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Abstract: The recent application of deep learning for structural health monitoring systems for

damage detection has potential for improvised structure performance and maintenance for long term

durability, and reliable strength. Advancements in electro-mechanical impedance (EMI) techniques

have sparked attention among researchers to develop novel monitoring techniques for structural

monitoring and evaluation. This study aims to determine the performance of EMI techniques using a

piezo sensor to monitor the development of bond strength in reinforced concrete through a pull-out

test. The concrete cylindrical samples with embedded steel bars were prepared, cured for 28 days,

and a pull-out test was performed to measure the interfacial bond between them. The piezo coupled

signatures were obtained for the PZT patch bonded to the steel bar. The damage qualification

is performed through the statistical indices, i.e., root-mean-square deviation (RMSD) and correlation

coefficient deviation metric (CCDM), were obtained for different displacements recorded for axial pull.

Furthermore, this study utilizes a novel Convolutional Neural Network-Long Short-Term Memory

(CNN-LSTM)-based hybrid model, an effective regression model to predict the EMI signatures. These

results emphasize the efficiency and potential application of the deep learning-based hybrid model

in predicting EMI-based structural signatures. The findings of this study have several implications

for structural health diagnosis using a deep learning-based model for monitoring and conservation

of building heritage.

Keywords: bond strength; concrete; deep learning; EMI techniques; machine learning; piezo sensor;

pull-out; statistical indices

1. Introduction

Reinforced cement concrete is a composite material, obtained through naturally avail-
able sources, yields the better compressive strength and most cost-effective material, elimi-
nates its brittle behavior with the addition of ductile reinforcing bars. To achieve composite
behavior, loads must be transferred from concrete to steel through strain compatibility,
attained through proper interface bonding, a load transfer that takes place near the steel–
concrete interface and is idealized as a continuous stress field [1]. The performance of steel
in reinforced concrete constructions depends on the interfacial frictional resistance. Early
studies for bond strength measurement mostly focused around on destructive techniques
using pull-out tests experimentally to assess the interfacial adhesion between reinforcement
and concrete [2–4]. In the real world, it is essential to determine the ultimate load which
can be endured by reinforced concrete before construction work takes place, i.e., removing
formwork and optimum curing days [5–7]. Developing a method that can reliably and
nondestructively evaluate the bond strength would be highly advantageous.
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In recent decades, structural health monitoring has received great attention among
researchers because of its performance, reliability, and consistency in infrastructure sys-
tems [8–10]. Monitoring progressive decay is an essential component of SHM systems.
SHM techniques may significantly lower maintenance costs and improve structural stability.
The use of piezoelectric materials with aid to SHM has recently increased in reliability
testing and preventive maintenance of the structure [11]. Yu et al. [12] proposed a tem-
perature sensor to measure the resonance wavelength. The reliability of the sensor works
with good accuracy and is convenient to use. Ye et al. [13] designed a novel PEC sensor
to detect the trace quantity of Cu2+. The potential of piezoelectric materials for sensing
and actuation purposes is a widely recognized as distinctive feature, required for better
SHM [14]. An emerging approach to evaluate the performance of SHM techniques has been
shown in a wide spectrum of constructions [15–18]. Liang et al. [19] first developed one
dimensional (1D) EMI-based measurements and structural impedance-based parameters,
which is useful for structural identification.

Many past studies have focused on the applications of EMI techniques, among others,
in concrete structures [20–22], bond slip [23], corrosion [24], debonding damage [25], wind
turbines [26], fatigue [27], and damage identifications [28,29]. Structural health assessment
of concrete structures to track the evolution of strength properties has also proven the
viability through EMI approach. Gu et al. [30] have made a significant contribution using
a periodic response frequency for local-based SHM technique, i.e., EMI technique. The
cement hydration effect was monitored using EMI techniques as an indication of bond
development among conventional concrete and rebars [31]. Further, EMI techniques were
also explored to understand the bond-slip between concrete-composite structures [32].
Jiang et al. [33] draws on an extensive range of sources to use active-sensing-based sensor
for bond loss monitoring between fiber reinforced bars and concrete. Key innovations
in this area non-destructive testing (NDT)-based EMI techniques to measure the bond
strength between steel and concrete for load deformation levels. In real-time situations and
design implication, for serviceability approach the bond stress between the concrete and
reinforcement only measures under elastic load not to ultimate approach.

Artificial neural network (ANN) is a potent tool, integrated with various SHM tech-
niques to assess the damage location and quantification for long term strength and durabil-
ity check for infrastructures. The deep learning approach with adaptive learning ability
made significant advancement among researchers for concrete strength and damage predic-
tion. The ANN framework has been used to forecast the physical characteristics of concrete
strength, corrosion, tensile strength, and bond development, etc., and the accuracy of this
method ensured with a mean absolute percentage error (MAPE), RMSE, and RMSD [34].
Supervised learning has been used by researchers as a better algorithmic approach for clas-
sification problems, including identifying deterioration in civil constructions [35]. In recent
past, several studies have implemented machine learning (ML) techniques successfully
applied to various SHM-based structural applications such as structural damage detec-
tion [36], arch bridges [37], composite structures [38], wind turbines [39], corrosion [40],
and steel frames [41]. In the field of civil engineering, mostly ML approaches are still scarce
and only limited to image classification and digital image correlation [42]. Several SHM
implementations have been reported that focus on multilevel perceptron and recurrent
neural network methods [43,44]. Eventually, new classes of NN emerged, including fuzzy
ARTMAP networks (FAN) and probabilistic neural networks (PNN), due to their consistent
performance, better accuracy, and lower processing time [45–48]. In last decade, several
studies used to identify structural deterioration in SHM systems based on PNN and FAN
have been previously discussed [49–51]. Before extensive utilization of deep learning in
SHM systems, classification models, including the support vector machines (SVMs) [52],
principal component analysis (PCA) [53], and k-means [54] methods, were used to extract
data characteristics.

In a recent development, the convolutional neural network (CNN), which has received
plenty of research and has been used in practical applications, is one of the most significant
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end-uses of deep learning in SHM approaches. CNN is considered one of the most efficient
and successful feature selection methods. It has been employed in numerous fields such
as remote sensing [55], image recognition [56], damage detection [57], vibration-based
structural state [58], civil infrastructure [59], bolt looseness [60], disease [61], and rock
classifications [62]. Several studies have suggested using image processing methods with
convolutional neural networks to identify cracks and corrosion for civil and mechanical
infrastructure [63–65]. These methods can accurately recognize, locate, and visualize cracks
and corrosion [66,67]. One-dimensional CNN is considered to be a fast and accurate
solution for the early detection of structural joints [68]. CNN is a potential tool to identify
extensive damage using impedance-based SHM in simple and direct damage scenarios [69].
However, few studies have explored deep CNN using EMI signals for damage diagnosis
assessment in interfacial damage and debonding. Recently, a single CNN framework
with a video processing focus appeared in the SHM domain [70]. In [71], the researchers
proposed the monitoring and setting time of cement hydration using the EMI-IntNet model.
Similarly, in [72], a deep learning-based model was proposed, which significantly reduces
the complexity of EMI inversion and enables quick and precise subsurface early mild
cognitive impairment (EMCI) estimate from multi configuration EMI signals.

In last few decades, the research primarily focused on the prediction of bond strength
using regression analysis. Concha [73] considered neural network model to predict the
bond between fiber reinforced polymer and concrete. Alizadeh et al. [74] presents a neuro
fuzzy technique to predict the behavior of composite bar and concrete. Several other studies
utilized a machine learning approach to predict the bond strength between reinforcement
and concrete [75], corroded reinforcement concrete [76], FRP-concrete [77], ultra-high
performance concrete-bar [78], and fiber-reinforced cement mortar concrete [79]. Moreover,
in the recent past, other soft computing methods were used to predict spliced GFRP bars
and concrete beams [80].

From the above discussion, it is found that the implication of the CNN-based deep
learning algorithm for frequency-based monitoring, e.g., impedance spectroscopy over
the higher frequency is very high. None of the past studies include hybrid-based features
extraction algorithm for piezo impedance-based sensor signals. This motivates the au-
thors to implement the deep learning-based hybrid models to monitor the steel–concrete
interaction using piezo electric sensor for EMI technique. This paper aims to find the feasi-
bility of the PZT patch for monitoring the concrete-steel interfacial bond through a piezo
coupled admittance signature. The damage indices, i.e., RMSD and CCDM indices, were
plotted for damage quantification. This study also proposed a novel hybrid (CNN-LSTM)
model for a baseline prediction that combines the EMI-PZT-based signals with the deep
learning algorithm. Further, it is extended to forecasting the signatures (i.e., structural
peaks and piezo-resonance peaks for conductance signature) for more accurate prediction
of concrete-steel bond degradation. Overall, this paper focuses more on the sensitivity and
employability of a proposed hybrid model to predict and forecast the baseline structural
signature for the statistical damage identification and bond strength monitoring of a piezo
coupled signature.

2. Materials and Methods

This section included materials, experimental design, and deep learning models for
the prediction of baseline signature and bond strength forecasting for lab sized reinforced
concrete samples. The hybrid model used in this study is a combination of long short-term
memory (LSTM) [81] and CNN [82], found to be suitable for the prediction of sequence
data. A novel hybrid model known as CNN-LSTM is proposed for this intended study,
whose performance in terms of metrics such as mean absolute percentage error (MAPE),
mean absolute error (MAE), and root mean squared error (RMSE) are analyzed, compared,
and discussed for insightful information towards bond strength. To assess the reliability of
the EMI-CNN-LSTM model, the investigated bond strength vs. slip using pull-out tests
were also performed in static manner. The PZT instrumented with a steel bar facilitates
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the indication bond strength and it is measured through piezo-coupled signatures. The
detailed fabrication of the sample, methods, and materials is presented as follows.

2.1. Fabrication of Samples

Three cylindrical samples were prepared to investigate the bond strength among
concrete and reinforcing bar. The dimensions of the specimen were 100 mm × 200 mm.
Figure 1 shows the detailed dimensions of the specimen. Three different cylindrical sam-
ples are tested, and the observations are indicated as the mean of the three samples (see
Section 4.1.

100 mm × 200 mm

 

nt 

 

Figure 1. Specimen dimensions with PZT location.

2.2. Materials

The raw materials used for the casting of lab specimens are OPC 43 cement, river sand,
coarse aggregate, and water. The specific gravity and water absorption of coarse aggregates
was measured to be 3.15 and 1.67%, respectively. The size gradation of aggregates was
performed by IS383:1983 [83].

The steel bars were of 12 mm dia with yield strength of 500 MPa conforming to IS
1786 (2008) [84]. Cement concrete mix design was adapted from BIS 10262:2009 [85], and
were embedded in the concrete for lab-cast cylindrical samples (see Figure 1). The adopted
water-to-cement ratio was 0.55 based on mix design codal values [85]. Table 1 provides
the mix proportioning of concrete specimens. The concrete mixing and placing procedures
for the lab size are illustrated in Figure 2. In this study, the pullout test experiments were
conducted for reinforced concrete samples after completion of 28 days curing.
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Table 1. Mix proportion of concrete.

W/C Ratio Materials (kg/m3)

0.55
Cement River Sand Coarse Aggregates Water

360 552 1303 198

  
(a) (b) 

–

’

𝜏 = 𝑃𝑢𝜋𝑙𝑑𝑑𝑏𝜏 𝑃𝑢 𝑑𝑏𝑙𝑑

Figure 2. (a) Casting of cylinder specimen, (b) sample mount in the universal testing machine UTM.

2.3. Pull-Out Specimen Details

The pull-out samples were prepared according to ASTM C234 [86], which specifies
the use of 150 mm cylindrical molds for rebar sizes greater than 12 mm. The samples were
prepared with concrete cylinders with a single reinforcing steel placed in the center of the
sample. As seen in Figure 1, the bar was extended upward by nearly 350 mm from the
top of the cylinder to provide enough length to grip to jack of the testing apparatus. The
embedded length of steel was kept 50 mm into the concrete for bond strength development.
The molds were cast in three layers and were vibrated on the vibrating table for 15–20 s
until proper compaction was attained. The top level was leveled to create a smooth finish.
After casting, the samples were wrapped in plastic enclosed to prevent loss of moisture.
After 24 h, the samples were demolded and kept for pond curing for 28 days at room
temperature and humidity.

2.4. Pull-Out Testing

The standard pull-out test was performed for all three concrete samples. The loading
rate was kept 0.1 kN/s. The integrated UTM data acquisition system was attached to a
high-accuracy linear variable of differential transducers (LVDTs) to monitor the slip of the
rebar against the load/stress applied. The samples were encased between two plates, and
leather sheets were placed between the plate and the surface of the samples to guarantee an
evenly distribution of loading pressure across the samples’ surfaces. The total deformation
for slippage and steel expansion was acquired. The load was applied until it reached the
ultimate peak load, and the rebar detached from the sample. The maximum bond strength
was determined using Equation (1).

τ =
Pu

πlddb
(1)

where τ denotes the maximum bond strength, Pu ultimate peak load of the steel rebar, db

diameter of steel bar, and ld embeddedment length of rebar.
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2.5. EMI Techniques Setup

EMI observations were recorded along with the pull-out test via LCR meter (Agilent
3441E). The square PZT patch of dimension (10 × 10 × 0.3 mm3) was bonded to the steel
bar in each of the samples at a distance of 20 mm from the upper part of the concrete (see
Figure 1). The selected spacing ensured for the adequate sensing radius of the PZT patch
varied from 0.4 to 0.45 m for reinforced concrete structures [87]. The properties of PZT
patches are given in Table 2. The PZT patches were assembled to the steel surfaces with an
Araldite adhesive. The physical properties of the steel and adhesive are listed in Table 2.

Table 2. Material Properties of PZT patch.

Materials Property Unit Value

PZT

Poisson’s ratio µ 0.3000

Piezoelectric strain coefficient m/V −2.100 × 10−10

Dielectric loss factor δ 0.0224

Mechanical loss factor Qm 0.0325

Young’s modulus N/m2 6.667 × 1010

Steel bar

Density Kg/m3 7850

Yield stress MPa 500

Elongation % 18

Ultimate tensile stress MPa 580

Adhesive

Flexural strength MPa 61

Flexural modulus MPa 4354.9

Tensile strength MPa 26

The flat PZT patch was connected to the machined steel surface through a uniform
coating of adhesive paste over it. Gentle pressure was applied to the upper surface of the
PZT patch with the palm for few minutes, and then it was left untouched for at minimum
24 h at ambient temperature to allow the adhesive to cure completely. To perform the EMI
readings, the electrical wires were soldered to the top layer of the PZT patch and joined to
the impedance analyzer. The admittance signatures were monitored using an impedance
analyzer with a frequency range between 30 kHz and 300 kHz. Figure 3a,b illustrates the
experimental setup for cylindrical samples performed in this research. LVDT measures the
slip of the bar from the concrete during the experiment. The LVDT-attached loaded end of
the bar included the slip due to deformation of the bar and concrete. Hence, it is necessary
to consider these aspects for calculating the slip of the bar.

Slip = LVDT reading − δc − δs (2)

δc =
P·lc

Ac·Ec
(3)

δs =
P·l f

As·Es
(4)

where P = applied load, As = Area of steel, Es = Elastic modulus of steel, Ac = Area of
concrete cylinder, Ec = Elastic modulus of concrete, l f = free length of steel.
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𝐿𝑉𝐷𝑇 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 − 𝛿𝑐 − 𝛿𝑠
𝛿𝑐 = 𝑃. 𝑙𝑐𝐴𝑐 . 𝐸𝑐
𝛿𝑠 = 𝑃. 𝑙𝑓𝐴𝑠. 𝐸𝑠𝐴𝑠 = 𝐸𝑠 𝐴𝑐 𝐸𝑐 𝑙𝑓  

 
(a) 

(b) 

Figure 3. (a) The experimental setup for bond strength monitoring (b) Schematic diagram.

2.6. LSTM Model

LSTM is a sequencing and recurrent artificial neural system that consists of both
long-term memory (LTM) and short-term memory (STM) processed with a series of gates.
A memory cell known as a ‘cell state’ plays a central role in an LSTM model that maintains
its state over a time span. Figure 4 illustrates the detailed architecture of the LSTM cell.

Poisson’s ratio
− 10−10

δQm
Young’s modulus N/m2  1010

memory cell known as a ‘cell state’ plays a central role in an LSTM model that maintains 

 

– 𝑖𝑡 = 𝜎(𝑊𝑖 ⊗ 𝑥𝑡 + 𝑈𝑖 ⊗ ℎ𝑡−1 + 𝑏𝑖)𝑓𝑡 = 𝜎(𝑊𝑓 ⊗ 𝑥𝑡 + 𝑈𝑓 ⊗ ℎ𝑡−1 + 𝑏𝑓)𝑜𝑡 = 𝜎(𝑊𝑜 ⊗ 𝑥𝑡 + 𝑈𝑜 ⊗ ℎ𝑡−1 + 𝑏𝑜)

Figure 4. LSTM architecture.

The current section elaborates the steps involved, to start with forgetting gate com-
putes, the useful bits, and data flow for the current cell state considering the current input
and previous hidden state. The vector is formed through new input information and the
prior hidden layer in the neural network (ANN-LSTM) system, where matrix elements are
normalized in the range of 0, 1. Hence, the forget gate allows us to classify the parame-
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ters/components to relevant (1) and irrelevant (0). The further process includes sharing the
input data to the LSTM cell. A new memory vector is formed with the merging of previous
data and current input data through the function tanh. The activation function sigmoid is
used for the input gate, acting as a filter, and yields the relevant data for post processing.
Then, the new memory vector is multiplied pointwise by the output of the input gate for
the final prediction.

Equations (5)–(10) depicts various operations involved in an LSTM cell.

it = σ(Wi ⊗ xt + Ui ⊗ ht−1 + bi) (5)

ft = σ
(

W f ⊗ xt + U f ⊗ ht−1 + b f

)

(6)

ot = σ(Wo ⊗ xt + Uo ⊗ ht−1 + bo) (7)

c′t = tanh(Wc ⊗ xt + Uc ⊗ ht−1 + bc) (8)

ct = ft·ct−1 + it·c
′
t (9)

ht = ot·tanh(ct) (10)

where it input gate, ft forgot gate, ot output gate, c′t, ct cell state, ht hidden state, Wi weight
for input gate, xt input data, ht−1 previous hidden state, Wo weight for output gate, W f

weight for forgot gate, b bias.

2.7. CNN Model

CNN is a deep learning algorithm integrated with neural network, which primarily
works on convolution theory. Due to its high accuracy, CNN model initially attracted
attention for image recognition and classification. The fundamental component of a CNN
model is the convolutional layer. The important parameters of this layer are a set of
filters or kernels, which are responsible for the convolution operations. The output of
convolution operations, which are linear in nature, are passed through non-linear activation
function. The rectified linear unit (ReLu) [88] is a commonly used non-linear function in
CNN as it reduces the exponential computation overhead required to operate the neural
network. Followed by the convolutional layer, the pooling layer receives the output from
the convolutional layer for dimensionality reduction, further eliminating the computer
processing hassles. Dropout layers are incorporated at input layers or other hidden layers
which nullifies the contribution of a number of neurons. A single node fully connected
layer with a linear activation function receives the output from the final pooling layer.
Figure 5 shows the CNN architecture for continuous output.

𝑐′𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⊗ 𝑥𝑡 + 𝑈𝑐 ⊗ ℎ𝑡−1 + 𝑏𝑐)𝑐𝑡 = 𝑓𝑡 . 𝑐𝑡−1 + 𝑖𝑡 . 𝑐′𝑡ℎ𝑡 = 𝑜𝑡 . 𝑡𝑎𝑛ℎ(𝑐𝑡)𝑖𝑡 𝑓𝑡 𝑜𝑡 𝑐′𝑡 𝑐𝑡 ℎ𝑡 𝑊𝑖𝑥𝑡 ℎ𝑡−1 𝑊o 𝑊𝑓

Figure 5. CNN Architecture.

2.8. Proposed CNN-LSTM Hybrid Model

The presented CNN-LSTM model combines CNN and LSTM for building the pre-
dictive model for the structural baseline signature. The first component of the hybrid
model, is CNN model, needed for the feature extraction and the second component, LSTM
exhibits the sequence learning. Figure 6 shows the workflow diagram of various deep
learning models used in this study. As depicted in Figure 6, the data set is pre-processed
through Exploratory Data Analysis (EDA) followed by data scaling. The scaled data are
split into two units viz, training dataset and test dataset in the ratio 8:2. The training dataset
is used for training different deep learning models, i.e., LSTM, CNN and the proposed
CNN-LSTM hybrid model using optimized hyper-parameters to yield predictive models.
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These predictive models are used to predict the values in the test dataset range. Finally, the
predicted values of the models are compared with actual test data to evaluate the model
performance in terms different evaluation metrics, such as MAE, RMSE, and MAPE. The
detailed descriptions are explained in Section 3.

′

–

 

Figure 6. Workflow of proposed deep learning model.

Figure 7 shows the working structures of the proposed CNN-LSTM model. The
proposed CNN-LSTM model consists of a CNN unit followed by an LSTM unit. In Figure 7
it shows the shape of input and output data at each processing layer in the proposed hybrid
model. Two 1′s in the input data shape represent number of frequency steps and number
of features, respectively. In this study, only one feature, i.e., frequency, predicts the output,
i.e., conductance values of EMI signature. The convolution layer, the heart of CNN unit
which has filters of size 64 and kernel size 1 in this case, receives data from the input layer.
It is followed by a max pooling layer for dimensionality reduction. A dropout layer follows
the max pooling layer to pass data to the next layer by dropping irrelevant information.
The output of the dropout layer is then fed into the flattened layer to yield the final output
of CNN unit. The LSTM layer receives input from the flattening layer which uses 175 no
neurons. Another dropout layer follows to drop irrelevant information resulted from the
output of the LSTM layer. Finally, a dense layer terminates the proposed CNN-LSTM
architecture, which results in the final output of the model. In this proposed architecture,
1-D CNN unit is responsible for feature extraction and the LSTM unit is attributed for
sequence data prediction.

′

–

Figure 7. Working structure of proposed CNN-LSTM hybrid model.
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3. Developed Method

DL methods performed in this research are implemented using Python in Jupyter
notebook and executed on a Windows 11 machine with Intel(R), core-i3–8th Gen CPU and
8 GB RAM. All three models used in this work are executed separately with two samples of
data lab sized concrete samples. The values obtained from the predicted result are compared
with the original values present in the test data to produce different model evaluation
metrics such as RMSE, MAE, and MAPE. This section includes data pre-processing, hyper
parameter tuning, and performance metrics.

3.1. Data Pre-Processing

Exploratory data analysis (EDA) was performed for the output data set to check
outliers and other anomalies present in the dataset. Figure 8 depicts the workflow of data
pre-processing performed on the dataset used for this study. The conductance values
obtained for a given frequency range of 30 kHz to 300 kHz were obtained and processed
for LSTM, CNN, and hybrid model for predicting signature to imply the bond strength
development between steel and concrete.

 

Figure 8. Data pre-processing.

3.2. Hyper Parameter Tuning

Hyper parameters [89] were used for building the LSTM and CNN models are opti-
mized through Bayesian hyper parameter optimization technique using the ax tool [90].
The optimized hyper-parameters obtained are used to build the CNN, LSTM and CNN-
LSTM hybrid model. Table 3 depicts the optimized hyper-parameters for different models
used in this work.

Table 3. Hyper-parameters used for Deep Learning Models.

LSTM Model CNN Model

Hyper-parameters Value Hyper-parameters Value

Learning Rate 0.031 Learning Rate 0.054

Dropout Rate 0.065 Dropout Rate 0.032

No of Hidden Layers 1 No of Hidden Layers 2

Neurons Per Layer 175 Kernel size 3

Batch Size 64 Batch Size 128

Activation Function tanh Activation Function relu
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3.3. Model Evaluation Metrics

Different statistical evaluation metrics used for bond strength monitoring and predic-
tion are root mean squared error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). The evaluation of metrics is useful to quantify the performance
of the different DL models. Table 4 depicts different evaluation metrics to evaluate the deep
learning models used in this work.

Table 4. Performance Metrics.

Metrics Formula

RMSE
√

∑
n
i=1(yi−ŷi)

2

n

MAE ∑
n
i=1|yi−ŷi |

n

MAPE 100
n

n
∑

i=1

∣

∣

∣

yi−ŷi

yi

∣

∣

∣

yi: Actual or observed value ŷi: Predicted value n: No of data points

4. Results and Discussions

For reinforced concrete composite construction, the strength of the interfacial bond
plays a key factor for the transfer of stress between steel and concrete. Therefore, the
mechanism of the interfacial bond strength is of the utmost importance to understand the
behavior of crack, bearing capacity, and durability of reinforced concrete structures.

This section discusses the observations of an examination of the EMI signatures
(real and imaginary parts) for bond strength measurement between rebar and concrete,
which is further processed for forecasting of baseline and future EMI signatures using
proposed DL models. The signatures, obtained for the experimental and predicted method,
further verified statistical indices. The signatures are acquired to monitor bond strength
for intermediate strain range/displacement levels for the stress and slip curve. Finally, the
results of the experimental results and the predictions of the baseline EMI data using the
CNN-LSTM hybrid model are analyzed and compared.

4.1. EMI Response Spectra

Through a mechanical impedance analyzer, the admittance signatures of the PZT
patch were obtained as a function of frequency. The experiments were carried out in
a repetitive manner to check sensor stabilization and for the elimination of noise and
error. In past studies, the conductance signatures were successfully utilized to capture
the strength and damage of the intended structure [91–93]. Therefore, this study only
focused for obtained sensor-based conductance signature for the pull-out test for different
displacement/strain ranges for a better indication of bond strength. The susceptance
signature is more sensitive to temperature variations and can be utilized to check the
viability of coupled PZT patches [94]. In this investigation, it was assumed that the bonding
parameters and the quality of the PZT patch would not deteriorate during the measurement
duration. Hence, the susceptance signatures were not taken into account for this study.

The static pull-out test results were recorded for three different lab-sized concrete
cylindrical samples embedded with steel bars. Figure 9 shows the plot between the bond
strength vs slip for all the three samples. The bond strength for the three samples increases
linearly up to the maximum strength until sudden failure. An 8 to 10 mm slip was observed
for all samples. The fundamental bond stress distribution generally has a plateau once
it reaches the ultimate load. Moreover, the interfacial bond strength between steel and
concrete is lost due to adhesion and mechanical bearing. Similar trends have been reported
by [95–98] in their work for normal and light-weight concrete. The piezoelectric sensor has
dual sensing mechanism which allow the sensor to actuate and sense concurrently while
sensor structure interaction occurs. Integrating piezoelectric sensor for EMI technique
where piezoelectric charge density (hence electrical impedance) is measured. As the PZT
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patches (commercial version piezoelectric sensor) has very small mass inertia compared
to the host structure, and the sensor signature (obtained as mechanical impedance) has
constrained only host structure information. This usually reflects in the conductance
(inverse of impedance) signature. For this paper, the same concept has been applied to
understand the employability of a piezoelectric sensor for monitoring the bond strength of
concrete and steel through a pull-out test. The yielded conductance signature obtained for
different displacement control signifies the interface bond behavior (hence the strength)
while experience tensile pull. The signatures can be further idealized for mass, spring, and
damping system to find out how the contact stiffness (hence elastic bond behavior between
concrete and steel) degrades through a progressive pulling action. Bhalla and Soh [99]
derived expressions to find the admittance signatures of the surface-bonded PZT patch.

Y = G + Bj = 4ωj
l2

h

[

εT
33 −

2d2
31YE

(1 − µ)
+

2d2
31YE

(1 − µ)

(

Za,e f f

ZS,e f f + Za,e f f

)

T

]

(11)
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Figure 9. Test results for bond strength vs Slip curve.

From this expression, B and G are the conductance and susceptance, l, w, h geometry

of PZT, µ poisons ratio, εT
33 complex electrical permittivity, k is wave number, Za,eff and

ZS,e f f denotes effective impedance PZT patch and structure, respectively. YE and εT
33 is the

complex Young’s modulus of elasticity and complex electrical permittivity, respectively.
d31 Piezoelectric strain coefficient T is equal to tan kl

kl is called complex tangent ratio, ω is the
angular frequency of excitation.

Figure 10a,b represent the conductance plot acquired from the sensor-based dynamic
measurements, where the PZT patch is bonded to the rebar for two lab sized concrete
cylindrical samples, i.e., Samples 1,2, respectively. Figure 10a,b shows the peaks of the
conductance shifts rightward with the increase in the displacement/strain ranges till the
specimen fails in the splitting tensile. It is promising to observe how the variations in the
conductance signatures correlate with different strain/displacement holds till they attained
the maximum value. As the loss of bond over time during loading occurred, the same was
reflected in EMI spectra obtained from the PZT patch. The shifting of peak frequency in
EMI spectra are caused due to the failure of the interfacial transition zone between the
aggregate and steel for strain/displacement range. Similar results were also reported by
Soh and Bhalla [100] to monitor the curing of concrete in experimental study. From the
above results, it is quite noticeable that the sensor readings are capable of monitoring bond
strength between steel and concrete. Further, the static strength performs the outlay of the
elastic variation of the lab-sized sample.
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Figure 10. Variation of conductance signature at different displacement level, (a) Sample 1, (b) Sample 2.

Figure 11a–f show the typical failure pattern of bond strength between steel and
concrete for different displacement/strain range outturned through axial pull-out test.
The slip induced due to splitting failure was clearly visible as an indication of bond loss.
Figure 12a–c shows different orientation of splitting failure in the concrete cylindrical
sample. The splitting failure is more apparent due to the embedment length and deformed
surface of the steel rebar. Overall, these results suggest that the failure is limited to the
crack core around the steel rebar.

4.2. Statistical Indices

Statistics indicators i: e RMSD [101] and CCDM [102], which are frequently used in
predictive maintenance of structures as damage indices, is used to process EMI spectra to
quantify the bond strength at different strain/displacement range through pull-out loading.
The RMSD index for the admittance signatures is presented in Equation (11).

RMSD(%) = 100 ×

√

√

√

√

√

√

∑
N
j=1

(

Gi
j − G1

j

)2

∑
N
j=1

(

G1
j

)2
(12)
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where G1
j real part of the baseline signature for various displacement level G2

j real part of

the signatures after pull-out loading at various displacement levels.

 

100 × √∑ (𝐺𝑗𝑖−𝐺𝑗1)2𝑁𝑗=1∑ (𝐺𝑗1)2𝑁𝑗=1𝐺𝑗1 𝐺𝑗2

𝐶𝐶𝐷𝑀 = 1 − 𝑐𝑜𝑣 [Re(Gj1), Re(Gji)]𝜎1𝜎2

Figure 11. Different stages of failure at a displacement of (a) 0 mm, (b) 5 mm, (c) 10 mm, (d) 15 mm,

(e) 20 mm, (f) Splitting.

 
(a) (b) 

100 × √∑ (𝐺𝑗𝑖−𝐺𝑗1)2𝑁𝑗=1∑ (𝐺𝑗1)2𝑁𝑗=1𝐺𝑗1 𝐺𝑗2

𝐶𝐶𝐷𝑀 = 1 − 𝑐𝑜𝑣 [Re(Gj1), Re(Gji)]𝜎1𝜎2

Figure 12. Different views of failure mode (a) Top, (b) Side.

The CCDM index related to the correlation coefficient for piezo-coupled signatures is
presented in Equation (12).

CCDM = 1 −
cov

[

Re
(

G1
j

)

, Re(Gi
j

)

]

σ1σ2
(13)

where cov is the covariance between the G1
j and G2

j ; σ1and σ2 are the respective standard

deviations of each signature.
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Equations (7) and (8) can be used to quantify the statistical variation of EMI signature
of structural variation. Larger variations in the conductance signatures lead to higher
values of the RMSD and CCDM index values when compared to baseline signature. As
shown in Figure 13a,b, the RMSD and CCDM values increase with the pull-out load and are
more sensitive at a higher value of displacement for Sample 1,2, respectively. This behavior
indicates loss of adhesion between reinforcement and concrete and indicated the failure
occurs at for different strain (and displacement) range from 0 to 20 mm. The statistical
analysis shown also indicate that bond strength nondestructively assessment through EMI
signals alone. A significant disadvantage of using statistical indices is the need to establish
baseline measurements, which can be challenging for preexisted structure. The challenges
occur for the existing structure that are vulnerable to corrosion and the baseline signatures
not available to employ these techniques.

𝐺𝑗1 𝐺𝑗2;  σ1and σ2

 
(a) 

 
(b) 

–

Figure 13. Statistical variations at different displacement levels (a) Sample 1, (b) Sample 2.

4.3. Deep Learning Model for Prediction of Baseline Bond Strength Data

This section comprises a proposed deep learning model based on the experimental
EMI signals described above. The EMI signals are classified for dataseta of two lab-sized
samples for different strain holds during an axial pull test. To build predictive models,
LSTM, CNN, and CNN-LSTM hybrid bases algorithms are developed. The optimized
hyper parameters for the hybrid model are summarized in the Table 4, for precise and
reliable prediction of EMI signals. The entire data set of both samples are divided separately
into the training data unit and the test data unit confirming the 8:2 split ratio. The training
data set is used for model fitting, and the test data set is used to validate the model. The
training and validation loss confirm the proper fitting and validation. Figure 14a–e shows
the variation of actual experimental conductance signature and the predicted conductance
curve for the LSTM, CNN and CNN-LSTM model for sample 1.
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–
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(a) (b) 

(c) (d) 

 
(e) 

Figure 14. Experimental and predicted deep learning models comparison of Sample 1 (a) Baseline,

(b) 5 mm, (c) 10 mm, (d) 15 mm, (e) 20 mm.

It is evident from Figure 14a–e that the prediction of EMI signature through different
models are sufficient to identify the structural peak and piezo resonance peaks, which
are crucial for impedance-based structural health monitoring. The predicted curved are
completely identical with similar conductance peaks, and also follow the similar pattern
for different strain range. In a closer look, it can be seen that the proposed CNN-LSTM is
very close to the actual experimental result (refer Figure 14c–e). Curves are aligned, which
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confirms that the predicted result from the similar variation is also noticed for Sample-2
(seen in Figure 15a–e).

(a) (b) 

(c) (d) 

 
(e) 

–

Figure 15. Experimental and predicted deep learning models comparison of Sample 2 (a) Baseline,

(b) 5 mm, (c) 10 mm, (d) 15 mm, (e) 20 mm.

Training loss provides information about the performance of model fitting with train-
ing data, and validation loss provides information about the feasibility of model fitting
with new data, further used to forecast the new results. Figure 16a–e shows the train
and validation loss of the proposed CNN-LSTM hybrid model with a different number of
epochs. The results show that the losses are minimized for both training and validation
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of datasets. Tables 5 and 6 depict the evaluation metrics for the results obtained from
LSTM and CNN model, implemented for Sample 1,2 data, respectively. Table 5 shows
the performance metrics of the proposed CNN-LSTM hybrid model for Samples 1,2, for
better comparison and highlights the suitability and accuracy of the proposed model. From
Table 5, it can be seen that the MAPE values of the proposed CNN-LSTM model for different
displacement/strain range are far superior to the MAPE values for the LSTM and CNN
models, which are depicted in Tables 6 and 7 for lab sized concrete cylindrical Sample 1,2,
respectively. For Sample 1, the MAE value is 0.0000758 for the base-line case using the
LSTM model and 0.0000785 using the CNN model. The MAE value of 0.0000090 for the
same baseline case confirms that the result is more promising than the CNN and LSTM
models. A low value of MAPE indicates minimum error and maximum accuracy for a
model. Hence, the proposed CNN-LSTM model with minimum MAPE is considered to be
better, compared to standalone CNN and LSTM model. Similarly, for all the other cases,
it was verified that the proposed CNN-LSTM hybrid model outperforms the LSTM and
CNN model with respect to the RMSE, MAPE, and MAE values.

 
(a) (b) 

(c) (d) 

 
(e) 

Figure 16. Training loss and validation loss vs No of epochs at (a) Baseline (b) 5 mm (c) 10 mm

(d) 15 mm (e) 20 mm.
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Table 5. Accuracy of proposed CNN-LSTM model for Sample 1,2.

Model and Metric
Sample 1 Sample 2

MAE RMSE MAPE MAE RMSE MAPE

Baseline 0.0000090 0.0000141 0.87 0.0000219 0.0000351 1.89

Strain Displacement @5 mm 0.0000257 0.0000277 2.32 0.0000304 0.0000612 2.03

Strain Displacement @10 mm 0.0000162 0.0000175 1.53 0.0000176 0.0000225 1.84

Strain Displacement @15 mm 0.0000088 0.0000115 0.79 0.0000182 0.0000293 1.59

Strain Displacement @20 mm 0.0000081 0.0000117 0.74 0.0000291 0.0000347 2.12

Table 6. Accuracy of deep learning models for Sample 1.

Model and Metric
LSTM CNN

MAE RMSE MAPE MAE RMSE MAPE

Baseline 0.0000758 0.0000789 6.82 0.0000785 0.0000821 7.01

Strain Displacement @5 mm 0.0000591 0.0000611 5.31 0.0000456 0.0000483 4.05

Strain Displacement @10 mm 0.0000588 0.0000608 5.49 0.0000611 0.0000644 5.64

Strain Displacement @ 15 mm 0.0000650 0.0000677 5.79 0.0000487 0.0000514 4.31

Strain Displacement @ 20 mm 0.0000691 0.0000717 6.19 0.0000637 0.0000670 5.67

Table 7. Accuracy deep learning models for Sample 2.

Model and Metric
LSTM CNN

MAE RMSE MAPE MAE RMSE MAPE

Baseline 0.0000361 0.0000490 3.18 0.0000402 0.0000672 2.98

Strain Displacement @5 mm 0.0000365 0.0000455 3.42 0.0000276 0.0000468 3.42

Strain Displacement @10 mm 0.0000354 0.0000469 3.14 0.0000330 0.0000651 2.22

Strain Displacement @15 mm 0.0000226 0.0000283 2.35 0.0000375 0.0000667 2.64

Strain Displacement @20 mm 0.0000251 0.0000322 2.51 0.0000317 0.0000526 2.40

Overall, the above shown results indicates that the CNN-LSTM-based hybrid model
performs better for the prediction of baseline signatures and piezo coupled signatures for
different strain displacement range. In a practical scenario, where baseline data are not
available, the deep learning-based hybrid model can be used to forecast the EMI signals for
better simulation of preexisting data of structural information. Furthermore, this study is
extended to forecast EMI signatures for the structural frequency range (30–80) kHz and
piezo resonance peak (150–200) kHz for the baseline Figure 17a,b shows the proposed
CNN-LSTM model to forecast the frequency range of the structural and piezo resonance
frequency range for prediction of baseline signature. These structural peaks accurately
depict the piezo coupled behavior of the specimen, a very essential element for the EMI
technique. Similar studies have been reported by researchers in their work to investigate
the hydration monitoring process using structural and piezo resonance peaks [103,104].
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Figure 17. Cont.
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(d) 

(e) 

Figure 17. Comparison between experimental and predicted structural and Piezo resonance peak of

(a) Baseline, (b) Strain Displacement @5 mm, (c) Strain Displacement @10 mm, (d) Strain Displacement

@15 mm, (e) Strain Displacement @20 mm.

4.4. Statistical Validation of Predicted and Experimental Data

Figure 18a compares the experimental and predicted deep learning-based RMSD
values, simulated for the baseline signature. It is observed that the experimental and
predicted RMSD follows increasing and similar trends with a small outliers at the 10 mm
displacement level. However, the developed model follows similar patterns to those of
experimental realizations. Figure 18b shows the variation of CCDM indices in experimental
data and proposed deep learning models. The results of CCDM indices suggest that similar
trends are being predicted as experimental CCDM indices, for higher strain displacement
values raised for axial pull-out test with low error. In summary, the results show that
CNN-LSTM hybrid model found to be effective for prediction of the healthy state of EMI
signatures, called pristine or baseline signature and monitor structural health of reinforced
concrete structures (e.g., strength, durability, and damage).
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Figure 18. Comparison between experimental and predicted statistical indices (a) RMSD (b) CCDM.

5. Conclusions

This paper comprises the impedance-based structural diagnosis for a concrete and
steel bond through a tensile pull-out test along with a sensor attached. The axial pull tests
were carried to obtain static results, i.e., stress and slip. The bond strength between steel
and concrete was evaluated and found satisfactory with elastic strain variation. Further,
the piezo coupled signatures were obtained through a bonded PZT patch in a steel bar for
a different strain hold, i.e., for a different displacement range recorded for LVDT attached
in UTM. The statistical indices, RMSD and CCDM, reprising for the different stain ranges,
have been plotted for easy interpretation.

Further, the neural networks-based predictive models i.e., LSTM and CNN are utilized
for better monitoring the bond strength and baseline condition of intended structure. The
prediction baseline data are a much-needed parameter for statistical damage indication
for EMI-based SHM. This study also includes the development of a novel hybrid model
for accurate modeling of strength prediction for pristine condition and for various strain
range. The developed model is implemented for the prediction of EMI signals subjected to
pullout loading. The outcome of the proposed model is further verified with experimental
results. The evaluation metrics (RMSE, MAE, and MAPE) for different prediction models
are compared to highlight the sensitivity and accuracy of the proposed hybrid model
(CNN-LSTM) towards bond strength prediction. From the results, it is found that the
proposed CNN-LSTM algorithm represents a reliable and consistent tool for the prediction
of baseline signatures.

Overall, the results of the present investigation shows a very encouraging and promi-
nent application of EMI-based signature for interphase bond strength prediction for non-
destructive evaluation (NDE) approach. The proposed CNN-LSTM algorithm represents
a reliable and consistent tool for the prediction of baseline signatures. Future research
should also consider the potential effects of hybrid models along with adequate hyper
parameter optimization techniques to create even more accurate predictive models. The
proposed model will be modified and optimized to enhance its performance in the pre-
diction of complex structural damages. The deep learning algorithms are the most potent
tool to extract the features for any time series changes of any physical system. Utilizing
EMI technique helps the signature prediction and feature extraction, and their changes,
for different parametric variations, accommodate the flexibility in decision making for
long-term SHM. Having the model to analyze the impedance-based date will add more
function to predict the baseline behaviour when most of the time primitive system data are
missing. Furthermore, through inverse approach, this model can be utilized to understand
the inherent structural changes of the specimen due to progressive damage.
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