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Abstract

In this paper, we explore mutual information based stock networks to build regular vine cop-

ula structure on high frequency log returns of stocks and use it for the estimation of Value at

Risk (VaR) of a portfolio of stocks. Our model is a data driven model that learns from a high

frequency time series data of log returns of top 50 stocks listed on the National Stock

Exchange (NSE) in India for the year 2014. The Ljung-Box test revealed the presence of

Autocorrelation as well as Heteroscedasticity in the underlying time series data. Analysing

the goodness of fit of a number of variants of the GARCH model on each working day of the

year 2014, that is, 229 days in all, it was observed that ARMA(1,1)-EGARCH(1,1) demon-

strated the best fit. The joint probability distribution of the portfolio is computed by con-

structed an R-Vine copula structure on the data with the mutual information guided

minimum spanning tree as the key building block. The joint PDF is then fed into the Monte-

Carlo simulation procedure to compute the VaR. If we replace the mutual information by the

Kendall’s Tau in the construction of the R-Vine copula structure, the resulting VaR estima-

tions were found to be inferior suggesting the presence of non-linear relationships among

stock returns.

1) Introduction

Developing multivariate models and estimating joint density function is an area of key interest

amongst researchers not only in finance but also in various other fields [1–3]. In finance, the

researchers have already discarded multivariate Gaussian distributions on log returns of stocks

and hence developing methods to estimate the joint distribution of stock returns have always

attracted lot of interest [4]. In this paper we use Copula functions to achieve the important

goal of estimating the joint probability distribution of the portfolio. The Sklar’s theorem [5]

expresses a multivariate cumulative distribution function in terms of the univariate cumulative

distribution functions and a Copula function. So we need to overcome two challenges: firstly,

to identify the probability distributions of the individual stocks and secondly devise a compu-

tationally efficient method of combining these marginal distributions with an appropriate
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Copula to obtain the joint distribution of the portfolio. The Kolmogorov-Smirnov test [6] sug-

gested the Student’s t-distribution as a good choice for the probability distribution functions of

the individual stocks. The second step was handled using the R-Vine Copula structure which

was originally introduced in [7–9] by extending the concept of Markov Trees. Two special sub-

classes of R-vine copulas namely the D-vine and C-vine copulas were studied in [10] and since

then have become immensely popular in the analysis of financial data owing to their simple

structure [11–14]. Working with a general R-vine structure is computationally challenging

especially in higher dimensions. The sequential algorithm due to Dißmann et.al. [15] is a

breakthrough in this direction and enables an efficient construction of general R-vine copula

structures in higher dimensions. In [15], joint distribution functions of 16 variables is com-

puted and in this paper we go as high as 50 variables via this algorithm. It is relevant to point

out that the construction of the R-vine structure in [15] made use of Kendall’s Tau–a non

parametric measure which captures an ordinal relationship between two random variables

and also indicates a non linear relationship among them. In [16–18], this approach has been

applied successfully to a number of financial markets. Some very recent works [19–23] reveal

the growing popularity of mutual information between two random variables as a quantifier of

a linear or non-linear relationship. Mutual information (MI) between two random variables is

defined to be the relative entropy between the joint distribution and the product of the mar-

ginal distributions. A direct consequence of this definition is that MI of independent random

variables is zero. MI captures the reduction in the uncertainty of one random variable given

the knowledge about another random variable. In particular, Sharma and Habib [23], in the

context of high frequency data, have demonstrated that mutual information based methods

capture the non-linear relationship between log returns better when compared to Spearman

correlation based methods. This observation motivates a key part of the present paper which

deals with the computation of the joint density function of log returns of stocks using a mutual

information based R-vine copula structure.

Our analysis begins with the removal of Autocorrelation and Hetroscedasticity using the

GARCH models on the time series data of log returns. A number of popular GARCH models

were fitted and the best of the lot turned out to be ARMA(1,1)-EGARCH(1,1). Next, the

R-Vine copula structure was constructed using the error (residual) terms of the ARMA(1,1)-

EGARCH(1,1) model. This approach is similar to the one taken in [18] in which data of daily

returns of 96 stocks listed on S&P was analysed.

The above R-Vine structure is then used to estimate the Value at Risk (VaR) of portfolios

through Monte-Carlo simulation. Recently, multivariate copula based models for the estima-

tion of VaR have been proposed in [24] and a Kendall’s Tau based vine copula model for esti-

mating Var is presented in [18]. For earlier models focused towards the VaR estimation, the

reader is referred to [25, 26]. However, none of these models have employed mutual

information.

We have considered 5% and 10% VaRs for portfolios consisting 5, 10, 25 and 50 stocks in

our analysis.

The remaining part of the paper is divided into 4 sections. In section 2, we give a brief descrip-

tion of the data used in our analysis. In section 3, we give an overview of the methods and meth-

odology used. In section 4, we compare the effectiveness of VaR estimation based on Kendall’s

Tau method and MI method. In the last section, we summarize our observations and findings.

2) Data description

The high frequency data analysed in the present paper is an instant-by-instant record of the

prices and volume of all the stocks listed on CNX100 index of the National Stock Exchange
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(NSE) for each working day of the year 2014. The working hours of the NSE are from 9:00AM

till 4:00PM. Further, we divide this duration into time intervals of length 30 seconds and call

each such interval as a tick. The interval length of 30 seconds ensures sufficiently many data

points for the fitted models to have small bias. We chose to ignore the first and the last half an

hour (that is, 9–9:30AM and 3:30-4PM) data due to some ambiguity and incompleteness in

the recorded data. Thus the total number of ticks considered for each working day will be 720.

In general, corresponding to any tick t, that is, in the tth 30-second interval there will be several

transactions for various stocks. Let vt
i;k be the volume of the stock k traded at an instant i

(within the duration corresponding to the tick t) and St
i;k be the price of stock k at the instant i.

We now define the volume weighted average price SVWAP (t,k) for the tick t by

SVWAP ðt; kÞ ¼

X

i
vt
i;kS

t
i;k

X

i
vt
i;k

: ð1Þ

Here the summation runs over all possible instances within the 30-second duration corre-

sponding to the tick t. The log return of each stock k at tick t is given by

Rtþ1;k ¼ ln SVWAP ðt þ 1; kÞ
� �

� ln SVWAP ðt; kÞ
� �

ð2Þ

In our data we encountered 30-second intervals in which zero trade was recorded. This would

make the formula (1) indeterminate for those ticks. To overcome this issue, the recent most

value of SVWAP for each stock k was considered for these ticks.

We include only 50 stocks in our analysis that had either no gap interval or very few gap

intervals. In other words, these stocks are highly traded in the market.

Also, 2014 was the year when General Elections were held in India and a change in govern-

ment was seen after 10 years. One may expect high volatility during the election times. We

wanted to study how does our model gets impacted during the election or pre-election or the

post-election periods. Thus our discrete time series data was studied under three periods: (a)

pre-election period: Jan-Feb 2014 (b) election period: Mar-May 2014, (c) post-election period

Jun-Dec 2014.

3) Methods and methodology

3.1 Pair copula construction

Before we explain the construction of the R-vine structure, it is important to have a clear

understanding of a Copula. So we first recall some preliminaries. For any natural number n,

let In denote the unit cube in the extended n–dimensional space Rn. The elements of Rn are n–

tuples of extended real numbers ai: a = (a1, . . .,an). For any a; b 2 Rn, we shall write a� b
whenever ai� bi for all i. Now for any a� b, the Cartesian product of closed intervals, B = [a1,

b1]×. . .× [an,bn], is called an n–box and will be denoted by [a,b]. The set of vertices, V, of B is

the collection of all n–tuples (c1,. . .,cn) for which each ci = ai or bi. Let H be a real valued func-

tion with domain of the form S1 ×. . .×Sn, where each Si is a subset of extended real numbers R.

The H–volume of B is defined to be the sum

VH ðBÞ ¼
X

c2V
sgnðcÞHðcÞ ð3Þ

Here sgn(c) takes on +1 if ci = ai even number of times; and it takes on -1 otherwise. Also, note

that the above summation is finite since the total number of vertices is finite. The reader is

referred to [27] for other equivalent forms of VH (B).

An n–dimensional Copula is a function C:In! I satisfying the following axioms:
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(i) Chui = 0 if there exists an i such that ui = 0.

(ii) Chui = uk if ui = 1 for all i 6¼ k.

(iii) VC ([a,b])� 0 for any n–box [a,b] with a,b 2 In.

A real valued function F defined on Rn is called an n–dimensional distribution function if

(i) VF (B)� 0 for all n–boxes B with vertices inRn; and

(ii) Fhui = 0 whenever ui = −1 for some i.

(iii) F (u) = 1 whenever ui =1 for all i.

It has been established in [27] that the n–dimensional distribution function F has one

dimensional marginal distribution functions F1, F2, . . .,Fn.

The famous Sklar’s theorem guarantees that there exists an n–dimensional Copula function

C such that F(x1, x2, . . .,xn) = C(F1(x1), F2(x2), . . .,Fn(xn)). However, we are more interested in

the converse which states that for a given n–dimensional Copula function C and univariate

distribution functions F1, F2, . . .,Fn, the formula F(x1, x2, . . .,xn) = C(F1(x1), F2(x2), . . .,Fn(xn))

defines an n–dimensional distribution function with marginals are F1, F2, . . .,Fn. Equivalently

the joint density function f(x1,x2,. . .,xn) = f1(x1)f2(x2). . .fn(xn)c(F1(x1), F2(x2), . . .,Fn(xn)) where

c is the nth order partial derivative of C. Thus, if we wish to study the joint behaviour of n ran-

dom variables, we can first fit the marginal distribution functions of each random variable sep-

arately and then combine them through an appropriate multivariate copula.

The process of constructing multivariate copula that we adopt is the Pair-wise Copula Con-

struction (PCC) which relies on Vine copulas (or pair copulas) introduced in [7]. At the heart

of this process lies the fact that a joint copula function is broken down as product of bivariate

copula functions that can be estimated independently. Thus, bivariate copulas are building

blocks for the PCC method.

An R-vine on n variables as introduced by Bedford and Cooke [9] is a finite sequence of

trees Tj = (Vj, Ej), j = 1,2,. . .,n−1, with vertices Vj and edges Ej satisfying the conditions:

(i) The tree T1 has nodes N1 = {1,2,. . .,n}.

(ii) Trees Tj are connected with nodes Nj = Ej-1 and that the cardinality of Nj is n–j + 1 for

each j = 1,2,. . .,n.

(iii) Let a = {a1,a2} and b = {b1, b2} be two elements of Nj (2�j�n-1), then {a,b} 2 Ej provided

that the cardinality of a \ b is exactly one.

The last axiom says that we will join two nodes by an edge only when these nodes inter-

preted as edges of the preceeding tree have exactly one node of the preceeding tree in

common.

Bedford and Cooke [9] follow a convenient way of enumerating the nodes of trees in an R-

vine structure in terms of conditioned and conditioning sets. For further details and illustrative

examples the reader may refer to [9, 15].

We make use of the same enumeration strategy to write down the probability density func-

tion corresponding to the distribution realized by the R-vine copula structure for the portfolio

of stocks.

In order to construct an R-vine structure of stocks, we start with a tree T1 with n nodes (N1)

represented by each stock and E1 edges. In our analysis, we considered T1 as minimum span-

ning tree network of stocks based on both mutual information metric (Eq 10) and Kendall’s

Tau based metric (Eq 11). Edge in E1 is represented by a bivariate copula C{s(e),t(e)} where s(e),
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and t(e), are nodes connected by the edge e. Then we move on to next tree, T2 with the nodes

set N2 same as the edge set E1. Each node in T2 is thus represented by C{s(e),t(e)} and edge in E2

is represented by conditional copula C{s(e),t(e)/D(e)} where D(e) is the common node. Similarly

we keep on building the trees T3, T4, . . .,Tn.

Once we have constructed a R-vine structure on n stocks with random variables X1,X2,. . .,

Xn, their joint density function with marginal density functions f1,f2,. . .,fn is given by

f ðx1; x2; . . . ; xnÞ ¼
Yn

j¼1
fjðxjÞ

Yn� 1

i¼1

Y

e2Ei
csðeÞ;tðeÞ=DðeÞðFsðeÞ=DðeÞðxsðeÞÞ; FtðeÞ=DðeÞ

ðxtðeÞÞÞ ð4Þ

where Fs(e)/D(e) is distribution function of conditional random variable Xs(e)/D(e) and Cs(e),t(e)/D(e)

is second order partial derivative of copula connecting Xs(e)/D(e) and Xt(e)/D(e). For example con-

sider the joint density function of three random variables f can be decomposed as f1f2/1f3/12

where f2/. denotes conditional density functions. We can further decompose conditional density

function f2/1 as

f2=1 ¼
f12

f1
¼

f1f2c12

f1
¼ f2c12; ð5Þ

where f12 is joint density of variable 1 and 2, c12 is the 2nd order derivative of copula C12 connect-

ing variable 1 and 2. Similarly, we have

f3=12 ¼
f123

f12

¼
f23=1f1
f2=1f1

¼
f23=1

f2=1

¼
f2=1f3=1c23=1

f2=1

¼ f3=1c23=1 ð6Þ

Thus, using Eqs (5) and (6) we have joint density function of 3 variables can be decomposed as

f1 f2c12f3/1c23/1 = f1 f2f3c12c13c23/1. The analogous R-vine copula is given in Fig 1.

For fast execution of statistical methods such as the Maximum likelihood estimate, Morales

and Napoles et al. [28] proposed an efficient scheme of storing an R-vine on n–variables as an

n × n lower triangular matrix M = (mij). The matrix M has interesting properties such as each

column has distinct elements; and deleting the first row and first column of M yields a (n –1)–

dimensional R-vine matrix.

The decomposition in Eq (4) now can be expressed in terms of the R-vine matrix:

f ðx1; x2; . . . ; xnÞ ¼
Yn

j¼1
fjðxjÞ

Y1

k¼n� 1

Ykþ1

i¼n
Cmkk;mikjmiþ1;k ;...;mn;k

ðFmkkjmiþ1 ;k;...;mn;k
; Fmikjmiþ1;k ;...;mn;k

Þ: ð7Þ

Fig 1. R-vine copula with 3 stocks. T1, T2, T3 corresponds to trees 1, 2 and 3 respectively.

https://doi.org/10.1371/journal.pone.0253307.g001
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Note that the above equation is in terms of a bivariate copula function. An efficient algorithm

for computing the conditional distributions appearing as arguments of this copula function

has been proposed in [15].

3.2 Mutual information and Kendall’s Tau based metrics

Mutual Information (MI) between two random variables captures mutual dependence

between them and is zero if and only if they are independent. MI between two random vari-

ables is defined to be the difference between the sum of the respective entropies of random var-

iables and their joint entropy.

The mutual information of discrete random variables X and Y is defined as

IðX;YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ ¼
X

i

X

j
fX;Yðxi;yiÞlog

fX;Yðxi; yiÞ

fXðxiÞfYðyjÞ

 !

ð8Þ

A generalization to the continuous case is

IðX;YÞ ¼
Z Z

fX;Yðx; yÞlog
fX;Yðx; yÞ
fXðxÞfYðyÞ

� �

dxdy ð9Þ

Based on mutual information, the normalized distance [23] between two random variables X
and Y is defined as

dðX;YÞ ¼ 1 �
IðX;YÞ
HðX;YÞ

ð10Þ

where, I is the mutual information and H is the joint entropy. Based on this metric, we can

construct minimum spanning tree (MST) network between n stocks. There are two well-

known methods to construct Minimal Spanning Tree: Kruskal’s algorithm and Prim’s algo-

rithm. We used Prim’s algorithm for construction of the stock networks since the stocks net-

works are dense networks and in such cases Prim’s algorithm works well.

We also considered building stock networks based on Kendall’s Tau quantifier. The metric

used is

dðX;YÞ ¼ ð1 � jtX;Y jÞ; ð11Þ

where τX,Y is Kendall’s Tau coefficient between X and Y. Sharma and Habib [23] studied MI

based stock networks and showed the existence nonlinearity in the stock returns data at high

frequency level.

3.3 Fitting univariate models to log returns of stocks

A stochastic process R1, R2, . . .,Rt is a white noise process with mean μ and variance σ2, if E(Rt)

= μ for all t, Var(Rt) = σ2 for all t, and Cov(Rt,Rs) = 0 for all t 6¼ s. In order to check if the log

returns of stocks exhibit the properties of white noise, we carried out Ljung-Box test [29] to

check if the log returns of stocks exhibit any autocorrelation or heteroscedasticity at 1% level

of significance

H0 : no autocorrelation=heteroscedasticity

HA : autocorrelation=heteroscedasticity present

We carried out hypothesis testing for each day and each stock on log returns and squares of

log returns. Fig 2A corresponds to log returns and Fig 2B corresponds squares of log returns.
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Presence of autocorrelation and heteroscedasticity can be seen at a lag of 1. Thus, GARCH

methods are applied to our data aiming to remove the autocorrelation and heteroscedasticity

in the time series. We tested for GARCH(1,1), ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-

EGARCH(1,1) models with the error estimated by student’s t-distribution. A process Rt

is called an ARCH(p) process if Rt = μ + σtεt where εt is a white noise and st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oþ
Xp

i¼1
aiR

2

t� i

q

is the conditional standard deviation of Rt given the past values Rt-1,. . .,Rt-

p. It is to be noted that an ARCH(p) process has constant mean and constant unconditional

variance but its conditional variance is not constant. The GARCH(p,q) model, on the other

hand, tries to improve some of the deficiencies of the ARCH(p) model by expressing σt in

terms of the past values of standard deviation σt-1,. . .,σt-q in addition to the past values Rt-1,. . .,

Rt-p. Specifically, we have st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oþ

Xp

i¼1
aiR

2

t� i þ
Xq

j¼1
bis

2

t� j

q
. For further details, the

reader can refer to [30, 31].

We also tried fitting Normal Inverse Gaussian (NIG) distribution as well on the error

terms. We used Kolmogorov Smirnov test to check the goodness of fit of univariate distribu-

tion on errors. Both NIG and student’s t distribution turns out to be better choices over

Fig 2. Ljung-Box test on log returns and squares of log returns. On horizontal axis we have listed 50 stocks and on vertical axis we have

working days of year 2014. Black and white colour represents that the null hypothesis (H0: data is independent,HA: data exhibit serial correlation)

is rejected or accepted respectively. (a) Corresponds to test applied to log returns (b) Corresponds to test applied to squares of log returns.

https://doi.org/10.1371/journal.pone.0253307.g002
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normal distribution. Due to computational simplicity, we used student’s t distribution in our

model. In Fig 3, we summarize the p-values corresponding to the test applied to the error

terms obtained after fitting ARMA(1,1)-EGARCH(1,1) model for each of 50 stocks computed

daily.

In all the equations given below, Rt,k is as defined in Eq (2). The GARCH(1,1) model [31]

for the kth stock is given by

Rt;k ¼ mk þ st:kεt;k ð12Þ

s2

t;k ¼ ok þ bks
2

t� 1;k þ aks
2

t� 1;kε
2

t� 1;k ð13Þ

where, we fit a student’s t-distribution to the noise �t,k.

Fig 3. Kolmogorov Smirnov test for testing t-distribution for error terms from ARMA(1,1)-EGARCH(1,1). On horizontal axis we have listed

50 stocks and on vertical axis we have working days of year 2014. Black and white colour represents that the null hypothesis (H0: data follows t—
distribution) is rejected or accepted respectively. (a) Corresponds to test at 5% level of significance (b) Corresponds to test at 1% level of

significance.

https://doi.org/10.1371/journal.pone.0253307.g003
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The ARMA(1,1)-GARCH(1,1) model [31] for the kth stock is given by

Rt;k ¼ mk þ ar1ðRt� 1;k � mkÞ þma1st� 1:kεt� 1;k þ st:kεt;k ð14Þ

s2

t;k ¼ ok þ bks
2

t� 1;k þ aks
2

t� 1;kε
2

t� 1;k ð15Þ

where, we fit a student’s t-distribution to the noise �t,k.

The ARMA(1,1)-EGARCH(1,1) model [31] for the kth stock is given by

Rt;k ¼ mk þ ar1ðRt� 1;k � mkÞ þma1st� 1:kεt� 1;k þ st:kεt;k ð16Þ

lnðs2

t;kÞok þ gkjεt� 1;kj � gk½Eðjεt� 1;kjÞ� þ akεt� 1;k þ bklnðs
2

t� 1
; kÞ ð17Þ

where we fit a student’s t-distribution to the noise �t,k.

In all three models, we tested if the noise term �t,k exhibit properties of a white noise by

again running Ljung Box Tests at 1% level of significance. Figs 4 and 5 corresponds to the

results obtained from running Ljung Box Test on �t,k and �t,k
2 respectively. Clearly ARMA

(1,1)-EGARCH(1,1) proves to be better fitted model in comparison to other models. We use

Fig 4. Ljung-Box test on errors. On horizontal axis we have listed 50 stocks and on vertical axis we have working days of year 2014. Black and white

colour represents that the null hypothesis (H0: data is independent,HA: data exhibit serial correlation) is rejected or accepted respectively. (a), (b) and

(c) corresponds to test applied to the error terms(�t,k) in GARCH(1,1), ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-EGARCH(1,1) models

respectively.

https://doi.org/10.1371/journal.pone.0253307.g004
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AIC values to compare the three methods. 94.84% of the times ARMA(1,1)-EGARCH(1,1)

was seen to have the lowest AIC values and it again emerged to be a better fit in comparison to

the other two methods. We used adjusted Pearson chi-squared goodness of fit test [32] to

check the effectiveness of the univariate model for each stock on each working day at 5% and

1% level of significance. Fig 6 gives whether the null hypothesis, H0: ARMA(1,1)−EGARCH
(1,1) is a good fit, was rejected (black colour) or accepted (white colour) for each stock on for

each working day. 32 stocks out of 50 were seen to pass the test for more than 90% of times, i.e.

null hypothesis was not rejected at 1% level of significance more than 90% of times. Also all

the stocks showed an efficiency of a good fit for more than 72% of times. Thus, we conclude

that ARMA(1,1)-EGARCH(1,1) is a good fit.

3.4 Value at risk (VaR) prediction

Value at risk (VaR) of a portfolio is measure of risk associated with it. For example if a portfo-

lio has one-tick 5% VaR of x amount, then it means that there is 5% chance that the portfolio

looses its value by an amount x over the time duration of one tick in the absence of trading. It

is well known that α% VaR of the portfolio is given by the α–percentile of log returns of the

portfolio [25]. Once the joint distribution function of n stocks is known, we can use a Monte-

Carlo simulation to estimate the VaR of the underlying portfolio. In this paper we have drawn

inferences by calculating the VaR for equally weighted portfolios of 5, 10, 25, and 50 stocks.

Fig 5. Ljung-Box test on squares of errors. On horizontal axis we have listed 50 stocks and on vertical axis we have working days of year 2014.

Black and white colour represents that the null hypothesis (H0: data is independent,HA: data exhibit serial correlation) is rejected or accepted

respectively. (a), (b) and (c) corresponds to test applied to the squares of error terms(�t,k
2) in GARCH(1,1), ARMA(1,1)-GARCH(1,1) and ARMA

(1,1)-EGARCH(1,1) models respectively.

https://doi.org/10.1371/journal.pone.0253307.g005
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Consider a portfolio consisting of n stocks and random variables SVWAP(t,k), Rt+1,k are as

defined in Eqs (1) and (2). Let wk be the weight associated with kth stock in the portfolio and

St,P be the value of the portfolio corresponding to the tick t, then, the log return of the portfolio

Rt+1,P in the time interval [t,t + 1] is given by

Rtþ1;P ¼ lnð
Xn

k¼1
wke

Rtþ1;k
Þ ð18Þ

Using identities ex ~(1 + x), and ln (1 + x) ~x for small x, in above equation, we get

Rtþ1;P ffi
Xn

i¼1
wiRtþ1;i ð19Þ

We first use ARMA(1,1)+EGARCH(1,1) to model univariate log returns of each stock and

then use R-Vine copula construction on the error terms �t,k to estimate joint copula on the

error terms. We fit the model on the first 4 hours of each day and use it to predict Var for next

2 hours. We summarize the algorithm as below:

Fig 6. Goodness of fit test for ARMA(1,1)-EGARCH(1,1) model. On horizontal axis we have listed 50 stocks and on vertical axis we have working

days of year 2014. Black and white colour represents that the null hypothesis (H0: ARMA(1,1)−EGARCH(1,1) is a good fit) is rejected or accepted

respectively. (a) Corresponds to test at 5% level of significance (b) Corresponds to test at 1% level of significance.

https://doi.org/10.1371/journal.pone.0253307.g006
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1. Consider log returns of each stock for the first 4 hours i.e. 9:30AM to 1:30PM (this gives

480 terms in each time series) on each day.

2. Fit an ARMA(1,1)-EGARCH(1,1) model to log returns of each stock obtained in step 1,

with univariate Student’s t-distribution assumed on the error term 2t,k of each stock k. So if

there were n–stocks in the portfolio then the data generated at this step can be written con-

veniently as (2t,k)480×n.

3. Fit an R-vine copula structure to the random variables �t,1,�t,2,. . .,�t,n (sampled at 480 ticks in

step 2) to obtain the joint distribution of the error terms. In the R-vine algorithm we choose

the first tree T1 as the minimum spanning tree based on Kendall’s Tau metric (Eq 11) and

also MI based metric (Eq 10). In this paper we fitted the R-vine structure on n = 50 stocks.

4. Using the joint distribution obtained in step 3, we then employ Monte-Carlo simulation to

generate a large number of values (say N = 5000) of (�481,1,�481,2,. . .,�481,n) simultaneously

and substitute these in Eqs 16 and 17 to estimate the corresponding large number of values

of (R481,1,R481,2,. . .,R481,n). For each of the N tuples (R481,1,R481,2,. . .,R481,n) obtained, compute

the portfolio log return R481,P using Eq 19. In our analysis, we have worked with equally

weighted portfolios with 5,10,25,50 stocks respectively.

5. The α% VaR for 481st instant, VaR481,P is now calculated by finding the α percentile of the

N simulated values of R481,P. Here P is a portfolio whose size is chosen to be of 5, 10, 25, and

50 stocks respectively. In this paper we have considered α = 5%, 10% respectively.

6. We then compare the actual R481,P with the estimated VaR481,P.

7. Once the actual R481,k is known, then we can use Eq (16) to calculate actual �481,P as

actual ε481;k ¼
R481;k � ðmk þ ar1ðR480;k � mkÞ þma1s480:kε480;kÞ

s481;k
:

Next, we use Eq (17) to calculate σ482,k. We then repeat steps 4, 5 and 6 for predicting

(R482,1,R482,2,. . .,R482,n) and compare the actual R482,P with the estimated VaR482,P. This way

we calculate estimated VaRi,p where i = 483,. . .,719, and compare these values with the

respective actual Ri,p. Note that the model was fitted only once a day.

8. We repeat step 1 to step 7 for all working days in year 2014.

4) Discussion

Data for each day was divided into 2 subsets: training data from 9:30AM to 1:30PM and testing

data 1:31PM to 3:30PM. We fit both Kendall Tau’s based and MI based vine copula structure

on the training data as discussed in the previous section. We then estimated VaRs correspond-

ing to equally weighted portfolios for each time tick of the testing data. In our analysis we have

considered portfolios consisting of all 50 stocks, randomly picked 25 or 10 or 5 stocks. Also,

we have considered 5% and 10% VaRs in all the cases. To check the effectiveness of our model

we carried out unconditional (UC) and conditional (CC) coverage test formulated by Christof-

fersen [33].

Ho for UC Test: Correct exceedance

Ho for CC Test: Correct exceedance and Independence:
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There are 32, 39 and 113 days in the pre-election, election and post-election period for which

our proposed model was a good fit. We carried out the hypothesis testing for each day and cal-

culated percentage of times, the null hypothesis was not rejected. We refer to this calculated

percentage of times as the success rate of the model. Tables 1–3 summarizes the results

obtained in pre-election, election and post-election period.

It was observed that the VaR prediction were more accurate in case of portfolios consisting

of small number of stocks like 5 or 10 in comparison to portfolios consisting of large number

of stocks like 25 or 50. Also, the success rate of MI based model was seen to be much better

than the Kendall’s Tau based model, 41 out of 96 times (42.71%) in comparison to 6 out of 96

(6.25%) times when success rate of Kendall’s Tau based model was observed to be better than

that of MI based model. 49 out of 96 times (51.04%), the success rates based on both the meth-

ods were seen to be at par. One can also observe that even during the election times which is

full of uncertainties, the success rate of the model was quite high.

5) Conclusion

This paper demonstrates the power of incorporating mutual information based metrics into

the construction of R-vine copula structures in learning the joint distribution of a large

Table 1. Unconditional (UC) and conditional (CC) coverage tests at 1% and 5% level of significance: Pre-election period.

Pre-election Period 5 stocks 10%

VaR

10 stocks 10%

VaR

25 stocks 10%

VaR

50 stocks 10%

VaR

5 stocks 5%

VaR

10 stocks 5%

VaR

25 stocks 5%

VaR

50 stocks 5%

VaR

UCpvalue > 0.01 (Kendall’s Tau

method)

87.50% 84.38% 78.13% 87.50% 87.50% 90.63% 84.38% 84.38%

UCpvalue > 0.01 (MI method) 87.50% 87.50% 81.25% 87.50% 87.50% 90.63% 84.38% 87.50%

UCpvalue > 0.05 (Kendall’s Tau

method)

75.00% 84.38% 71.88% 75.00% 81.25% 84.38% 75.00% 78.13%

UCpvalue > 0.05 (MI method) 75.00% 84.38% 71.88% 75.00% 81.25% 84.38% 78.13% 78.13%

CCpvalue > 0.01 (Kendall’s Tau

method)

90.63% 78.13% 62.50% 43.75% 87.50% 81.25% 78.13% 68.75%

CCpvalue > 0.01 (MI method) 90.63% 78.13% 65.63% 43.75% 87.50% 81.25% 78.13% 71.88%

CCpvalue > 0.05 (Kendall’s Tau

method)

71.88% 71.88% 37.50% 28.13% 84.38% 78.13% 65.63% 62.50%

CCpvalue > 0.05 (MI method) 71.88% 71.88% 43.75% 21.88% 84.38% 78.13% 65.63% 59.38%

https://doi.org/10.1371/journal.pone.0253307.t001

Table 2. Unconditional (UC) and conditional (CC) coverage tests at 1% and 5% level of significance: Election period.

Election Period 5 stocks 10%

VaR

10 stocks 10%

VaR

25 stocks 10%

VaR

50 stocks 10%

VaR

5 stocks 5%

VaR

10 stocks 5%

VaR

25 stocks 5%

VaR

50 stocks 5%

VaR

UCpvalue > 0.01 (Kendall’s Tau

method)

92.31% 89.74% 89.74% 87.18% 92.31% 92.31% 87.18% 87.18%

UCpvalue > 0.01 (MI method) 92.31% 87.18% 89.74% 87.18% 92.31% 92.31% 92.31% 89.74%

UCpvalue > 0.05 (Kendall’s Tau

method)

71.79% 82.05% 82.05% 79.49% 87.18% 89.74% 87.18% 76.92%

UCpvalue > 0.05 (MI method) 79.49% 82.05% 82.05% 79.49% 87.18% 92.31% 87.18% 79.49%

CCpvalue > 0.01 (Kendall’s Tau

method)

89.74% 82.05% 82.05% 56.41% 92.31% 87.18% 87.18% 69.23%

CCpvalue > 0.01 (MI method) 89.74% 84.62% 82.05% 58.97% 92.31% 89.74% 89.74% 74.36%

CCpvalue > 0.05 (Kendall’s Tau

method)

64.10% 69.23% 56.41% 38.46% 82.05% 84.62% 69.23% 48.72%

CCpvalue > 0.05 (MI method) 71.79% 71.79% 56.41% 35.90% 84.62% 87.18% 74.36% 51.28%

https://doi.org/10.1371/journal.pone.0253307.t002
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number of stocks from a high frequency market data. The data considered in the present anal-

ysis has an instant-by-instant record of transactions of 89 stocks listed on the National Stock

Exchange (NSE) of India in the year 2014. In order to give a time series interpretation to our

data, we divide each working day into 720 “ticks” where each tick represents a 30 second dura-

tion. Out of the 89 stocks, we have considered only the top 50 traded stocks. On the basis of

the Ljung-Box test it is concluded that ARMA(1,1)-EGARCH(1,1) captured the autocorrela-

tion and heteroscedasticity of the time series of log returns of the above portfolio of 50 stocks

significantly better than the famous GARCH(1,1) and ARMA(1,1)-GARCH(1,1) methods. In

fact on 94.84% of the occasions the AIC values obtained after fitting ARMA(1,1)-EGARCH

(1,1) were found to be the lowest in comparison to the other methods (In the R software pack-

age, a lower AIC indicates that the model is superior). The joint distribution of the respective

error terms in the ARMA(1,1)-EGARCH(1,1) model applied to each stock is then computed

by learning R-Vine copula structures in 2 ways: first, by starting with the minimal spanning

tree computed on the basis of the mutual information metric; and second, by starting with the

minimal spanning tree computed on the basis of the Kendall’s Tau based metric. Next, the

VaR of the underlying 50 stock portfolio is computed through Monte-Carlo simulations in

both the cases. The Christoffersen’s UC and CC tests show that VaR predictions in the mutual

information case out performs the VaR predictions in the Kendall’s Tau case. The success rate

obtained from the MI based method is seen to be higher than Kendall’s Tau based method on

42.71% occasions. On 51.04% of the occasions the success rates from both the methods were at

par. The predictions were quite good even during the election period when there is lot of antic-

ipation amongst the buyers.

We finally conclude that MI based R-Vine Copula model is able to capture the joint distri-

bution well and thus leads to better VaR predictions in a high frequency scenario.
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