility, and simultaneously treating q as an inde-

pendent dynamical variable, one could formulate a greater

variety of thermal and density drives.

Next, we shall consider a different approach where we

are given minimal information about the exact closure

scheme, and instead, we shall construct scaling relations

based on dimensional analysis. Our starting point is the prin-

ciple of dimensional homogeneity,103,104 which requires ev-

ery dimensionless number of import to be a function of other

dimensionless numbers. For a given model, the time and

length scales are the chief factors of interest. One can replace

the time by the velocity scale; for e.g., the sound crossing

time could be formulated from the sound speed cs and the

length scale. Thus, we shall focus on length and velocity

scales, especially the latter.

Any dimensionless ratio of the electromotive force coef-

ficients, denoted by D, must involve the large scale (mean)

and the small scale (ambient) fields. In terms of the veloc-

ities, the natural dimensionless numbers are the Mach num-

ber M ¼ V=cs and the Alfv�en Mach number MA ¼ V=VB.

These numbers are equally applicable for the mean and am-

bient fields; we denote the former with an overbar to distin-

guish them from the latter. Thus, we may expect, by the

principle of dimensional homogeneity, that D ¼
FðM;MA; �M; �MAÞ holds true, where F is an arbitrary

function.

A crucial aspect of dimensional analysis is to identify

what are the parameters of interest, both in the input and the

output. Suppose that we wish to evaluate the ratio of two

electromotive force contributions, where the mean fields

comprise only of the vorticity and the magnetic field (and

not the temperature). In such an instance, we would not

expect any dependence on �M. In other words, we would

have D ¼ FðM;MA; �MAÞ for this specific case. Next, let

us suppose that we introduce the length scales. We shall

make the (grossly) simplifying assumption that all ambient

fields have the same characteristic length scale, and that

all the mean fields exhibit a similar property. In such an

instance, one could introduce a factor f¼ ‘/L, where ‘ is the
ambient length scale and L is the mean field length scale. Of

course, in most real-world situations, we cannot expect the

separation between these two length scales to be clearly

resolvable or defined.

With the above set of assumptions, the ratio of any two

electromotive force coefficients is restricted to the following

form:

D ¼ FðM;MA; f; �MAÞ: (B1)

Moreover, we are free to introduce the scaling hypothesis105

which leads to a multivariable power law function, i.e., we

end up with D ¼ Mp1Mp2
A f

p3 �M
p4
A , where pi 2 R. Upon

comparing this with the dimensionless ratios (12), (18), (20),

and (19) and the concomitant discussions, we find that

dimensional analysis yields results that are fully consistent

with our mean field model. Of course, a chief deficiency of

the former approach is that we cannot determine the power

laws explicitly, but it does serve as a consistency check to

verify that the dimensionless ratios computed herein have

incorporated all of the relevant parameters. If one wishes to

obtain values of the p’s, they must be determined either by

fitting against numerical simulations, or by imposing addi-

tional physical hypotheses, since dimensional analysis can-

not, by itself, take us any further.

1G. A. Glatzmaiers and P. H. Roberts, Nature 377, 203 (1995).
2M. Ossendrijver, Astron. Astrophys. Rev. 11, 287 (2003).
3E. N. Parker, Cosmical Magnetic Fields: Their Origin and Their Activity

(Oxford, Clarendon Press, 1979).
4S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 105, 095005 (2010).
5C. Thompson and R. C. Duncan, Astrophys. J. 408, 194 (1993).
6P. P. Kronberg, Rep. Prog. Phys. 57, 325 (1994).

052118-9 M. Lingam and S. M. Mahajan Phys. Plasmas 23, 052118 (2016)



7R. Beck, A. Brandenburg, D. Moss, A. Shukurov, and D. Sokoloff, Annu.

Rev. Astron. Astrophys. 34, 155 (1996).
8E. N. Parker, Astrophys. J. 122, 293 (1955).
9M. Steenbeck, F. Krause, and K.-H. R€adler, Z. Naturforsch., A 21, 369

(1966).
10H. K. Moffatt, Magnetic Field Generation in Electrically Conducting

Fluids (Cambridge Univ. Press, Cambridge, 1978).
11F. Krause and K.-H. Raedler, Mean-Field Magnetohydrodynamics and

Dynamo Theory (Oxford, Pergamon Press, 1980).
12A. Pouquet, U. Frisch, and J. Leorat, J. Fluid Mech. 77, 321 (1976).
13M. Meneguzzi, U. Frisch, and A. Pouquet, Phys. Rev. Lett. 47, 1060

(1981).
14A. Bhattacharjee and E. Hameiri, Phys. Rev. Lett. 57, 206 (1986).
15S. I. Vainshtein and F. Cattaneo, Astrophys. J. 393, 165 (1992).
16A. V. Gruzinov and P. H. Diamond, Phys. Rev. Lett. 72, 1651 (1994).
17A. Brandenburg, A. Nordlund, R. F. Stein, and U. Torkelsson, Astrophys.

J. 446, 741 (1995).
18A. Bhattacharjee and Y. Yuan, Astrophys. J. 449, 739 (1995).
19F. Cattaneo and D. W. Hughes, Phys. Rev. E 54, R4532 (1996).
20J. F. Hawley, C. F. Gammie, and S. A. Balbus, Astrophys. J. 464, 690

(1996).
21E. T. Vishniac and A. Brandenburg, Astrophys. J. 475, 263 (1997).
22K. Subramanian, Phys. Rev. Lett. 83, 2957 (1999).
23E. G. Blackman and G. B. Field, Astrophys. J. 534, 984 (2000).
24A. Brandenburg, Astrophys. J. 550, 824 (2001).
25E. T. Vishniac and J. Cho, Astrophys. J. 550, 752 (2001).
26E. G. Blackman and A. Brandenburg, Astrophys. J. 579, 359 (2002).
27E. G. Blackman and G. B. Field, Phys Rev. Lett. 89, 265007 (2002).
28H. C. Spruit, Astron. Astrophys. 381, 923 (2002).
29F. Rincon, G. I. Ogilvie, and M. R. E. Proctor, Phys. Rev. Lett. 98,

254502 (2007).
30P. J. K€apyl€a, M. J. Korpi, and A. Brandenburg, Astron. Astrophys. 491,

353 (2008).
31M. K. Browning, Astrophys. J. 676, 1262 (2008).
32G. Lesur and G. I. Ogilvie, Astron. Astrophys. 488, 451 (2008).
33T. Heinemann, J. C. McWilliams, and A. A. Schekochihin, Phys. Rev.

Lett. 107, 255004 (2011).
34L. Chamandy, K. Subramanian, and A. Shukurov, Mon. Not. R. Astron.

Soc. 428, 3569 (2013).
35F. Ebrahimi and A. Bhattacharjee, Phys. Rev. Lett 112, 125003 (2014).
36P. H. Roberts and A. M. Soward, Annu. Rev. Fluid Mech. 24, 459 (1992).
37A. Brandenburg and K. Subramanian, Phys. Rep. 417, 1 (2005).
38A. Brandenburg, D. Sokoloff, and K. Subramanian, Space Sci. Rev. 169,

123 (2012).
39S. M. Mahajan, N. L. Shatashvili, S. V. Mikeladze, and K. I. Sigua,

Astrophys. J. 634, 419 (2005).
40M. Lingam and S. M. Mahajan, Mon. Not. R. Astron. Soc. 449, L36

(2015).
41S. M. Mahajan and Z. Yoshida, Phys. Rev. Lett. 81, 4863 (1998).
42S. M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003).
43R. V. E. Lovelace, Nature 262, 649 (1976).
44A. Ferrari, Annu. Rev. Astron. Astrophys. 36, 539 (1998).
45A. Brandenburg, S. Candelaresi, and P. Chatterjee, Mon. Not. R. Astron.

Soc. 398, 1414 (2009).
46S. Candelaresi and A. Brandenburg, Phys. Rev. E 87, 043104 (2013).
47P. D. Mininni, D. O. G�omez, and S. M. Mahajan, Astrophys. J. Lett. 567,

L81 (2002).
48P. D. Mininni, D. O. G�omez, and S. M. Mahajan, Astrophys. J. 587, 472

(2003).
49P. D. Mininni, D. O. G�omez, and S. M. Mahajan, Astrophys. J. 619, 1019

(2005).
50M. Lingam and A. Bhattacharjee, “A heuristic model for MRI turbulent

stresses in Hall MHD,” Mon. Not. R. Astron. Soc. (published online).
51R. M. Kulsrud, Plasma Physics for Astrophysics (Princeton University

Press, 2005).
52P. D. Mininni, D. O. G�omez, and S. M. Mahajan, Astrophys. J. 584, 1120

(2003).
53P. D. Mininni, A. Alexakis, and A. Pouquet, J. Plasma Phys. 73, 377

(2007).
54E. G. Blackman and T. Chou, Astrophys. J. 489, L95 (1997).
55U. R. Christensen, Space Sci. Rev. 152, 565 (2010).
56F. A. Gent, A. Shukurov, G. R. Sarson, A. Fletcher, and M. J. Mantere,

Mon. Not. R. Astron. Soc. 430, L40 (2013).

57O. Gressel, Astrophys. J. 770, 100 (2013).
58L. Biermann, Z. Naturforsch., A 5, 65 (1950).
59S. M. Mahajan and Z. Yoshida, Phys. Plasmas 18, 055701 (2011).
60K. Subramanian, Mon. Not. R. Astron. Soc. 294, 718 (1998).
61E. G. Blackman and G. B. Field, Astrophys. J. 521, 597 (1999).
62K. Subramanian, A. Shukurov, and N. E. L. Haugen, Mon. Not. R.

Astron. Soc. 366, 1437 (2006).
63A. Bauer and V. Springel, Mon. Not. R. Astron. Soc. 423, 2558 (2012).
64A. M. Hughes, D. J. Wilner, S. M. Andrews, C. Qi, and M. R.

Hogerheijde, Astrophys. J. 727, 85 (2011).
65P. Barge and J. Sommeria, Astron. Astrophys. 295, L1 (1995).
66H. H. Klahr and P. Bodenheimer, Astrophys. J. 582, 869 (2003).
67J. A. Barranco and P. S. Marcus, Astrophys. J. 623, 1157 (2005).
68J. J. Lissauer, Annu. Rev. Astron. Astrophys. 31, 129 (1993).
69P. J. Armitage, Annu. Rev. Astron. Astrophys. 49, 195 (2011).
70A. Yoshizawa, Phys. Fluids B 2, 1589 (1990).
71E. R. Priest, Solar Magneto-Hydrodynamics (Reidel, Dordrecht, 1982).
72G. A. Gary, Sol. Phys. 203, 71 (2001).
73H. Oda, M. Machida, K. E. Nakamura, and R. Matsumoto, Astrophys. J.

712, 639 (2010).
74N. Pizzolato, A. Maggio, G. Micela, S. Sciortino, and P. Ventura, Astron.

Astrophys. 397, 147 (2003).
75N. J. Wright, J. J. Drake, E. E. Mamajek, and G. W. Henry, Astrophys. J.

743, 48 (2011).
76A. Reiners, M. Sch€ussler, and V. M. Passegger, Astrophys. J. 794, 144

(2014).
77C. A. Tout and J. E. Pringle, Mon. Not. R. Astron. Soc. 256, 269 (1992).
78C. A. Jones, Annu. Rev. Fluid Mech. 43, 583 (2011).
79U. R. Christensen and J. Aubert, Geophys. J. Int. 166, 97 (2006).
80G. R€udiger, P. Egorov, L. L. Kitchatinov, and M. K€uker, Astron.

Astrophys. 431, 345 (2005).
81T. Padmanabhan, “Astrophysical processes,” in Theoretical Astrophysics

(Cambridge University Press, 2000), Vol. 1, p. 622.
82P. Charbonneau, Annu. Rev. Astron. Astrophys. 52, 251 (2014).
83B. Coppi, M. N. Rosenbluth, and R. Z. Sagdeev, Phys. Fluids 10, 582

(1967).
84W. Horton, Rev. Mod. Phys. 71, 735 (1999).
85B. Coppi, B. Basu, P. Montag, L. Sugiyama, and P. Buratti, Nucl. Fusion

55, 093018 (2015).
86B. Coppi and T. Zhou, Nucl. Fusion 54, 093001 (2014).
87S. A. Barnes and Y.-C. Kim, Astrophys. J. 721, 675–685 (2010).
88C. F. Chyba and K. P. Hand, Annu. Rev. Astron. Astrophys. 43, 31

(2005).
89H. Lammer, J. H. Bredeh€oft, A. Coustenis, M. L. Khodachenko, L.

Kaltenegger, O. Grasset, D. Prieur, F. Raulin, P. Ehrenfreund, M. Yamauchi,

J.-E. Wahlund, J.-M. Grießmeier, G. Stangl, C. S. Cockell, Y. N. Kulikov, J.

L. Grenfell, and H. Rauer, Astron. Astrophys. Rev. 17, 181 (2009).
90S. Seager, Science 340, 577 (2013).
91A. A. Vidotto, M. Jardine, J. Morin, J.-F. Donati, P. Lang, and A. J. B.

Russell, Astron. Astrophys. 557, A67 (2013).
92D. J. Armstrong, C. E. Pugh, A.-M. Broomhall, D. J. A. Brown, M. N.

Lund, H. P. Osborn, and D. L. Pollacco, Mon. Not. R. Astron. Soc. 455,

3110 (2016).
93J. Scalo, L. Kaltenegger, A. G. Segura, M. Fridlund, I. Ribas, Y. N.

Kulikov, J. L. Grenfell, H. Rauer, P. Odert, M. Leitzinger, F. Selsis, M.

L. Khodachenko, C. Eiroa, J. Kasting, and H. Lammer, Astrobiology 7,

85 (2007).
94C. D. Dressing and D. Charbonneau, Astrophys. J. 807, 45 (2015).
95P. K. Shukla, Phys. Plasmas 11, 5354 (2004).
96M. Wardle, Astrophys. Space Sci. 311, 35 (2007).
97S. M. Mahajan and M. Lingam, Phys. Plasmas 22, 092123 (2015).
98S. M. Mahajan and F. A. Asenjo, Phys. Rev. Lett. 107, 195003 (2011).
99M. Lingam, Phys. Plasmas 22, 022124 (2015).
100L. C. Steinhauer and A. Ishida, Phys. Rev. Lett. 79, 3423 (1997).
101M. Lingam, P. J. Morrison, and G. Miloshevich, Phys. Plasmas 22,

072111 (2015).
102M. Lingam, G. Miloshevich, and P. J. Morrison, “Concomitant Hamiltonian

and topological structures of extended magnetohydrodynamics,” Phys. Lett.

A (published online).
103E. Buckingham, Phys. Rev. 4, 345 (1914).
104G. I. Barenblatt, Scaling, Self-similarity Intermediate Asymptotics (Cambridge

University Press, 1996).
105H. E. Stanley, Rev. Mod. Phys. 71, S358 (1999).

052118-10 M. Lingam and S. M. Mahajan Phys. Plasmas 23, 052118 (2016)


	s1
	l
	n1
	n2
	s2
	s2A
	s2B
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d11a
	d11b
	d11c
	d11d
	d12
	s2C
	d13
	d14
	d15
	d16
	d17a
	d17b
	d17c
	d18
	d19
	d20
	s3
	s3A
	d21
	d22
	d23
	d24a
	d24b
	d24c
	d24d
	d25
	d26
	s3B
	s3C
	s4
	app1
	dA1
	dA2
	app2
	dB1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78
	c79
	c80
	c81
	c82
	c83
	c84
	c85
	c86
	c87
	c88
	c89
	c90
	c91
	c92
	c93
	c94
	c95
	c96
	c97
	c98
	c99
	c100
	c101
	c102
	c103
	c104
	c105

