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ABSTRACT: This manuscript presents a new multiscale framework for the analysis
of failure of thin heterogeneous structures. The new framework is based on the
asymptotic homogenization method with multiple spatial scales, which provides a
rigorous mathematical basis for bridging the microscopic scales associated with the
periodic microstructure and thickness, and the macroscopic scale associated with
the in-plane dimensions of the macrostructure. The proposed approach generalizes
the Caillerie–Kohn–Vogelius elastostatic heterogeneous plate theory for failure
analysis when subjected to static and dynamic loads. Inelastic fields are represented
using the eigendeformation concept. A computationally efficient n-partition
computational homogenization model is developed for simulation of large scale
structural systems without significantly compromising on the solution accuracy.
The proposed model is verified against direct 3D finite element simulations and
experimental observations under static and dynamic loads.

KEY WORDS: multiscale plate model, failure analysis, composite impact, homo-
genization, asymptotic analysis.

INTRODUCTION

THIN STRUCTURAL SYSTEMS composed of heterogeneous materials have

been increasingly used as structural components particularly for impact,

blast, and crush applications, owing largely to their favorable impact

resistance, energy absorption capability, specific strength, and stiffness

performance. Despite widespread use of such components, efficient and

accurate modeling and simulations capabilities for the prediction of failure

are not yet available. There is a need for modeling and simulation tools

capable of accurately representing the complex failure processes including
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matrix and fiber microcracking, interface debonding, delamination, fiber

microbuckling, kink banding, and their interactions at the scale of the

heterogeneities. From modeling point of view, accurate representation of

these failure mechanisms in a computationally efficient manner remains to

be a challenge. The clear choice for achieving this aim is multiscale structural

modeling without resorting to direct 3D finite element modeling by full

resolution of the microscopic fields. While direct finite element method

(FEM) modeling has optimal accuracy, it typically exhausts available

computational resources in simulation of large-scale systems.

Mathematical homogenization theory (MHT) provides a rigorous

mathematical framework for analysis of heterogeneous materials. Since

the formalization of its mathematical foundations in the seminal works of

Benssousan et al. (1978), Sanchez-Palencia (1980), Babuska (1975), and

Suquet (1987), MHT has been employed to characterize the response of

heterogeneous solids undergoing inelastic deformations (Terada and

Kikuchi, 1995; Feyel and Chaboche, 2000). This theory has also been

applied to thin structures for analysis of linear elastic, nonlinear elastic as

well as dynamic systems. Homogenization of thin structural systems consists

of asymptotic analysis in the presence of a thickness scale in addition to the

scale of the periodic heterogeneity. This approach have been formalized

by Caillerie (1984), and Kohn and Vogelius (1984) for plates, by

Kolpakov (1991) for beams, by Trabucho and Viano (1996) for rods and

by Cioranescu and Saint Jean Paulin (1999) for reticulated structures.

Despite reasonable accuracy and improved efficiency compared to direct

finite element analysis using full resolution of the microstructure throughout

the component scale, main difficulty with MHT-based structural models

remains the high cost of solving 3D microscopic boundary value problems

on the representative volume element (RVE) domain to evaluate the

macroscopic constitutive response. Transformation field analysis (TFA)

proposed by Dvorak and Benveniste (1992) alleviates the requirement of

evaluation of the microscale boundary value problem. In this approach,

the equilibrium in the microscale is satisfied by evaluating fundamental

solutions of the RVE in the elastic state, and representing the inelastic fields

as a function of the fundamental solutions, macroscopic deformations, and

a small subset of coordinate tensors. TFA-based models have been

employed to represent phase damage mechanisms (Baucom and Zikry,

2003; Bahei-El-Din et al., 2004) and viscoplasticity (Michel and Suquet,

2004). More recently, Oskay and Fish (2007, 2008) proposed the

eigendeformation-based homogenization method (EHM). EHM generalizes

TFA to account for the interface debonding within the RVE, and it

incorporates a model selection capability to adaptively regulate the model

order to match the desired accuracy and efficiency requirements.
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While TFA-based models have been successfully applied to multiscale solid

systems, it has not been applied to model thin multiscale structures.

In this manuscript, we present a new computational homogenizationmodel

for brittle failure of thin heterogeneous plates. The present approach is a

generalization of the elastic theory proposed in Caillerie (1984) andKohn and

Vogelius (1984) for thin heterogeneous plates to account for the presence of

inelastic and failure processes when subjected to static and dynamic loads.

The presence of damage induced inelastic processes is represented using the

eigendeformation concept. Transient dynamic effects are considered using a

two-scale decomposition of time, in which, the out-of-plane deformations are

taken to oscillate in much smaller time scales compared to the in-plane

deformations. Asymptotic analysis of the heterogeneous plate is conducted in

the presence of eigendeformation fields and inertial effects, and an inelastic

plate theory is obtained for failure analysis of heterogeneous structures.

This manuscript is organized as follows: the fundamental mathematical

setting of the multiscale problem and the original governing equations of the

thin heterogeneous system is introduced in ‘Problem Setting and Governing

Equations’ section. In ‘Generalized Mathematical Homogenization of Thin

Plates with Eigenstrains’ section, the generalization of the mathematical

homogenization theory for thin heterogeneous solids to dynamic-inelastic

regime using the eigenstrain formulation is presented. The decomposition of

the original boundary value problem in a series of microscale and macroscale

problems is introduced. A computationally efficient reduced-order homo-

genization model for thin plates is described in ‘Reduced-Order Model for

Thin Plates’ section. Computational aspects and the implementation details

of the proposed methodology are discussed in ‘Computational Aspects’

section. We demonstrate the capabilities of the present modeling approach in

‘Numerical Verification and Validation’ section. Static three-point bending

beam, mesh sensitivity analysis on notched specimens subjected to uniaxial

tension, and a dynamic impact of a rigid projectile on woven composite plate

simulations are conducted for verification of the proposedmodel. A summary

and a brief discussion of future work conclude the manuscript.

PROBLEM SETTING AND GOVERNING EQUATIONS

Consider a thin heterogeneous plate, B 2 R3, formed by the repetition of a

RVE in two orthogonal axes, x1 and x2, perpendicular to the thickness

direction as shown in Figure 1. The RVE, Y, is composed of two or more

constituent materials. The domain of the heterogeneous body is defined as:

B :¼ x jx ¼ ðx, x3Þ, x ¼ fx1, x2g 2 �, c�� xð Þ � x3 � c
�
þ xð Þ

� �

ð1Þ
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in which, � 2 R2 is the reference surface parameterized by the Cartesian

coordinate vector, x; x3-axis denotes thickness direction; x ¼ fx1, x2, x3g;
c
�
� define the top (þ) and bottom (�) boundaries of the body. Superscript �

indicates the oscillatory characteristic of the corresponding field with a

wavelength in the order of the scaling parameter � defined below. The Greek

indices are reserved to denote 1 and 2, while lowercase Roman indices

denote 1, 2, and 3.

The heterogeneity in the microconstituents properties leads to an osci-

llatory response, characterized by the presence of three length scales:

macroscopic scale, x :¼ fx, x3g, where x ¼ fx1, x2g, associated with the

overall dimensions of the macrostructure and two microscopic scales

associated with the rescaled unit cell denoted by y ¼ fy1, y2g, where y ¼ x=�,

and z ¼ x3=�, associated with in-plane heterogeneity and thickness,

respectively. Two scaling constants, 05�, �� 1, respectively define the

ratio between the characteristic planar dimension and thickness of the RVE

with respect to the deformation wavelength at the macroscopic scale. The

oscillatory response is represented using a two-scale decomposition of the

coordinate vector:

f �� xð Þ ¼ f x, yðxÞð Þ ð2Þ

where, f denotes response fields, y :¼ fy, zg is the microscopic coordinate

vector. The spatial derivative of f �� is calculated by the chain rule:

f
��
, i ¼ �i� f, x� þ

1

�
f, y�

� �

þ �i3
1

�
f, z ð3Þ

in which, a comma followed by an index denotes derivative with respect to

the components of the position vector; a comma followed by a subscript

Representative volume 

element: Y

Periodic heterogeneous body: Macrostructure 

Γ0 (Boundary)

x2

x1

x3

Γ+ (Top surface)

Γ− (Bottom surface)z

y1

y2
Ω (Reference

plane)

Figure 1. Macro- and microscopic structures.
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variable x� or yi denotes a partial derivative with respect to the components

of the macroscopic and microscopic position vectors, respectively; and �ij
denotes the components of the Kronecker delta.

The RVE, Y, is defined in terms of the microscopic coordinates:

Y :¼ y j y ¼ ðy, zÞ, y ¼ fy1, y2g 2 Y, c� yð Þ � z � cþ yð Þ
� �

ð4Þ

in which Y 2 R2 is the reference surface in the RVE. The boundaries of the

RVE are defined as:

�Y
� ¼ y j y 2 Y, z ¼ c�ðyÞ

� �

ð5Þ

�Y
per ¼ y j y 2 @Y, c�ðyÞ5z5cþðyÞ

� �

ð6Þ

The boundary functions, c� are scaled with respect to the corresponding

functions in the original single scale coordinate system: c
�
� xð Þ ¼ �c� yð Þ.

Remark 1:

We consider the following restrictions on the response fields:

– All fields are assumed to be periodic in the microscopic planar

directions:

f x, y, zð Þ ¼ f x, yþ kŷ, zð Þ

where, ŷ denotes the periods of the microstructure; and k is a diagonal

matrix with integer components.

– The structure is taken to be thin throughout (i.e., c
�
þ � c�� ¼ Oð�Þ).

– The thickness and the planar dimensions of the RVE is of the same

order of magnitude (� ¼ Oð�Þ). By this restriction, one of the scaling

parameters is eliminated and the formulation includes a single scaling

parameter. Alternative formulations for tall reticulated structures

(i.e., �� �), and plates with moderate heterogeneities in the planar

directions (i.e., � � �) have been previously considered by other

researchers (Miller, 1994; Cioranescu and Donato, 1999) in the

context of elastic analysis.

Original Boundary Value Problem

Failure of the heterogeneous body is considered as the progressive

degradation of the material properties within the microconstituents

when subjected to mechanical loads of sufficient amplitude. The micro-

constituents are assumed to be perfectly bonded along the interfaces.
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The governing equations of the failure of the heterogeneous body are

expressed as (x 2 B, t 2 ½0, t0�):

�
�
ij, j x, tð Þ þ b

�
i x, tð Þ ¼ �� xð Þ €u�i x, tð Þ ð7Þ

�
�
ij x, tð Þ ¼ L

�

ijkl xð Þ ��kl x, tð Þ � ��kl x, tð Þ
� �

ð8Þ

�
�
ij x, tð Þ ¼ u

�

ði, jÞ x, tð Þ �
1

2

@u
�
i

@xj
þ
@u
�
j

@xi

 !

ð9Þ

�
�
ij x, tð Þ ¼ !� x, tð Þ��ij x, tð Þ ð10Þ

!� x, tð Þ ¼ !� �
�
ij, �

�
ij, s

�
� 	

ð11Þ

where, u
�
i denotes the components of the displacement vector; �

�
ij the

Cauchy stress; �
�
ij and �

�
ij the total strain and inelastic strain tensors,

respectively; !� 2 ½0, 1� is the scalar damage variable, with !� ¼ 0

corresponding to the state of no damage, and !� ¼ 1 denoting a complete

loss of load-carrying capacity; b
�
i the body force; �� x, tð Þ density, and; t the

temporal coordinate. Superposed single and double dot correspond to

material time derivative of orders one and two, respectively. L
�

ijkl, the tensor

of elastic moduli, obeys the conditions of symmetry

L
�

ijkl ¼ L
�

jikl ¼ L
�

ijlk ¼ L
�

klij ð12Þ

and positivity:

9C040; L
�

ijkl	ij	kl 	 C0	ij	kl 8	ij ¼ 	ji ð13Þ

The evolution equation of !� is given in a functional form (Equation (11)) as

a function of strain, stress, and additional state variables s�. The specific

form of the damage evolution within the microstructure is presented in

‘Rate-dependent Damage Evolution Model’ section (see Krajcinovic, 1996

for a rather complete treatise on continuous damage mechanics approach).

The initial and boundary conditions are assumed to be a function of the

macroscopic coordinates only. The initial conditions are

u
�
i x, tð Þ ¼ ûi xð Þ; _u

�
i x, tð Þ ¼ v̂i xð Þ; x 2 B; t ¼ 0 ð14Þ

The boundary of the structure is defined by � ¼ �� [ �0, as illustrated in

Figure 1.

�� ¼ x j x 2 �, x3 ¼ c
�
�ðxÞ

� �

ð15Þ

�0 ¼ x j x 2 @�, c��ðxÞ5x35c
�
þðxÞ

� �

ð16Þ
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Homogeneous displacement conditions are assumed on �0, whereas traction

boundary conditions are assumed on ��:

u
�
i x, tð Þ ¼ 0; x 2 �0; t 2 0, to½ � ð17Þ

�
�
ij x, tð Þnj ¼ 
�i x, tð Þ; x 2 ��; t 2 0, to½ � ð18Þ

The above boundary conditions are chosen for simplicity of the presenta-

tion. Treatment of the general (displacement, traction, and mixed type)

boundary conditions is presented in ‘Boundary Conditions’ section.

GENERALIZED MATHEMATICAL HOMOGENIZATION
OF THIN PLATES WITH EIGENSTRAINS

We employ the mathematical homogenization theory with multiple

scales to evaluate the failure of thin structural systems described by

Equations (7)–(18). To this extent, we generalize the linear elastic composite

thin plate theory first proposed by Caillerie (1984) and, Kohn and

Vogelius (1984) to account for the presence of inelastic and damage fields

using the eigendeformation concept (Oskay and Fish, 2007). We start by an

asymptotic decomposition of the displacement field:

u
�
i ðx, tÞ ¼ �i3wðx, tÞ þ �u

1
i ðx, y, tÞ þ �

2u2i ðx, y, tÞ þ 
 
 
 ð19Þ

where, w is the out of plane displacement, and u1, u2, . . . denote higher order

displacements. Analogous expressions have also been proposed in asymp-

totic analysis of heterogeneous rods (see e.g., Kolpakov, 1991; Trabucho

and Viano, 1996). We further assume that the transient motion in the

thickness direction is dictated by the presence of much smaller time scales

(Oð��2Þ) compared to the planar deformation:

u��ðx, tÞ ¼ u�ðx, y, tÞ ð20Þ

u
�
3ðx, tÞ ¼ u3ðx, y, �

2tÞ ð21Þ

This condition ensures recovery of the classical plate theory in the static

limit. Similar scalings have been used in the context of plate dynamics

(e.g., Tarn and Wang, 1994).

The damage variable is approximated as

!�ðx, tÞ ¼ !ðx, y, tÞ þOð�Þ ð22Þ
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The following load scalings are necessary to account for the dimi-

nishing transverse dimensions of the heterogeneous structure (Lewinski

and Telega, 2000):

b�� x, tð Þ ¼ �b� x, y, tð Þ; b
�
3 x, tð Þ ¼ �2b3 x, y, tð Þ ð23aÞ


�� ðx, tÞ ¼ �2p�� ðx, tÞ; 
�3 ðx, tÞ ¼ �3q�ðx, tÞ ð23bÞ

�� xð Þ ¼ � yð Þ ð23cÞ

The strain field is expressed in terms of an asymptotic series by using the

chain rule (Equation (3)) as well as Equations (9) and (19):

�
�
ijðx, tÞ ¼

X

1

�¼0

���
�
ijðx, y, tÞ ð24Þ

where the components of the strain field are expressed as:

�0��ðx, y, tÞ ¼ u1
�, y�ð Þ; �0�3ðx, y, tÞ ¼

1

2
w, x� þ u13, y�ð Þ; �033ðx, y, tÞ ¼ u13, z ð25aÞ

�
�
��ðx, y, tÞ ¼ u

�

ð�,x�Þ
þ u

�þ1
ð�, y�Þ

; �
�
3�ðx, y, tÞ ¼

1

2
u
�
3,x�

þ u
�þ1
ð3, y�Þ

;

�133ðx, y, tÞ ¼ u
�þ1
3, z ð25bÞ

� ¼ 1, 2, . . .

The stress field is also expressed based on asymptotic expansion:

�
�
ijðx, tÞ ¼

X

1

�¼0

���
�
ijðx, y, tÞ ð26Þ

using Equations (8), (22) and (24), the components of the stress field are

obtained:

�
�
ijðx, y, tÞ ¼ Lijkl yð Þ ��klðx, y, tÞ � �

�

klðx, y, tÞ
� �

ð27Þ

where,

�
�

kl ¼ !ðx, y, tÞ��ijðx, y, tÞ ð28Þ
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The momentum balance equations in various orders are obtained by

substituting Equations (19) and (26) into Equation (7), and using

Equations (20), (21) and (23):

Oð��1Þ : �0ij, yj ¼ 0 ð29aÞ

Oð1Þ : �0i�,x� þ �
1
ij, yj

¼ 0 ð29bÞ

Oð�Þ : �1i�,x� þ �
2
ij, yj

þ �i�b� ¼ �i�� €u
1
� ð29cÞ

Oð�2Þ : �2i�,x� þ �
3
ij, yj

þ �i3b3 ¼ �i�� €u
2
� þ �3i� €w ð29dÞ

Oð��Þ : �
�
i�,x�

þ ��þ1
ij, yj

¼ �i�� €u
�
� þ �3i� €u

��2
3 , � ¼ 3, 4, . . . ð29eÞ

Similarly, substituting stress and displacement decompositions

(Equations (19) and (26)) into Equations (17) and (18), and using

Equation (23b) gives the boundary conditions in various orders:

Oð1Þ : �0ijðx,y,tÞnj ¼ 0, x2��; wðx,tÞ ¼ 0, x2�0 ð30aÞ

Oð�Þ : �1ijðx,y,tÞnj ¼ 0, x2��; u1i ðx,y,tÞ ¼ 0, x2�0 ð30bÞ

Oð�2Þ : �2ijðx,y,tÞnj ¼ �i�

�
� ðxÞ, x2��; u2i ðx,y,tÞ ¼ 0, x2�0 ð30cÞ

Oð�3Þ : �3ijðx,y,tÞnj ¼ �i3

�
3 ðxÞ, x2��; u3i ðx,y,tÞ¼ 0, x2�0 ð30dÞ

Oð��Þ : �
�
ijðx,y, tÞnj ¼ 0, x2��; u

�
i ðx,y, tÞ ¼ 0, x2�0 ð30eÞ

�¼ 4,5, . . .

First-order Microscale Problem

The O ��1

 �

equilibrium equation along with the O 1ð Þ constitutive and

kinematic equations, and initial and boundary conditions form the first-

order microscale problem (RVE1). RVE1 is summarized in Box 1. In what

follows, we formulate the evolution of microscale problems based on

transformation field analysis.

For a fixed macroscopic state and time (i.e., evolution of the system is

frozen), the eigendeformation concept may be invoked to evaluate the first-

order microscale problem. By this approach, w, x� and �0
kl are viewed as

forces acting on an instantaneously linear system. Hence, the microscopic

displacement field is decomposed as:

u1i ðx, y, tÞ ¼ u1wi ðx, y, tÞ þ u
1�
i ðx, y, tÞ ð31Þ
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where, u1wi and u
1�
i are displacement fields induced by the macroscopic

deformation and inelastic strains, respectively. The above decomposition is

valid for arbitrary damage state. We first consider the damage-free state

(i.e., �0
kl ¼ 0 ! u

1�
i ¼ 0). At this state, the RVE1 problem may be trivially

satisfied when the microscopic displacement takes the following form:

u1i ¼ u1wi ðx, y, tÞ ¼ uiðx, tÞ � ẑ�i�w, x� ðx, tÞ ð32Þ

where, ẑ ¼ z� zh i, and; 
h i :¼ 1= Yj j
R

Y 
 dY denotes volume averaging on the

RVE. Next, we consider the case when the macroscopic deformations vanish

at an arbitrary damage state. The resulting system of equations constitutes

an elasticity problem with eigenstrains, �0
ij. The solution may be expressed in

terms of damage influence function, ~�ikl as follows

u1i ¼ u
1�
i ðx, y, tÞ ¼

Z

Y

~�iklðy, ŷÞ�
o
klðx, ŷ, tÞdŷ ð33Þ

The damage influence function is evaluated by solving the first-order

damage influence function (DIF1) problem defined in Box 2.

Remark 2:

The general expression for the microscopic displacement field, u1i becomes

u1i ðx, y, tÞ ¼ uiðx, tÞ � ẑ�i�w, x� ðx, tÞ þ

Z

Y

~�iklðy, ŷÞ�
o
klðx, ŷ, tÞdŷ

Given: material properties, LijklðyÞ, macroscopic strains, w, x� , and the

inelastic strain field, �0
kl

Find: for a fixed x 2 � and t 2 ½0, t0�, the microscopic deformations,

u1i x, y, tð Þ 2 Y ! R which satisfy

. Equilibrium:

Lijkl yð Þu1k, ylð Þðx, y, tÞ þ Lij�3 yð Þw,x� ðx, tÞ � Lijkl yð Þ�0
klðx, y, tÞ

n o

, yj
¼ 0

. Boundary conditions:

– u1ði, yjÞ periodic on y 2 �Y
0

– fLijklu
1
k, ylð Þ þ Lij�3w, x� � Lijkl�

0
klgnj ¼ 0 on y 2 �Y

�

Box 1: The first-order RVE problem (RVE1).

584 C. OSKAY AND G. PAL

 at GEORGE WASHINGTON UNIVERSITY on January 30, 2015ijd.sagepub.comDownloaded from 



Gradient of the above equation substituted into Equations (25a) and (28)

leads to

�0
ijðx, y, tÞ ¼ !ðx, y, tÞ

Z

Y

~�ði, yjÞklðy, ŷÞ�
0
klðx, ŷ, tÞdŷ

The above is a homogeneous integral equation. For an arbitrary damage

state, !, it can only be satisfied trivially (Courant and Hilbert, 1989)

(i.e., �0
ij ¼ 0), and the microscopic displacement field expression reduces

to Equation (32).

Second-order Microscale Problem

The O �ð Þ equilibrium equation along with the O 1ð Þ constitutive and

kinematic equations, and initial and boundary conditions form the second-

order microscale problem (RVE2) as summarized in Box 3.

The second-order microscale problem is evaluated analogous to the first-

order problem using the eigendeformation concept. The forcing terms in

RVE2 are the macroscopic generalized strains, ui, x� and w,x� as well as the

inelastic strains, �ij (superscript 1 is omitted in what follows for

conciseness). The microscopic displacement field is evaluated by considering

the following decomposition:

u2i ¼ u2wi þ u2ui ð34Þ

in which, u2wi and u2ui correspond to the displacement components due to

the forcing terms associated with the macroscopic displacements w

Given: material properties, Lijmn yð Þ and d is Dirac delta function.

Find: ~�ikl y, ŷð Þ : Y � Y ! R such that:

. Equilibrium:

Lijmn yð Þ ~�ðm, ynÞkl y, ŷ

 �

þ Imnkld y� ŷð Þ

 �� �

, yj
¼ 0; y, ŷ 2 Y

. Boundary conditions:

– ~�ik� periodic on y 2 �Y
0

– Lijmn yð Þ ~�ðm, ynÞkl y, ŷ

 �

þ Imnkld y� ŷð Þ

 �

nj ¼ 0 on y 2 �Y
�

Box 2: The first-order damage influence function problem (DIF1).
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and ui, respectively. First, consider the case when w¼ 0. Employing the

eigendeformation concept, the microscopic displacement field is expressed in

terms of the influence functions:

u2ui ðx, y, tÞ ¼ �i�� yð Þuð�, x�Þðx, tÞ � ẑ�i�u3,x� ðx, tÞ

þ

Z

Y

~�iklðy, ŷÞ�klðx, ŷ, tÞdŷ
ð35Þ

in which, �k� denotes the components of the inelastic strain field due to in-

plane deformations, and; �ikl is the first-order elastic influence function.

�ik� is the solution to the first-order elastic influence function problem

outlined in Box 4.

Considering the case when ui¼ 0 with nonzero w, the microscopic

displacement field is expressed in terms of the second-order influence

functions as

u2wi ðx, y, tÞ ¼ �i�� yð Þw, x�x� ðx, tÞ þ

Z

Y

~�iklðy, ŷÞ�̂klðx, ŷ, tÞdŷ ð36Þ

where, �̂ij denotes the components of the inelastic strain field due to the

bending deformation; �i�� and ~�ikl the second-order elastic and damage

Given: material properties, Lijkl yð Þ, macroscopic strains, w,x�x� and

ui, x� , and inelastic strain tensor, �kl

Find: for a fixed x 2 � and t 2 ½0, t0�, the microscopic displacements

u2i x, y, tð Þ 2 Y ! R which satisfy

. Equilibrium:

Lijkl yð Þu2k, ylð Þðx, y, tÞ þ Lij�3 yð Þu3, x� ðx, tÞ þ Lij�� yð Þ
n

� uð�, x�Þðx, tÞ � ẑw, x�x� ðx, tÞ

 �

� Lijkl yð Þ�klðx, y, tÞ
�

, yj
¼ 0

. Boundary conditions:

– u2
i, yjð Þ

periodic on y 2 �Y
0

– fLijkl yð Þu2k, ylð Þðx, y, tÞ þ Lij�3 yð Þu3, x� ðx, tÞ þ Lij�� yð Þ

� uð�, x�Þðx, tÞ � ẑw, x�x� ðx, tÞ

 �

� Lijkl yð Þ�klðx, y, tÞ
�

nj ¼ 0 on y2 �Y
�

Box 3: The second-order RVE problem (RVE2).
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influence functions, respectively. �i�� and ~�ikl are solutions to elastic and

damage influence function problems (EIF2) and (DIF2), respectively, which

are summarized in Boxes 5 and 6. Under general loading conditions

(nonzero ui and w with arbitrary damage state, !), microscopic displacement

field, u2i is given by Equation (34) with the right-hand-side terms provided by

Equations (35) and (36).

Remark 3:

The transverse shear stress components vanish:

�13j x, y, tð Þ
D E

¼ 0 ð37Þ

The stress field may be expressed in terms of the influence functions by

combining the displacement decompositions given by Equations (34)–(36)

Given: material properties Lijkl yð Þ.

Find: �i�� yð Þ : Y ! R such that:

. Equilibrium:

Lijmn� m, ynð Þ�� yð Þ þ Lij�� yð Þ
� �

, yj
¼ 0

. Boundary conditions:

– �i�� periodic on y 2 �Y
0

– Lijmn yð Þ � m, ynð Þ�� yð Þ þ Imn�� yð Þ

 �

nj ¼ 0 on y 2 �Y
�

Given: material properties Lijkl yð Þ.

Find: �i�� yð Þ : Y ! R such that:

. Equilibrium:

Lijmn� m, ynð Þ�� yð Þ � ẑLij�� yð Þ
� �

, yj
¼ 0

. Boundary conditions:

– �i�� periodic on y 2 �Y
0

– Lijmn yð Þ � m, ynð Þ�� yð Þ � ẑImn�� yð Þ

 �

nj ¼ 0 on y 2 �Y
�

Box 5: The second-order elastic influence function problem (EIF2).

Box 4: The first-order elastic influence function problem (EIF1).
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with the O(1) kinematic and constitutive expressions (Equations (25b)

and (27)):

�1ij x, y, tð Þ ¼ Lijkl yð ÞAkl�� yð Þu�, x� x, tð Þ � Lijkl yð ÞEkl�� yð Þ!, x�x� x, tð Þ

þLijkl yð Þ

Z

Y

~Aklmn y, ŷð Þ�mn x, ŷ, tð Þdŷ

þLijkl yð Þ

Z

Y

~Eklmn y, ŷð Þ�̂mn x, ŷ, tð Þdŷ

ð38Þ

in which,

Aij�� yð Þ ¼ Iij�� þ�ði, yjÞ�� yð Þ;

Eij�� yð Þ ¼ Iij�� � ẑ�ði, yjÞ�� yð Þ

~Aijkl y, ŷð Þ ¼ ~�ði, yjÞkl y, ŷð Þ � d ŷ� yð ÞIijkl;

~Eijkl y, ŷð Þ ¼ ~�ði, yjÞkl y, ŷð Þ � d ŷ� yð ÞIijkl

ð39Þ

Premultiplying the equilibrium equations for the influence function

problems, EIF1, EIF2, DIF1, and DIF2 shown in Boxs 4, 5, 2, and 6,

respectively, by z�ip (p ¼ 1, 2, 3) and integrating over the RVE leads to:

AY
3j�� ¼ 0; EY

3j�� ¼ 0

TY
3jkl ¼ 0; HY

3jkl ¼ 0
ð40Þ

Given: material properties, Lijmn yð Þ and d is Dirac delta function.

Find: ~�ikl y, ŷð Þ : Y � Y ! R such that:

. Equilibrium:

Lijmn yð Þ ~�ðm, ynÞkl y, ŷ

 �

� ẑImnkld y� ŷð Þ

 �� �

, yj
¼ 0; y, ŷ 2 Y

. Boundary conditions:

– ~�ik� periodic on y 2 �Y
0

– Lijmn yð Þ ~�ðm, ynÞkl y, ŷ

 �

� ẑImnkld y� ŷð Þ

 �

nj ¼ 0 on y 2 �Y
�

Box 6: The second-order damage influence function problem (DIF2).
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where the coefficient tensors AY
ij��,E

Y
ij��,T

Y
ijkl and HY

ijkl are defined as:

AY
ij�� ¼ Lijkl yð ÞAkl�� yð Þ

� 


; EY
ij�� ¼ Lijkl yð ÞEkl�� yð Þ

� 


TY
ijkl ¼ Lijmn yð Þ ~Amnkl y, ŷð Þ

D E

; HY
ijkl Lijmn yð Þ ~Emnkl y, ŷð Þ
� 


ð41Þ

Applying the averaging operator to Equation (38) and using Equations (41),

Equation (37) is satisfied. The above argument is justified when �ipz is within

the appropriate trial function space, which is automatically ensured for

Equation (40a) when the EIF1 and EIF2 problems are evaluated within the

classical finite element method framework. A numerical approximation of

the DIF1 and DIF2 problems (described in Oskay and Fish, 2007) ensures the

admissibility of �ipz for Equation (40b).

Macroscale Problem

We introduce the force, moment, and shear resultants based on the

averaging of the stress components over the RVE:

N �� x, tð Þ :¼ �1��

D E

; M�� x, tð Þ :¼ ẑ�1��

D E

; Q� x, tð Þ :¼ �23�
� 


ð42Þ

Averaging the O(�) momentum balance equation (Equation (29c)) over the

RVE, employing the Oð�2Þ boundary conditions, along with Equation (37):

N ��, x� x, tð Þ þ q� x, tð Þ ¼ �h i €u� x, tð Þ � �ẑh i €w, x� x, tð Þ ð43Þ

where, q� denotes the traction acting at the top and bottom surfaces of the

plate as well as the body forces:

q� x, tð Þ ¼ b�h i x, tð Þ þ Gþ

� 


Y

þ� x, tð Þ þ G�h iY


�
� x, tð Þ ð44Þ

and 
h iY¼
R

Y

dy, and;

G� yð Þ ¼
ffiffi

ð
p

1þ c�, y1 þ c�, y2 Þ ð45Þ

accounts for the arbitrary shape of the RVE boundaries. Premultiplying

Equation (29c) with ẑ and averaging over the RVE yields:

M��,x� x, tð Þ � Q� x, tð Þ þ p� x, tð Þ ¼ �ẑh i €u� x, tð Þ � �ẑ2
� 


€w, x� x, tð Þ ð46Þ
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where,

p� x,tð Þ ¼ ẑb�h i x,tð Þþ cþ� zh i

 �

Gþ

� 


Y

þ� x,tð Þþ c�� zh ið ÞG�

� 


Y

�� x,tð Þ ð47Þ

Averaging the O �2

 �

momentum balance equation (Equation (29d)) over the

RVE, and using O �3

 �

boundary condition yields:

Q�,x� x, tð Þ þm x, tð Þ ¼ �h i €w x, tð Þ ð48Þ

in which,

m x, tð Þ ¼ b3h i x, tð Þ þ Gþ

� 


Y

þ3 x, tð Þ þ G�h iY


�
3 x, tð Þ ð49Þ

The constitutive relationships for the force and moment resultants as a

function of in-plane strains (e�� ¼ u�, x� ) and curvature (
�� ¼ �w, x�x� ), are

obtained by averaging Equation (38) over the RVE:

N �� x, tð Þ ¼ AY
����e�� x, tð Þ þ EY

����
�� x, tð Þþ
Z

Y

TY
��kl ŷð Þ�kl x, ŷ, tð Þdŷþ

Z

Y

HY
��kl ŷð Þ�̂kl x, ŷ, tð Þdŷ ð50Þ

M�� x, tð Þ ¼ FY
����e�� x, tð Þ þDY

����
�� x, tð Þþ
Z

Y

GY
��kl ŷð Þ�kl x, ŷ, tð Þdŷþ

Z

Y

CY
��kl ŷð Þ�̂kl x, ŷ, tð Þdŷ ð51Þ

where, the coefficient tensors, FY
����,D

Y
����,G

Y
��kl ŷð Þ, and CY

��kl ŷð Þ are defined
as:

FY
���� ¼ ẑL���	 yð ÞA�	�� yð Þ

� 


; DY
���� ¼ ẑL���	 yð ÞE�	�� yð Þ

� 


GY
��kl ŷð Þ ¼ ẑL��ij yð Þ ~Aijkl y, ŷð Þ

D E

; CY
��kl ŷð Þ ¼ ẑL��ij yð Þ ~Eijkl y, ŷð Þ

� 

ð52Þ

BOUNDARY CONDITIONS

To complete the formulation of the macroscopic problem, it remains to

define the boundary conditions along �0. Formulations of boundary

conditions in the context of elastic beam and plate theories have been

proposed in the past by a number of researchers based on decay

analysis (Gregory and Wan, 1984; Buannic and Cartraud, 2001), inner

expansions (Dauge et al., 2000), approximate conditions using integral

forms (Timoshenko and Goodier, 1970), among others. While the former
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two approaches are more rigorous and accurate, they are computationally

expensive for nonlinear analysis due to the requirement of evaluation

auxiliary problems to evaluate the solution close to the boundaries. In this

manuscript, the original boundary conditions along �0 are assumed to be of

the following form:

u
�
i x, tð Þ ¼ r� x, tð Þ; on �r

0 ð53Þ

�
�
ij x, tð Þnj ¼ 


�
i x, tð Þ; on �
0 ð54Þ

where, boundary partitions satisfy: �0 ¼ �r
0 [ �
0, �

r
0 \ �
0 ¼ 6 0. Along the

displacement boundaries, �r
0 the displacement data of the following form is

admitted

r� x, tð Þ ¼ �i3W x, tð Þ þ ��i� r� x, tð Þ � ẑ�� x, tð Þ½ � ð55Þ

Matching the displacement terms of zeroth and first orders along the

boundary gives

Oð1Þ : w x, tð Þ ¼ W x, tð Þ ð56Þ

Oð�Þ : u� � ẑw, x� ¼ r� x, tð Þ � ẑ�� x, tð Þ ð57Þ

Averaging Equation (57) over the RVE boundary gives the remaining

displacement and rotation boundary conditions

u� ¼ r�; w, x� ¼ ��; on �r
0 ð58Þ

Along the traction boundaries, �
0, the traction data is assumed to satisfy the

following scaling relations with respect to �



�
i ¼ ��i�
� x, tð Þ þ �2�i3
3 x, tð Þ ð59Þ

The traction boundaries are satisfied approximately in the integral form.

The equivalence relation between the average and exact boundary conditions

may be shown based on the Saint Venant principle (Timoshenko and

Goodier, 1970). The moment, force, and shear resultant boundary conditions

are given as:

N ��n� ¼ 
�; M��n� ¼ ẑh i
�; Q�n� ¼ 
3 ð60Þ

Boundary data is taken to satisfy the free-edge condition (Reddy, 1997).
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REDUCED-ORDER MODEL FOR THIN PLATES

The eigenstrain-based homogenization of the governing equations of a

thin heterogeneous structure leads to a macroscopic problem with balance

equations provided by Equations (43), (46), and (48) along with the

constitutive relations (Equations (50) and (51)). The damage induced

inelastic strain tensors �ij and �̂ij account for the coupling between the

microscopic and macroscopic problems. We seek to solve the macroscopic

problem in a computationally efficient manner. To this extent, the damage

variable and eigenstrains are described as:

�ij

�̂ij

!

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ðx, y, tÞ ¼
X

n

I¼1

N
Ið Þ
ðyÞ�

Ið Þ
ij ðx, tÞ

N̂ Ið ÞðyÞ�̂ Ið Þ
ij ðx, tÞ

# Ið ÞðyÞ! Ið Þðx, tÞ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð61Þ

where, N
Ið Þ
, N̂ Ið Þ, and # Ið Þ are shape functions, and; �

Ið Þ
ij , �̂

Ið Þ
ij , and ! Ið Þðx, tÞ

are the weighted average planar deformation, bending induced inelastic

strain, and damage fields, respectively:

�
Ið Þ
ij

�̂
Ið Þ
ij

! Ið Þ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ðx, tÞ ¼

Z

Y

 
Ið Þ
ðyÞ�ijðx, y, tÞ

 ̂ Ið ÞðyÞ�̂ijðx, y, tÞ

� Ið ÞðyÞ!ðx, y, tÞ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

dy ð62Þ

where,  
Ið Þ
,  ̂ Ið Þ, and � Ið Þ are microscopically nonlocal weight functions. The

discretization of macroscopic and microscopic inelastic strains results in

reduction in number of kinematic equations for the system, which in turn

improves the computational efficiency of the model. The shape functions are

taken to satisfy partition of unity property, while the weight are positive,

normalized and orthonormal with respect to shape functions (Oskay and

Fish, 2007):

X

n

I¼1

N Ið Þ yð Þ ¼ 1; ’ Ið Þ yð Þ 	 0;

Z

Y

’ Ið Þ yð Þdy ¼ 1;

Z

Y

’ Ið Þ yð ÞN Jð Þ yð Þdy ¼ �IJ

ð63Þ
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where N Ið Þ and ’ Ið Þ denote any of the shape and weight functions,

respectively. The in-plane deformation and bending induced inelastic

strain fields may be expressed as:

�ijðx, y, tÞ ¼ !ðx, y, tÞ

�i��j�e��ðx, tÞ þ
1

2
�i3�j� þ �i��j3

 �

u3,x� ðx, tÞ þ u2uði, yjÞðx, y, tÞ

� �

ð64Þ

�̂ijðx, y, tÞ ¼ !ðx, y, tÞ �i��j�ẑ
��ðx, tÞ þ u2wði, yjÞðx, y, tÞ
� 	

ð65Þ

Expressions for �
Ið Þ
ij and �̂

Ið Þ
ij are obtained by substituting Equations (35)

and (36) into Equations (64) and (65), respectively and employing the

inelastic field discretizations (Equations (61)–(63)):

�
Ið Þ
ij ðx, tÞ ¼ ! Ið Þðx, tÞ A

Ið Þ
ij��e��ðx, tÞ þ

X

J

P
IJð Þ
ijkl�

Jð Þ
kl ðx, tÞ

 !

ð66Þ

�̂
Ið Þ
ij ðx, tÞ ¼ ! Ið Þðx, tÞ E

Ið Þ
ij��
��ðx, tÞ þ

X

J

Q
IJð Þ
ijkl �̂

Jð Þ
kl ðx, tÞ

 !

ð67Þ

in which, the coefficient tensors, A
Ið Þ
ij��, E

Ið Þ
ij��, P

IJð Þ
ijkl , and Q

IJð Þ
ijkl , are:

A
Ið Þ
ij��¼

Z

Y

 
Ið Þ
ðyÞ# Ið ÞðyÞAij�� yð Þdy; E

Ið Þ
ij��¼

Z

Y

 ̂ Ið ÞðyÞ# Ið ÞðyÞEij�� yð Þdy ð68Þ

P
IJð Þ
����¼

Z

Y

 
Ið Þ
ðyÞ# Ið ÞðyÞP Jð Þ

���� yð Þdy; Q
IJð Þ
����¼

Z

Y

 ̂ Ið ÞðyÞ# Ið ÞðyÞQ Jð Þ
���� yð Þdy ð69Þ

Employing the eigenstrain and damage decompositions, the in-plane force

and moment resultants are expressed in terms of the phase average fields as

N �� x, tð Þ ¼ AY
����e�� x, tð Þ þ EY

����
�� x, tð Þ

þ
X

n

I¼1

T
Ið Þ
��kl�

Ið Þ
kl x, tð Þ þH

Ið Þ
��kl�̂

Ið Þ
kl x, tð Þ

� 	

ð70Þ

M�� x, tð Þ ¼ FY
����e�� x, tð Þ þDY

����
�� x, tð Þ

þ
X

n

I¼1

G
Ið Þ
��kl�

Ið Þ
kl x, tð Þ þ C

Ið Þ
��kl�̂

Ið Þ
kl x, tð Þ

� 	

ð71Þ
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The coefficient tensors are expressed in terms of the damage influence

functions:

P
Ið Þ
ijkl yð Þ ¼

Z

Y

N
Ið Þ

yð Þ ~� i, yjð Þkl yð Þdy; Q
Ið Þ
ijkl yð Þ ¼

Z

Y

N̂ Ið Þ yð Þ ~� i, yjð Þkl yð Þdy ð72Þ

T
ðI Þ
��kl ¼ L��ij P

ðI Þ
ijklðyÞ � IijklN

ðI Þ
ðyÞ

h iD E

;

H
ðI Þ
��kl ¼ L��ij Q

ðI Þ
ijklðyÞ � IijklN̂

ðI ÞðyÞ
h iD E

ð73Þ

G
ðI Þ
��kl ¼ ẑL��ij P

ðI Þ
ijklðyÞ � IijklN

ðI Þ
ðyÞ

h iD E

;

C
ðI Þ
��kl ¼ ẑL��ij Q

ðI Þ
ijklðyÞ � IijklN̂

ðI ÞðyÞ
h iD E

ð74Þ

The reduced-order macroscopic problem is summarized in Box 7.

Remark 4:

The verification studies provided below are conducted by choosing

identical shape functions to define the inelastic field discretizations

(i.e., NðI Þ ¼ N
ðI Þ

¼ N̂ðI Þ ¼ #ðI Þ and  ðI Þ ¼  
ðI Þ

¼  ̂ðI Þ ¼ �ðI Þ) such that:

N Ið Þ yð Þ ¼
1 if y 2 Y Ið Þ

0 elsewhere

�

 Ið Þ yð Þ ¼
1

Y Ið Þ
�

�

�

�

N Ið Þ yð Þ

where, YðI Þ is the Ith partition in Y. The partitions are disjoint subdomains

filling the entire microstructure (i.e., Y �
Sn

I¼1 Y
Ið Þ and Y Ið ÞTY Jð Þ � 6 0 for

I 6¼ J) and each subdomain resides in a single physical phase. N Ið Þ and  Ið Þ

are the simplest functions that satisfy partition of unity, positivity, normality

and orthonormality conditions given in Equation (63).

Rate-dependent Damage Evolution Model

The inelastic processes within the microstructure is idealized using the

damage variables, !(I). In this manuscript a rate-dependent model is used to

characterize the evolution of damage within the microstructure (Simo and

Ju, 1987):

A potential damage function, f, is defined:

f � Ið Þ, r Ið Þ

 �

¼ � � Ið Þ

 �

� � r Ið Þ

 �

40 ð75Þ
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Given: Influence functions, �i��, �i��, ~�ikl, ~�ikl; L��kl, and; material

parameters associated with the evolution of damage; boundary data r�,

��, 
�, 

�
i ; body force, bi; density, �, initial condition data, ŵ,w, û�, and v̂�.

Find: macroscopic displacements u� and w,x� such that:

. Momentum balance:

N ��, x� x, tð Þ þ q� x, tð Þ ¼ �h i €u� x, tð Þ � �ẑh i €w, x� x, tð Þ

M��, x� x, tð Þ � Q� x, tð Þ þ p� x, tð Þ ¼ �ẑh i €u� x, tð Þ � �ẑ2
� 


€w, x� x, tð Þ

Q�, x� x, tð Þ þm x, tð Þ ¼ �h i €w x, tð Þ

. Constitutive relations:

N ��¼AY
����e�� x,tð ÞþEY

����
�� x, tð Þþ
X

n

I¼1

T
Ið Þ
��kl�

Ið Þ
kl x,tð ÞþH

Ið Þ
��kl�̂

Ið Þ
kl x,tð Þ

� 	

M��¼FY
����e�� x,tð ÞþDY

����
�� x, tð Þþ
X

n

I¼1

G
Ið Þ
��kl�

Ið Þ
kl x,tð ÞþC

Ið Þ
��kl�̂

Ið Þ
kl x,tð Þ

� 	

�
Ið Þ
��¼!

Ið Þðx, tÞ A
Ið Þ
����e��ðx,tÞþ

X

n

J¼1

P
IJð Þ
�����

Jð Þ
��ðx, tÞ

" #

�̂
Ið Þ
��¼!

Ið Þðx, tÞ E
Ið Þ
����e��ðx, tÞþ

X

n

J¼1

Q
IJð Þ
�����̂

Jð Þ
��ðx,tÞ

" #

. Kinematics:

e��ðx, tÞ ¼ u �, y�ð Þðx, tÞ; 
��ðx, tÞ ¼ �w, x�x� ðx, tÞ

. Initial conditions (x 2 �):

wðx, t ¼ 0Þ ¼ ŵðxÞ; u�ðx, t ¼ 0Þ ¼ û�ðxÞ

_wðx, t ¼ 0Þ ¼ wðxÞ; _u�ðx, t ¼ 0Þ ¼ v̂�ðxÞ

. Boundary conditions:

u� ¼ r�; w, x� ¼ �� on �r
0

N ��n� ¼ 
�h i; M��n� ¼ ẑ
�h i; Q�n� ¼ 
3 on �
0

. Evolution equations for ! Ið Þ x, y, tð Þ

Box 7: The reduced-order macroscopic problem (n-point model).
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in which, � Ið Þ x, tð Þ, and r Ið Þ x, tð Þ are phase damage equivalent strain and

damage hardening variable, respectively, and; � is a monotonically

increasing damage evolution function. The evolution equations for � Ið Þ

and r Ið Þ are given as

_! Ið Þ ¼ _�
@�

@� Ið Þ
ð76Þ

_r Ið Þ ¼ _� ð77Þ

where the evolution is based on a power law expression of the form:

_� ¼
1

q Ið Þ
f � Ið Þ, r Ið Þ

 �� 
p Ið Þ

þ
ð78Þ


h iþ¼ ½k 
 j þ ð
Þ�=2 denotes MacCauley brackets; p Ið Þ and q Ið Þ define the rate-

dependent response of damage evolution.

The phase damage equivalent strain is defined as

� Ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
F Ið Þ�̂ Ið Þ

 �T

L̂ Ið Þ F Ið Þ�̂ Ið Þ

 �

r

ð79Þ

in which, �̂ �ð Þ is the average principal strain tensor in Y Ið Þ; L̂ Ið Þ is the tensor of

elastic moduli rotated onto the principal strain directions, and; F Ið Þ x, tð Þ is
the weighting matrix. The weighting matrix accounts for the anisotropic

damage accumulation in tensile and compressive directions:

F �ð Þ ¼

h
Ið Þ
1 0 0

0 h
Ið Þ
2 0

0 0 h
Ið Þ
3

2

6

6

4

3

7

7

5

ð80Þ

h
Ið Þ
	 ¼

1

2
þ

1

�
atan c

Ið Þ
1 �̂

Ið Þ
	 � c

Ið Þ
2

� 	h i

ð81Þ

where, material parameters, c
Ið Þ
1 and c

Ið Þ
2 , control damage accumulation in the

tensile and compressive loading. A power law-based damage evolution

function is considered:

� Ið Þð� Ið ÞÞ ¼ a Ið Þ � Ið Þ � � Ið Þ
0

D Eb Ið Þ

þ
; � Ið Þ � 1 ð82Þ

in which, a Ið Þ and b Ið Þ are material parameters. The analytical form of

�ðI Þðr Ið ÞÞ is obtained by replacing � Ið Þ by r Ið Þ in Equation (82).
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COMPUTATIONAL ASPECTS

The proposed multiscale model is implemented and incorporated into a

commercial finite element analysis program (Abaqus). The implementation

is a two stage process as illustrated in Figure 2. The first stage

(pre-processing) consists of the evaluation of first and second-order RVE

problems, summarized in Boxes 1 and 3, and computation of coefficient

tensors. The preprocessing stage is evaluated using an in-house code,

in which the linear elastic RVE problems are evaluated using the FEM.

The model order, n, is taken to be a user defined input variable. By this

approach, the coefficient tensors remain constant throughout the macro-

scale analysis. Alternative strategies are also possible, where the model order

is updated based on the model error and accuracy (Oskay and Fish, 2007).

A commercial finite element software (Abaqus) is employed to evaluate the

macroscopic boundary value problem summarized in Box 7. User-defined

generalized shell section behavior subroutine (UGENS) is implemented and

incorporated into Abaqus to update force and moment resultants. The

UGENS subroutine consists of computation of force (N ) and moment (M)

resultant at the current time step, given the generalized macroscale strain

tensors (e, 
) and the damage state variable, !(I) at the previous time step

and the generalized strain increments. Details of the procedure to evaluate

the constitutive response in UGENS are lengthy yet straight forward. The

procedure for constitutive update based on reduced-order damage models

are provided in Oskay and Fish (2007). The Abaqus general purpose

elements, S4R, are employed in the verification simulations.

Classical rate independent damage models are known to exhibit

spurious mesh sensitivity when loading extends to the softening regime.

This phenomenon is characterized by the localization of strains to within the

Preprocessing stage 

-  Evaluate RVE problems (Box 2, 4, 5, 6) 
to obtain following influence functions: 

(  and ). 

-  Define the model order n. 
-  Divide RVE into n partitions. 
-  Compute coefficients tensors:  

Nonlinear analysis of the  
 (Abaqus) 

Force and moment update  
(UGens) 

Macroscopic analysis stage 

Figure 2. Implementation of the proposed multiscale model using the commercial finite
element code Abaqus.
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size of a finite element. This problem is typically alleviated by considering

gradient enhancement (de Borst andMuhlhaus, 1992; Al-Rub and Voyiadjis,

2006), nonlocal regularization of the integral type (Bazant et al., 1984),

Cosserat continuum model (de Borst and Sluys, 1991) and viscous

regularization (Needleman, 1988). Multiscale failure models based on

damage mechanics may show mesh sensitivity at all associated scales.

The proposed multiscale model is microscopically nonlocal through the

integral-type nonlocal formulation presented in ‘Reduced-order Model for

Thin Plates’ section. At the macroscopic scales, mesh sensitivity is alleviated

by considering the viscous regularization of the damage model (Needleman,

1988). Viscous regularization permits the implementation within the standard

finite element framework.

NUMERICAL VERIFICATION AND VALIDATION

The capabilities of the proposed multiscale plate model are assessed by

considering three test cases: (a) three-point bending; (b) uniaxial tension,

and (c) impact of rigid projectile on a woven composite plate. The model

simulations are compared to direct 3D (reference) finite element models in

which the microstructure is resolved throughout the macrostructure.

Three-point Plate Bending

We consider a three-point bending of a simply supported composite plate

as shown in Figure 3. The dimensions of the rectangular plate are

W=L ¼ 3=40 and t=L ¼ 1=80, in which t, W, and L are the thickness,

width, and length of the plate, respectively. The small scaling parameter � can

be calculated as the ratio between the thickness (or in-plane periodicity

dimension) and the span length between the supports (� ¼ � ¼ 1=40). A static

vertical load is applied at the center of the plate quasi-statically until failure.

The microstructure consists of a matrix material reinforced with stiff

unidirectional fibers oriented in the global z-direction as illustrated in

Figure 3. The fiber fraction is 19% by volume. The stiffness contrast

between the matrix and reinforcement phases is chosen to be EM=EF ¼ 0:3,

where, EM and EF are the Young’s Modulus of the matrix and fiber,

respectively. The Poisson’s ratio of both materials is assumed to be identical

(�F ¼ �M). Damage evolution parameters are chosen to assure a linear

dependence between the damage equivalent strain and evolution law (i.e., in

Equation (82), bðI Þ ¼ 1). Damage is allowed to accumulate in tension only

and no significant damage accumulation occurs under compressive loads.

The fiber phase is assumed to be damage-free for the considered load

amplitudes, and damage is allowed to accumulate in the matrix phase only.
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The model parameters for the matrix and the fiber material are summarized

in Table 1. The superscripts M and F denotes matrix and fiber phases

respectively.

A suite of multiscale model simulations are conducted to verify the proposed

approach. 3-, 5-, 13-, and 25-partition models are compared with 3D refere-

nce simulations. Themicrostructural partitions for the four multiscale models

are illustrated in Figure 4. Simulations are conducted at three different load

rates. An order of magnitude difference in the load rates are applied between

the slow, intermediate, and fast simulations. Figure 5 illustrates the norm-

alized force–displacement curves at the midspan of the plate. A reasonably

good agreement is observed between the proposed multiscale models and

reference simulations. The modeling error for the proposed models is

tabulated in Table 2 for each multiscale model at each strain rate. It can be

observed that while higher partition schemes tend to achieve better accuracy

compared to lower partitions, a clear diminishing of error with increasing

number of partitions does not occur. This is due to the nonoptimal selection

Table 1. Material property values used in three-point bending and uniaxial
tension test simulations.

E(F)
m
(F) E(M)

m
(M)

200GPa 0.3 60GPa 0.3

a(M) b(M) c
ðMÞ
1 c

ðMÞ
2 �

ðMÞ
0 p(M) q(M)

0.75 1.0 1.e5 0.0 0.0 2.0 2.1

Simple supports

Quasi-static loading

Unidirectional fiber-
reinforced matrix

RVE

Figure 3. Macro- and microscopic configurations of the three-point bending plate problem.
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Table 2. Errors in terms of failure displacement, failure force, and L2 norm in
the force–displacement space.

Model % error in failure % error in failure % L2 error

displacement force

Slow Int. Fast Slow Int. Fast Slow Int. Fast

n¼ 3 2.8189 2.0079 5.4234 0.6942 2.8026 3.9114 0.0295 0.0878 0.1520

n¼ 5 2.1551 0.69527 0.32336 3.082 0.47734 0.0471 0.0642 0.0488 0.0457

n¼ 13 5.0153 2.8458 4.8786 5.7351 2.9361 2.4879 0.1095 0.0740 0.0622

n¼ 25 0.1385 1.2027 0.9786 2.7725 1.0971 0.9417 0.0921 0.0660 0.0540
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Model (n=3)
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Model (n=13)

Model (n=25)

Reference

High load rate

Intermediate load rate

low load rate

Figure 5. Normalized force–displacement curves in three-point bending simulations.
Multiscale simulation predictions compared to those of 3D reference simulations.

(a) (b) (c) (d)

Figure 4. Microstructural partitioning for (a) 3-partition, (b) 5-partition, (c) 13-partition, and
(d) 25-partition models. Each partition is identified using separate colors.
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of the domains of each partition, which significantly affects the quality of the

model. The issue of optimal selection of partition domains is further discussed

in ‘Conclusions and Future Work’ section. Displacement profiles at failure

illustrated in Figure 6 also indicate similar trends observed above. The

maximum error is observed in the 3-partition model simulations. Maximum

normalized error occurs at the midspan of the plate (¼6.5–9%). Damage

contours at each partition of the 5-partition model is compared to the 3D

reference simulations in Figure 7. The maximum damage is accumulated

at the lowermost layer subjected to tensile loads. Upper layers are subjected

to neutral and compressive loads leading to minimal damage accumulation.

The 3D reference analysis plots indicate that failure starts at the bottom of the

plate, which is subjected to higher tensile stresses.

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
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c
e

m
e

n
ts

Model (n=5)

Model (n=13)

Model (n=25)

Reference

Model (n=3)

High load rate

Low load rate

Intermediate load rate

Figure 6. Comparison of the displacements along the length of the plate, between the
proposed multiscale models and 3D reference problem.

(Ave. Crit.: 75%)
SDV1

+2.119e-11
+7.273e-02
+1.455e-01
+2.182e-01
+2.909e-01
+3.636e-01
+4.364e-01
+5.091e-01
+5.818e-01
+6.545e-01
+7.273e-01
+8.000e-01
+9.900e-01

(a) (b)

Figure 7. Damage profile for (a) 3D reference simulation and (b) 5-partition model. Damage
variables plotted correspond to damage in each matrix partition in the 5-partition model.
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Uniaxial Tension Test

We illustrate the nonlocal characteristics of the proposed multiscale

model using a uniaxially loaded thin rectangular plate. The dimensions of

the plate are W=L ¼ 1=5 and t=L ¼ 1=30. Two notches with half the

thickness of the plate is placed at opposite edges of the plate 450 apart.

Prescribed displacements are applied along the in-plane dimension parallel

to the long edge. The microstructural configuration and material properties

are identical to the three-point bending case discussed in the previous

section. The model parameters for the matrix and the fiber material are

summarized in Table 1.

A series of numerical simulations are conducted on three different finite

element meshes with h /L ratios of 1/60, 1/120, and 1/240 as shown in

Figure 8. Two cases of microstructural orientation is considered: fibers are

placed parallel and perpendicular to the stretch direction. Simulations are

conducted using a 5-partition model (n¼ 5). Figure 9 illustrates the

normalized force–displacement curves for coarse, intermediate, and fine

meshes. The softening regime of the curves for both microstructural

(a) (b) (c)

Figure 8. Finite element discretization of the macroscopic plates: (a) coarse mesh
(h=L ¼ 1=60), (b) intermediate mesh (h=L ¼ 1=120), and (c) fine mesh (h=L ¼ 1=240).
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orientations shows nearly identical response for all three meshes, clearly

indicating the mesh independent characteristic of the proposed multiscale

model. In case of fibers parallel to the loading direction a 166% and 140%

increase have been observed in the failure load and displacements,

respectively. Figure 10 illustrates the damage fields ahead of the notches

for the intermediate and fine meshes when the fibers are placed

perpendicular to the loading direction. The contours correspond to the

damage state at 75% of the failure displacement. The damage accumulation

is observed to be along the direction of the elastic fibers.

High Velocity Impact Response of Woven Composite Plate

The capabilities of the proposed multiscale model are further verified by

predicting the impact response of a composite plate. A 5-layer E-glass/

polyester plain weave laminated composite system was experimentally

investigated by Garcia-Castillo et al. (2006). The microstructure of the

composite laminated plate is illustrated in Figure 11. The composite

specimens are 140 mm� 200 mm rectangular plates with 3.19 mm thickness.

The specimens were subjected to impact by steel projectiles with velocities

ranging between 140 and 525 m/s. We employ the proposed multiscale

model to predict the impact response of plates observed in the experiments.
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Figure 9. Normalized force–displacement curves simulated using coarse, intermediate, and
fine meshes for cases where fibers are placed parallel and perpendicular to the loading
direction.
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A 19-partition model is employed. The plate consists of 5- plain weave plies

with 0.276 mm thickness. A 34.5 mm thick ply-interphase layer is assumed to

exist between each pair of plies in this 5-ply composite. The weave tows are

in 0- and 90-directions. The fiber volume fractions are 9% in 0-direction and

22% in the 90-direction with a total of 31%. The matrix, fiber tows in 0- and

90-directions and ply-interphase in each layer is represented by a single

partition totaling 19 for 5 plies.

Failure in each partition is modeled using the rate-dependent damage

model described in ‘Rate-dependent Damage Evolution Model’ section.

Material properties of fiber tows in 0- and 90-directions are taken to be identical.

The ply-interphase and matrix properties are also assumed to be identical.

The static response of the composite system when subjected to uniaxial

tension is used to calibrate aðI Þ and bðI Þ parameters for matrix and

reinforcement by minimizing the discrepancy between the reported

Damage

(Ave. Crit. : 75%)

+9.000e−01

+3.750e−01

+0.000e+00
+7.500e−02
+1.500e−01
+2.250e−01
+3.000e−01

+4.500e−01
+5.250e−01
+6.000e−01
+6.750e−01
+7.500e−01
+8.250e−01

(a) (b)

Figure 10. Damage contour plots for (a) fine mesh and (b) intermediate mesh.
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experimental failure stress and strain (3:6% and 367 MPa) and the simulated

values (Figure 12). Genetic and gradient-based optimization algorithms are

employed to calibrate the model parameters (Oskay and Fish, 2008). The

stress–strain curves based on uniaxial tension as well as damage evolution in

each microconstituent are shown in Figure 12 for loading in two orthogonal

directions. The damage evolution parameter aðI Þ and bðI Þ were determined as

0.08 and 1.5 for fiber, and 0.92 and 2.5 for matrix materials, respectively. The

fibers in 0 and 90, as well as the matrix and ply-interphase materials are

assumed to have identical failure characteristics. A linear rate dependence is

adopted for all microconstituents (i.e., pðI Þ ¼ 1). Damage is assumed to

accumulate on the onset of loading (�
ðI Þ
0 ¼ 0). Ply-interphase failure between

all plies are observed in numerical simulations as indicated in Figure 12,

which is in agreement with the experimentally observed response (Garcia-

Castillo et al., 2006). Figure 11(a) and (b) illustrates the failure modes

modeled in the simulations: Failure of the interphase between laminates,

cracking within the matrix and fibers in the longitudinal and transverse

directions. The effects of the fiber–matrix interface cracking is implicitly

taken into account through the microconstituents cracking only. The failure

of the interphase and the longitudinal fiber cracking (at 5% strain) precede

Figure 11. Microstructure of the 5-ply woven laminate system.
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the matrix cracking (at 7% strain). The damage in the transverse fiber

cracking remains low throughout the uniaxial loading. The observations

stated here remain to be verified by experimental observations since the

authors did not have access to the tested specimen.

The exit velocities of the projectile when the composite specimen is

subjected to impact velocities above the ballistic limit are predicted using

the multiscale model. The experimentally provided ballistic limit value of

211 m/s is employed to calibrate the rate-dependent material parameter of

the microconstituent failure models (qðI Þ ¼ 1:8e� 5). Figure 13 shows the

exit velocity of the projectile as a function of the impact velocity. The

simulated response shows a nonlinear relationship in impact velocities close

to the ballistic limit followed by a linearizing trend – similar to the

experimental observations. The discrepancy between the experimental

observations and the simulated exit velocities are attributed to the limited

data used in the calibration of the microconstituent material parameters.

Figure 14 provides ply-interphase damage regions for impact velocities of

211, 300, 400, and 500 m/s. The size of the ply-interphase damage region is

observed to have only a slight variation with respect to the impact velocity,

which is in agreement with the experimental response.
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Figure 12. Simulations conducted under uniaxial tension: (a) stress–strain curves when
subjected to 0.1/s and 100/s strain rates in the 0-direction; (b) damage evolution in
interphase, matrix, and fiber phases for loading in the 0-direction; (c) stress–strain curves
when subjected to 0.1/s and 100/s strain rates in the 90-direction; (d) damage evolution in
interphase, matrix, and fiber phases for loading in the 90-direction.
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CONCLUSIONS AND FUTURE WORK

We presented a new failure modeling approach for static and dynamic

analysis of thin heterogeneous structures. The proposed approach is

computationally advantageous compared to direct nonlinear computational

homogenization technique in two respects: (1) the necessity of evaluating

nonlinear microscopic boundary value problems at all integration points in

the macroscopic finite element mesh is eliminated using the eigendeforma-

tion concept, and; (2) necessity to resolve the thickness direction in the

macroscopic scale is alleviated by considering a structural theory based

approach. A number of challenges remain. First is the thin plate

assumptions present on the macroscopic displacement fields. It is well

known that this restriction is prohibitive for thick plates and restricts the

representable failure modes. A higher order displacement field – perhaps

extending beyond first order or even layerwise theories – needs to be chosen

to represent the macroscopic response without significantly compromising

on the efficiency of the model. The second concern is the extension of the

proposed approach to large microscopic strains. While our current approach

is efficient for small deformations, generalization to large deformations is

not clear within the framework of eigendeformation theory. The third issue

concerns the proper selection of the microscopic partitions. The error

analysis results indicate that the accuracy of the proposed multiscale model
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Figure 13. Variation of the exit velocity with respect to impact velocity.
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is affected by the selection of the domain of each partition. Development of

a robust partitioning strategy is therefore crucial in the minimization of the

modeling errors. A final point is regarding the lack of consistent

fragmentation criteria for heterogeneous materials. A detailed investigation

of fragmentation is essential to correctly model the failure and fragmenta-

tion response of composite systems when subjected to penetration, crushing

and blast problems. The issues outlined above require further investigation

and will be explored by the authors.
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Figure 14. Interphase damage variation around the impact zone at impact velocities
(a) 211 m/s, (b) 300 m/s, (c) 400 m/s, (d) 500 m/s.
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