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Abstract

We classify possible boundary conditions of a 6d Dirac fermion � on a rectangle under the requirement 

that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and 

nonzero KK modes under the two specific boundary conditions, (i) 4d-chirality positive components being 

zero at the boundaries and (ii) internal chirality positive components being zero at the boundaries. In the case 

of (i), twofold degenerated chiral zero modes appear which are localized towards specific directions of the 

rectangle pointed by an angle parameter θ . This leads to an implication for a new direction of pursuing the 

origin of three generations in the matter fields of the standard model, even though triple-degenerated zero 

modes are not realized in the six dimensions. When such 6d fermions couple with a 6d scalar with a vacuum 

expectation value, θ contributes to a mass matrix of zero-mode fermions consisting of Yukawa interactions. 

The emergence of the angle parameter θ originates from a rotational symmetry in the degenerated chiral 

zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii), this 

rotational symmetry is promoted to the two-dimensional conformal symmetry though no chiral massless 

zero mode appears. We also discuss the correspondence between our model on a rectangle and orbifold 

models in some details.
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1. Introduction

Considering extra dimensions has been a fascinating direction for deriving better understand-

ings on various aspects of the standard mode (SM) especially during the past two decades, 

e.g. on the hierarchy problem between the electroweak scale and an ultraviolet scale (see e.g. 

Refs. [1–5]). In general, when hidden spacial directions exist in our universe, we should delib-

erate on the profiles of fields along the directions. Here, the boundary conditions (BCs) of them 

at the circumference of extra dimensions play a significant role in the determination of mode 

functions, especially in the zero modes which correspond to the lowest modes of the effective 

mass appearing after the Kaluza–Klein (KK) decomposition among the extra spacial directions. 

A powerful and widely used precept for determining a class of BCs is the variational principle. 

An advantage of this method originates from the characteristic that we derive the equation of 

motion (EOM) of higher dimensional fields and necessary conditions for BCs simultaneously.

When a five-dimensional (5d) space takes the direct product of the four dimensional (4d) 

Minkowski spacetime times an interval, general discussions are found e.g. in Refs. [6–8], which 

include the possibility that fields contain boundary-localized interactions. Another avenue for 

discussing BCs is to consider discrete parities around the fixed points of orbifolds [9–12], which 

is not touched in this manuscript. An interesting point on an interval is that the simple 5d Dirac 

mass term M�(5d)�(5d) is allowed and the sign and the magnitude of the mass parameter M

describe the localization of the (single) massless chiral zero mode of �(5d), which is realized 

when we adopt the chiral boundary conditions, �
(5d)
R = 0 or �

(5d)
L = 0, at both of the two ends 

of an interval (see e.g. [13]).1 This mechanism is useful for creating the fermion mass hierarchies 

and mixing patterns observed in the SM in a natural sense [15–18].

Next, let us briefly look at the situation in six dimensions (6d), where two spacial directions are 

compactified and more complicated structures of extra dimensions can be realized. A fascinating 

aspect of two extra dimensions are the existence of nontrivial solitonic objects among the two 

directions, e.g. vortex [19,20] (see also Refs. [21,22]) and constant quantized magnetic flux [23]

(see also e.g. Refs. [24–31] with orbifolding), under which zero mode profiles become chiral, 

degenerated and quasi-localized. Then, considering this direction can lead to a simultaneous 

explanation of the three features of the SM, 4d chirality, three generations and mass hierarchies 

of the quarks and leptons. Another interesting possibility is the spontaneous compactification on 

S2 [32,33] (see also e.g. Ref. [34] as a review), where the radius is spontaneously stabilized by the 

cancellation between the curvature of S2 and the contribution from the monopole configuration 

of the extra U(1)X gauge field in the Einstein–Maxwell equation describing the system. Note 

that chiral zero modes are realizable when the U(1)X charges are suitably assigned. Other types 

of discussions are found e.g. in Refs. [35–37].2

Here, a different viewpoint is important, which is difference in Lorentz structures, since it 

restrict possible Lorentz representations of fermions in 5d and 6d. As widely known, only Dirac 

fermions can exist in 5d, while both of Dirac and Weyl fermions are possible in 6d, where the 

chirality which discriminates 6d Weyl fermions is different from the 4d chirality (see section 2

for details). A 6d Weyl fermion is decomposed into a pair of right and left-handed fermions 

with 4d chiralities, which is equivalent to a 4d Dirac fermion. Thereby, as we touched before-

1 On the S1/Z2 orbifold, the simple Dirac mass term is prohibited by the Z2 symmetry. On the other hand, Z2-odd 

mass terms are written down consistently and chiral zero modes can be localized under the presence of them [14].
2 See also Refs. [38–43] for topics associated with boundary structures.
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hand, nontrivial backgrounds or singular points (e.g. fixed points of T 2/Z2 [44], T 2/Z4 [45,

46], S2/Z2 [47] orbifolds or identified points on real projective plane (RP 2) [48], projective 

sphere [49]) are requested for realizations of chiral spectrum at the energy-lowest zero modes, 

where left or right zero modes are projected out.

In this paper, a generalized situation is scrutinized, when the 6d fermion is Dirac, which is 

equivalent to two 4d Dirac fermions. For simplicity, we have discussions on a rectangle, which is 

a simple 6d generalization of an interval in 5d, without introducing nontrivial backgrounds (e.g. 

solitonic configurations among the extra dimensions) or boundary-localized terms at the leading 

order.3 An apparent difference between 5d and 6d is the number of the directions to impose the 

boundary conditions on. In 5d, only one direction exists for imposing the BCs, while in 6d, two 

directions are found.

If the chiral boundary conditions, �R(x, y) = 0 or �L(x, y) = 0 at the boundaries, are al-

lowed for a 6d Dirac fermion, occurrence of chiral zero modes itself is expected. However, how 

many chiral modes are realized is rather unclear. Besides, the forms of such zero modes would be 

nontrivial. If multiple chiral zero modes can emerge, exploring this kind of directions would shed 

a new light on phenomenological model building in higher dimensional spacetime.4 Here, like 

the 5d case on an interval, the following 6d Dirac mass term M�� can be written down, where 

the mass parameter M is expected to describe directions and magnitudes of localized profiles at 

the zero modes.

Also, contemplating possible BCs of a 6d Dirac fermion itself would be captivating since 

generalized BCs beyond the Neumann and Dirichlet ones bring us nontrivial phenomena. For 

example, a complex scalar field on an interval under the Robin BCs at the two boundaries y =
0, L with two length parameters L±, confining phases are observed at a part of the parameter 

space of (L+, L−) [13]. Therefore, classifying the possible BCs of a 6d Dirac fermion can lead 

to a new properties of theories in extra dimension.5

This paper is organized as follows. In section 2, after introducing the setup of a 6d Dirac 

fermion on a rectangle and looking at properties of 6d Lorentz structure, we derive the EOM 

and necessary conditions for BCs via the variational principle, and subsequently classify possi-

ble boundary conditions under the requirement that the 4d Lorentz structure is maintained. In 

section 3, we concentrate on analyzing the profiles of zero modes and non-zero KK modes in 

the two specific classes, (i) a 4d chiral mode is projected out at the boundaries (�L(x, y) = 0

at boundaries); (ii) a two-dimensional (2d) chirality among the rectangle is projected out at the 

boundaries (�+(x, y) = 0 at boundaries). We note that analyzing all of possible configurations 

given in the classification in section 3 is beyond the scope of this paper, and the ‘opposite’ cases, 

(i’) �R(x, y) = 0 at boundaries; (ii’) �−(x, y) = 0 at boundaries, are easily declared based on 

the knowledge of the two cases concretely discussed in this section. In section 4, we construct 

corresponding cases by adopting the method of orbifold. In section 5, we recapitulate the result 

obtained in sections 3 and 4, and comment on it from various points of view. Section 6 is de-

voted to summarizing the whole discussions made in this manuscript. In Appendices A and B, 

we provide some details of calculations. In Appendix C, we show a concrete example that zero 

3 Even in the absent case of boundary-localized interactions at the leading order, such kind of interactions are induced 

by loop corrections in general [50–54].
4 Another possible motivation for discussing Dirac fermions is anomalies in higher dimensional spacetime (see 

e.g. [55–61]). Dirac fermions are less harmful than Weyl fermions since the bulk theory becomes vector-like (in a sense 

in higher dimensions).
5 One can refer to e.g. Refs. [62–68] for seeing other aspects of boundary conditions.



Y. Fujimoto et al. / Nuclear Physics B 922 (2017) 186–225 189

mode profiles of degenerate massless 4d chiral fermions can generate large mass splitting when 

(6d) fermions couple to a (6d) scalar with a vacuum expectation value (VEV).

2. Setup and possible boundary conditions

2.1. Setup of 6d Dirac fermion

At first in this section, we show our setup with mentioning details of adopted notations and 

useful formulas. Let us start with a 6d Dirac fermion � whose action is given as

S =

∫
d4x

L1∫

0

dy1

L2∫

0

dy2 �(x,y)
(
iŴA∂A − M

)
�(x,y), (2.1)

where xμ (μ = 0, 1, 2, 3) denote the coordinate of the 4d Minkowski spacetime and yj (j = 1, 2)

denote the coordinate of the 2d extra space directions. �(x, y) is an eight-component Dirac 

spinor on six dimensions. The 2d extra space is taken to be a rectangle whose lengths of the two 

sides along the y1 and y2 axes are represented by L1 and L2, respectively. In our convention, the 

six-dimensional Gamma matrices ŴA (A = μ, y1, y2) satisfy

{
ŴA,ŴB

}
= −2ηAB I8 (A,B = μ,y1, y2), (2.2)

(
ŴA

)†
=

{
+ŴA A = 0,

−ŴA A �= 0,
(2.3)

where the 6d metric is taken to be

ηAB = ηAB = diag(−1,1,1,1,1,1). (2.4)

In denotes the n-by-n identity matrix. The Dirac conjugate � is defined, as usual, by � ≡ �†Ŵ0. 

The following relations easily derived from Eq. (2.2) are useful

(
ŴA

)2
=

{
+I8 A = 0,

−I8 A �= 0,

(
iŴy1

)2
=

(
iŴy2

)2
= I8. (2.5)

As widely known, the degrees of freedom (DOF) of a 6d Dirac spinor is equivalent to four 4d 

Weyl spinors. Reflecting this fact, the two types of chiralities, R/L and +/−, are defined as +1

or −1 eigenvalues of the following two matrices,

Ŵ5 ≡ iŴ0Ŵ1Ŵ2Ŵ3, Ŵy ≡ iŴy1Ŵy2 , (2.6)

Ŵ5�R± = +�R±, Ŵ5�L± = −�L±, (2.7)

Ŵy�R± = ±�R±, Ŵy�L± = ±�L±, (2.8)

where the following relations are useful: (Ŵ5)† = Ŵ5, (Ŵy)† = Ŵy , (Ŵ5)2 = (Ŵy)2 = I8. Here, 

the eigenvalues of Ŵ5 and Ŵy correspond to the ordinary 4d chirality and the internal chirality 

among the extra spacial directions [69], respectively. The 6d chirality, which is defined as the 

eigenvalues of the following matrix, is expressed by use of the two eigenvalues as

Ŵ7 ≡ −Ŵ0Ŵ1Ŵ2Ŵ3Ŵy1Ŵy2 = Ŵ5 Ŵy (2.9)
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and the value is automatically determined. The corresponding two types of projection matrices 

are defined in the usual manner,6

PR/L ≡
I8 ± Ŵ5

2
, P± ≡

I8 ± Ŵy

2
. (2.10)

Here, the coexistence of the two eigenvalues is ensured by the relation Ŵ5Ŵy = ŴyŴ5, which 

leads to PR/LP± =P±PR/L. These projective operators fulfill the relations

ŴA
PR/L =

{
PL/RŴA A = 0,1,2,3,

PR/LŴA A = y1, y2,
ŴA

P± =

{
P±ŴA A = 0,1,2,3,

P∓ŴA A = y1, y2,
(2.11)

where we use them throughout our discussions on this manuscript.7 Now, it is easy to understand 

the decomposition of a 6d Dirac fermion � ,

� = �R+ + �L+ + �R− + �L−, (2.12)

with the eigenstates of the two eigenvalues

�R± =PRP±�, �L± =PLP±�. (2.13)

The corresponding projection operation for the 6d chirality should take the form

PŴ7=±1 ≡
I8 ± Ŵ7

2
. (2.14)

The commutativities, PR/LPŴ7=±1 =PŴ7=±1PR/L and P±PŴ7=±1 =PŴ7=±1P± are easily un-

derstand by Eq. (2.9). As we pointed out beforehand, the value of Ŵ7 is determined when we fix 

the 4d chirality and the internal chirality, where the following correspondence is easily found [cf. 

Eq. (2.22)]

�R+ = �R, Ŵ7=+1, �L+ = �L, Ŵ7=−1, �R− = �R, Ŵ7=−1, �L− = �L, Ŵ7=+1,

(2.15)

�Ŵ7=+1 = �R, Ŵ7=+1 + �L, Ŵ7=+1, �Ŵ7=−1 = �R, Ŵ7=−1 + �L, Ŵ7=−1. (2.16)

The decomposition of the 6d Dirac fermion �

�� = �Ŵ7=+1�Ŵ7=−1 + �Ŵ7=−1�Ŵ7=+1 (2.17)

immediately leads to that the 6d bulk mass term vanishes when a 6d Weyl fermion is consid-

ered. Being apparent from Eq. (2.9), two of the eigenvalues of Ŵ5, Ŵy and Ŵ7 are independent, 

where the other one is automatically determined. We adopt Ŵ5 and Ŵy as independent degrees of 

freedom, where this choice is convenient for the arguments developed in this manuscript.

For concrete decompositions of 6d spinor components, the following representation of the 

Gamma matrices is convenient,

6 A set of projective operators into two states s1 and s2 holds the properties: (Ps1,2
)2 = (Ps1,2

), Ps1
Ps2

= Ps2
Ps1

= 0, Ps1
+Ps2

= 1.
7 The following relations are useful to understand the formulas: ŴμŴ5 = −Ŵ5Ŵμ, Ŵyj Ŵ5 = +Ŵ5Ŵ

yj (j = 1, 2), 

ŴμŴ
yj = −Ŵ

yj Ŵμ, ŴμŴy = +ŴyŴμ , Ŵyj Ŵy = −ŴyŴ
yj .
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Ŵμ = I2 ⊗ γ μ =

(
γ μ 0

0 γ μ

)
,

Ŵy1 = iσ1 ⊗ γ 5 =

(
0 iγ 5

iγ 5 0

)
,

Ŵy2 = iσ2 ⊗ γ 5 =

(
0 γ 5

−γ 5 0

)
, (2.18)

where γ μ represent the 4d part of the 6d Clifford algebra with the concrete forms

γ μ =

(
0 σμ

σμ 0

)
with σμ = (I2,−σ ), σμ = (I2,σ ). (2.19)

σ means the set of the Pauli matrices (σ1, σ2, σ3). γ
5 is defined in the same manner as

γ 5 = iγ 0γ 1γ 2γ 3 =

(
I2 0

0 −I2

)
. (2.20)

The matrices representing the chiralities in 6d are expressed with the following diagonal forms

Ŵ5 = I2 ⊗ γ 5 =

(
γ 5 0

0 γ 5

)
,

Ŵy = σ3 ⊗ I4 =

(
14 0

0 −I4

)
,

Ŵ7 = σ3 ⊗ γ 5 =

(
γ 5 0

0 −γ 5

)
. (2.21)

In this basis, the eigenstates of Ŵ5 and Ŵy take the forms of

�R+ =

⎛
⎜⎜⎝

ξR+

0

0

0

⎞
⎟⎟⎠ , �L+ =

⎛
⎜⎜⎝

0

ξL+

0

0

⎞
⎟⎟⎠ , �R− =

⎛
⎜⎜⎝

0

0

ξR−

0

⎞
⎟⎟⎠ , �L− =

⎛
⎜⎜⎝

0

0

0

ξL−

⎞
⎟⎟⎠ , (2.22)

where ξR± and ξL± are two-component spinors.

Finally, let us look at the 4d subgroup of the 6d Lorentz transformation of a 6d Dirac spinor � , 

which is represented as

�(x,y) → � ′
(
x′, y

)
= S(ω)�(x, y), (2.23)

with

S−1(ω)Ŵμ S(ω) = �μ
ν(ω)Ŵν . (2.24)

S(ω) is the 4d Lorentz transformation matrix for 6d spinors and is expressed with the boost/ro-

tation parameters ωμν in the present representation of ŴA as

S(ω) = exp

(
−

i

2
ωμνJ

μν

)
with Jμν ≡

i

4

[
Ŵμ,Ŵν

]
=

i

4

(
[γ μ, γ ν] 0

0 [γ μ, γ ν]

)

=

⎛
⎜⎜⎝

SR(ω) 0 0 0

0 SL(ω) 0 0

0 0 SR(ω) 0

0 0 0 SL(ω)

⎞
⎟⎟⎠ , (2.25)
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where SR/L(ω) are the representations for 4d two-component spinors with right/left chiralities 

defined as

SR(ω) = exp

(
1

8
ωμν

(
σμσ ν − σ νσμ

))
,

SL(ω) = exp

(
1

8
ωμν

(
σμσ ν − σ νσμ

))
. (2.26)

Here, the form in Eq. (2.24) is converted to the two-component sense of

S−1
R (ω)σμSL(ω) = �μ

ν(ω)σ ν, S−1
L (ω)σμSR(ω) = �μ

ν(ω)σ ν . (2.27)

As we can clearly understand from Eq. (2.25), right- and left-handed components do not mix 

each other under the 4d Lorentz transformation.

2.2. Requirement via variational principle

The variational principal is the powerful doctrine for determining the forms of equation of 

motions and boundary conditions. Let us take a variation of �(x, y) in the action in Eq. (2.1)

δS =

∫
d4x

L1∫

0

dy1

L2∫

0

dy2 �(x,y)
(
iŴA∂A − M

)
δ�(x, y), (2.28)

which, after integrations by parts, results in

δS =

∫
d4x

L1∫

0

dy1

L2∫

0

dy2 �(x,y)
(
−iŴA

←−
∂A − M

)
δ�(x, y)

+

∫
d4x

{ L2∫

0

dy2

[
�(x,y) iŴy1δ�(x, y)

]y1=L1

y1=0

+

L1∫

0

dy1

[
�(x,y) iŴy2δ�(x, y)

]y2=L2

y2=0

}
. (2.29)

The above form gives us the EOM of � (equivalently for �)

�(x,y)
(
−iŴA

←−
∂A − M

)
= 0

(
or

(
iŴA∂A − M

)
�(x,y) = 0

)
. (2.30)

Also, focusing on the above form leads to an interpretation of vanishing the surface terms for 

consistency8

[
�(x,y)Ŵy1δ�(x, y)

]
y1=0,L1

= 0 and
[
�(x,y)Ŵy2δ�(x, y)

]
y2=0,L2

= 0. (2.31)

Here, δ�(x, y) is an arbitrary variation of �(x, y), and δ�(x, y) can be independent of �(x, y). 

It would seem that these forms are not so friendly for discussing general features of BCs. Thereby 

at first, we focus on the following forms

8 See [70] for a discussion on BCs in 6d based on the variational principle.
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[
�(x,y)Ŵy1�(x,y)

]
y1=0,L1

= 0 and
[
�(x,y)Ŵy2�(x,y)

]
y2=0,L2

= 0, (2.32)

which look a necessary condition for (2.31). In general, it is nontrivial whether the two re-

lations in Eq. (2.31) are satisfied when �(x, y) [not δ�(x, y)] takes a configuration derived 

from Eq. (2.32) at the boundaries. Later, we check that all of the configurations of �(x, y) via 

Eq. (2.32) result in the realization of (2.31). When we start from (2.32), every possible BC should 

fulfill the two requirements in Eq. (2.32).

2.3. Classification of boundary conditions along y1 direction

As discussed, e.g. in Refs. [13], the classification of boundary conditions arrives at analyzing 

the current forms which appear as surface terms in the variation of actions. Now, two extra spacial 

directions are in existence, and then we should analyze the two types of the current form shown 

in Eq. (2.32) individually.

Firstly in this section, we focus on the former form in Eq. (2.32) for the y1 direction. By use 

of the following relations (which are easily derived from Eqs. (2.2) and (2.10)),

Ŵ0Ŵyj �R/L± =PL/RP∓

(
Ŵ0Ŵyj �R/L±

)
(j = 1,2),

(�R/L±)† = (�R/L±)†
PR/LP±, (2.33)

we find the following transformation

0 =
[
�(x,y)Ŵy1�(x,y)

]
y1=0,L1

=
[
ρ

†
RλR + λ

†
RρR

]
y1=0,L1

, (2.34)

with

ρR =

(
�R+

�R−

)
, λR =

(
Ŵ0Ŵy1�L−

Ŵ0Ŵy1�L+

)
. (2.35)

Interestingly, under the realization of the condition in Eq. (2.34), the final form of Eq. (2.34)

is reformulated with a nonzero real parameter c0 as

|ρR + c0λR|2 = |ρR − c0λR|2 at y1 = 0,L1. (2.36)

Because the nonzero components of �R± and �L± are represented by two-component spinors, 

a general solution to (2.36) turns out to be given by

ρR + c0λR = U(ρR − c0λR) at y1 = 0,L1, (2.37)

with U ∈ U(4). After some straightforward calculations, we reach the following form

(I4 − U)

(
ξR+

ξR−

)
= (I4 + U)ic0

(
ξL−

ξL+

)
at y1 = 0,L1. (2.38)

Here, to maintain the 4d Lorentz structure shown in Eq. (2.25), where each right-handed and 

left-handed components are 4d-Lorentz transformed individually, U should not contain spinor 

indices. Accordance with this requirement leads to the reduction of the form in Eq. (2.38) into

(I4 − U ⊗ I2)

(
ξR+

ξR−

)
= (I4 + U ⊗ I2)ic0

(
ξL−

ξL+

)
at y1 = 0,L1, (2.39)

where U is a two-by-two unitary matrix belonging to the U(2) group, which acts only on the 

“flavor” DOFs (+ or −).
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In the following part, we classify possible BCs which preserve the 4d Lorentz structure from 

the form in Eq. (2.39). After a glance at (2.39), we recognize that the right-handed spinors 

are mixed with the left-handed ones in general, which could violate the 4d Lorentz invariance. 

Meaningful solutions are a subset of general solutions, where right-handed and left-handed com-

ponents are 4d-Lorentz transformed separately. Under the necessity, the following three classes 

are possible,

Type I-y1 : U = +I2, (2.40)

Type II-y1 : U = −I2, (2.41)

Type III-y1 : U = �n · �σ =

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
, (2.42)

with �σ = (σ1, σ2, σ3) and �n = (cosφ sin θ, sinφ sin θ, cos θ), which is the three-dimensional vec-

tor specifying a point of a unit two-dimensional sphere S2.9 Here, the possibility U = −�n · �σ
gives us no new information after the consideration of U = +�n · �σ . Therefore, we dropped it. 

Each of the conditions is rewritten as the projections of a part of the 6d spinor components as

Type I-y1 :

(
ξL−(x, y)

ξL+(x, y)

)
= 0 at y1 = 0,L1, (2.43)

Type II-y1 :

(
ξR+(x, y)

ξR−(x, y)

)
= 0 at y1 = 0,L1, (2.44)

Type III-y1 : P
′
�n·�σ=−1(φ, θ)

(
ξR+(x, y)

ξR−(x, y)

)
= 0 and

P
′
�n·�σ=+1(φ, θ)

(
ξL−(x, y)

ξL+(x, y)

)
= 0 at y1 = 0,L1. (2.45)

The projectors for pairs of two-component spinors P ′
�n·�σ=±1(φ, θ) pick up the eigenstates of the 

variable �n · �σ being +1 or −1, which is well defined because of (�n · �σ)2 = I2 (where we used 

�n · �n = 1), (�n · �σ)† = �n · �σ , as

P
′
�n·�σ=±1(φ, θ) =

(
I2 ± �n · �σ

2

)
⊗ I2. (2.46)

The two conditions in Eq. (2.45) for Type III-y1 are unified in a single form as

Ŵ̃

⎛
⎜⎜⎝

ξR+

ξR−

ξL−

ξL+

⎞
⎟⎟⎠ = +

⎛
⎜⎜⎝

ξR+

ξR−

ξL−

ξL+

⎞
⎟⎟⎠ at y1 = 0,L1, with Ŵ̃ ≡

(
(�n · �σ) ⊗ I2 0

0 −(�n · �σ) ⊗ I2

)
,

(2.47)

which is equivalent to the form at y1 = 0, L1,

(�n · ��)

⎛
⎜⎜⎝

ξR+

ξL+

ξR−

ξL−

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ξR+

ξL+

ξR−

ξL−

⎞
⎟⎟⎠, with

9 A more detailed description is found in the separate publication [71] on the classification.
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�n · �� ≡

⎛
⎜⎜⎝

cos θ I2 0 e−iφ sin θ I2 0

0 cos θ I2 0 −eiφ sin θ I2

eiφ sin θ I2 0 − cos θ I2 0

0 −e−iφ sin θ I2 0 − cos θ I2

⎞
⎟⎟⎠ , (2.48)

where the eight-by-eight flavor matrices �� = (�1, �2, �3) are defined as

�1 = −iŴy1 , �2 = −iŴy2Ŵ5, �3 = Ŵy, (2.49)

which are found to satisfy the relations

{�k,�l} = 2δkl I8, (�k)
† = �k (k, l = 1,2,3), (2.50)

(
Ŵ0Ŵy1

)
�k = −�k

(
Ŵ0Ŵy1

)
. (2.51)

With the property (�n · ��)2 = I8 (which is easily derived from Eq. (2.50)), the following projectors 

for eight-component spinors are consistently defined as

P�n· ��=±1(φ, θ) =

(
I8 ± �n · ��

2

)
. (2.52)

The properties also hold for the projectors [easily derived with (2.50) and (2.51)],

Ŵ0Ŵy1��n· ��=±1 =P�n· ��=∓1(φ, θ)
(
Ŵ0Ŵy1��n· ��=±1

)
,

(��n· ��=±1)
† = (��n· ��=±1)

†
P�n· ��=±1(φ, θ), (2.53)

where the counterpart for PL/R and P± are found in Eq. (2.33). ��n· ��=±1 are the eigenstates of 

�n · ��, which are straightforwardly defined as ��n· ��=±1 ≡P�n· ��=±1(φ, θ)� .

Now, the three possible BCs in Eqs. (2.43)–(2.45) are represented as single projections for a 

6d Dirac spinor by

Type I-y1 : PL�(x,y) = 0 at y1 = 0,L1, (2.54)

Type II-y1 : PR�(x,y) = 0 at y1 = 0,L1, (2.55)

Type III-y1 : P�n· ��=−1(φ, θ)�(x, y) = 0 at y1 = 0,L1. (2.56)

We note that the eigenstate of �n · �� = −1 is a mixture of two types of eigenvalues, R/L

and ± in general, but we can find two exceptional points of (φ, θ) = (0, π) and (0, 0), where 

P�n· ��=−1(φ, θ) becomes equivalent to P± as

Type III-y1 when (φ, θ) = (0,π) : P+�(x,y) = 0 at y1 = 0,L1, (2.57)

Type III-y1 when (φ, θ) = (0,0) : P−�(x,y) = 0 at y1 = 0,L1. (2.58)

Finally, we back to the original form in Eq. (2.31) of the form. By use of the properties of 

(2.33) and (2.53). The following transformations are possible at y1 = 0, L1,

�Ŵy1δ� = �†Ŵ0Ŵy1δ� = �
†
RŴ0Ŵy1δ�L + �

†
LŴ0Ŵy1δ�R

= �
†

�n· ��=+1
Ŵ0Ŵy1δ��n· ��=−1 + �

†

�n· ��=−1
Ŵ0Ŵy1δ��n· ��=+1.

(2.59)

Now, under the assumption that �(x, y) and δ�(x, y) obey the same conditions at the bound-

aries, it is obvious that when �(x, y) takes the values designated in either of (2.54), (2.55) or 

(2.56), the original condition for the BC along the y1 directions is satisfied even though the 

corresponding unconstrained part is still arbitrary.
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2.4. Classification of boundary conditions along y2 direction

The discussion for the latter form in Eq. (2.32) for the y2 direction is completely parallel to 

the one made in the previous section 2.3, and then we focus only on a major part of discussions 

without mentioning details.

The corresponding current form is transformed as

0 =
[
�(x,y)Ŵy2�(x,y)

]
y2=0,L2

=
[
ρ′

R
†
λ′

R + λ′
R

†
ρ′

R

]
y2=0,L2

, (2.60)

with

ρ′
R =

(
�R+

�R−

)
, λ′

R =

(
Ŵ0Ŵy2�L−

Ŵ0Ŵy2�L+

)
. (2.61)

The consistent solutions are derived from the following corresponding condition (of Eq. (2.39)) 

with a nonzero real constant c′
0

(I4 − U ⊗ I2)

(
ξR+

ξR−

)
= (I4 + U ⊗ I2)

(
−c′

0

)(−ξL−

ξL+

)
at y2 = 0,L2, (2.62)

with requesting the individual 4d Lorentz transformations shown in Eq. (2.25). Here apparently, 

the conditions for U basically take the same forms as

Type I-y2 : U = +I2, (2.63)

Type II-y2 : U = −I2, (2.64)

Type III-y2 : U = �n′ · �σ =

(
cos θ ′ e−iφ′

sin θ ′

eiφ′
sin θ ′ − cos θ ′

)
, (2.65)

where in the case of Type III-y2, we can take different variables φ′ and θ ′ for parameterizing

a position on a unit two-dimensional sphere S2. On the other hand, the corresponding form of 

Eq. (2.48) takes the different shape (at y2 = 0, L2) as

(
�n′ · ��′

)
⎛
⎜⎜⎝

ξR+

ξL+

ξR−

ξL−

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ξR+

ξL+

ξR−

ξL−

⎞
⎟⎟⎠, with

�n′ · ��′ ≡

⎛
⎜⎜⎝

cos θ ′ I2 0 e−iφ′
sin θ ′ I2 0

0 cos θ ′ I2 0 eiφ′
sin θ ′ I2

eiφ′
sin θ ′ I2 0 − cos θ ′ I2 0

0 e−iφ′
sin θ ′ I2 0 − cos θ ′ I2

⎞
⎟⎟⎠ , (2.66)

depicted with the different set of the eight-by-eight flavor matrices ��′ = (�′
1, �

′
2, �

′
3) defined as

�′
1 = −iŴy1Ŵ5, �′

2 = −iŴy2 , �′
3 = Ŵy . (2.67)

By use of the similar projective matrices

P �n′· ��′=±1

(
φ′, θ ′

)
=

(
I8 ± �n′ · ��′

2

)
, (2.68)

the three possible BCs are represented in terms of the 6d Dirac fermion as follows,
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Type I-y2 : PL�(x,y) = 0 at y2 = 0,L2, (2.69)

Type II-y2 : PR�(x,y) = 0 at y2 = 0,L2, (2.70)

Type III-y2 : P �n′· ��′=−1

(
φ′, θ ′

)
�(x,y) = 0 at y2 = 0,L2. (2.71)

The following specific cases also exist for Type III-y2,

Type III-y2 when
(
φ′, θ ′

)
= (0,π) : P+�(x,y) = 0 at y2 = 0,L2, (2.72)

Type III-y2 when
(
φ′, θ ′

)
= (0,0) : P−�(x,y) = 0 at y2 = 0,L2. (2.73)

The properties shown in Eqs. (2.50), (2.51) and (2.53) are maintained after the replacements, 

�k → �′
k and Ŵy1 → Ŵy2 . Thereby, the discussion around Eq. (2.59) is applicable also for the 

y2 direction.

2.5. Comment on 6d Weyl case

Here, we briefly comment on the possible BCs when the 6d fermion is Weyl-type, whose 6d 

chirality is defined in Eq. (2.9). In the Weyl case, possible BCs are classified in the same way, 

but, no U(2) rotation is possible, which is found in Eq. (2.39). Thereby, only the following types 

are realizable along yi (i = 1, 2) for �Ŵ7=+1 or �Ŵ7=−1,

Type I-yi : PL�Ŵ7=±1(x, y) = 0 at yi = 0,Li, (2.74)

Type II-yi : PR�Ŵ7=±1(x, y) = 0 at yi = 0,Li . (2.75)

We add a few sentences on Type-III. From Eqs. (2.48) [and/or (2.66)], we recognize that �n(′) ·
��(′) does not become Ŵ5 and Ŵ7 in any choice of (φ(′), θ (′)). Thereby, the following condition is 

not derived in the present framework,

PŴ7=±1�Ŵ7=±1(x, y) = 0 at yi = 0,Li . (2.76)

In Type-III for a 6d Weyl fermion, only the cases (φ(′), θ (′)) = (0, π) or (0, 0) are meaningful. 

But, they are equivalent to Type-I or Type-II for a 6d Weyl fermion, which means that no new 

possibility is induced.

3. KK expansion in two specific BCs

As we concluded in the previous section 2, for each of the y1 and y2 directions, the three types 

of BCs are possible (Eqs. (2.54)–(2.56) for y1, Eqs. (2.69)–(2.71) for y2, respectively).

The cases with phenomenological interests are the following two ones,

Case I [Type I-y1 and Type I-y2] : �L±(x, y) = 0 at y1 = 0,L1 and y2 = 0,L2,

(3.1)

Case II [Type II-y1 and Type II-y2] : �R±(x, y) = 0 at y1 = 0,L1 and y2 = 0,L2,

(3.2)

where left-handed components in Eq. (3.1) or right-handed components in Eq. (3.2) are set to 

be zero at the boundaries and no corresponding zero mode is expected. On the other hand, the 

components with opposite 4d chiralities [right modes in Eq. (3.1) and left modes in Eq. (3.2)] 

have no restriction from the BCs and corresponding chiral modes can be realized.
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When we adopt Type-III BCs, the lowest part may not be chiral since Type III does not contain 

the chiral cases (Type I and Type II), and then this possibility has less interests in the phenomeno-

logical point of view. On the other hand, we find some interesting aspects in the theoretical point 

of view, and briefly investigate this class by focusing on one of the simplest cases of

Case III
[
Type III-(2.57) and Type III-(2.72)

]
:

�L/R+(x, y) = 0 at y1 = 0,L1 and y2 = 0,L2, (3.3)

with the specific choice of the parameters on S2, (φ, θ) = (φ′, θ ′) = (0, π).

3.1. Case II — a chiral possibility

At first, we focus on the case where the emergence of left-handed 4d chiral modes are ex-

pected. Before concrete discussion on this case, let us comment on Case I where right-handed 

chiral 4d modes would occur. All the following discussions are parallel to those of Case I (which 

are expected) and we give a brief note on Case I after the end of the discussions on Case II.

The EOM of the 6d fermion � shown in Eq. (2.30) is expressed in a more concrete manner,
[
iŴμ∂μ + iŴy1∂y1

+ iŴy2∂y2
− M

]
�(x,y) = 0, (3.4)

which can be decomposed into the following subset by use of the two types of the projective 

matrices in Eq. (2.10) as

iŴμ∂μ�L+ +
(
iŴy1∂y1

+ iŴy2∂y2

)
�R− − M�R+ = 0, (3.5)

iŴμ∂μ�L− +
(
iŴy1∂y1

+ iŴy2∂y2

)
�R+ − M�R− = 0, (3.6)

iŴμ∂μ�R+ +
(
iŴy1∂y1

+ iŴy2∂y2

)
�L− − M�L+ = 0, (3.7)

iŴμ∂μ�R− +
(
iŴy1∂y1

+ iŴy2∂y2

)
�L+ − M�L− = 0, (3.8)

by casting the following products of the projectors from the left-hand sizes of (3.4), PRP+, 

PRP−, PLP+, PLP−, respectively. These forms can be written by use of Eqs. (2.5) and (2.8) as

iŴμ∂μ�L± + (∂y1
∓ i∂y2

)iŴy1�R∓ − M�R± = 0, (3.9)

iŴμ∂μ�R± + (∂y1
∓ i∂y2

)iŴy1�L∓ − M�L± = 0. (3.10)

3.1.1. KK modes

The mode functions for �R± are easily obtained through the BCs at Eq. (3.2) with suitable 

normalizations as

fn1,n2
(y1, y2) =

√
2

L1

√
2

L2
sin

(
n1π

L1
y1

)
sin

(
n2π

L2
y2

)
, (3.11)

with the KK indices n1 and n2. The functions satisfy the relations

fn1,n2
(y1, y2) = 0 at y1 = 0,L1 and y2 = 0,L2, (3.12)

L1∫

0

dy1

L2∫

0

dy2

(
fm1,m2

(y1, y2)
)∗

fn1,n2
(y1, y2) = δm1,n1

δm2,n2
. (3.13)

The case n1 and/or n2 being zero results in a vanishing profile, which suggests that no zero 

mode exists as right-handed chiral modes. Reflecting on this fact, the ranges of n1 and n2 are 

n1,2 = 1, 2, 3, · · · . Now, the KK expansion of �R± are easily made as
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�R±(x, y) =

∞∑

n1=1

∞∑

n2=1

ψ
(n1,n2)
R± (x)fn1,n2

(y1, y2), (3.14)

where ψ
(n1,n2)
R± (x) are the corresponding 4d chiral fields with right chirality.

The remaining left-handed part is described through Eqs. (3.5) and (3.6) as

iŴμ∂μ�L± = −
(
iŴy1∂y1

+ iŴy2∂y2

)
�R∓ + M�R±

= −iŴy1(∂y1
∓ i∂y2

)�R∓ + M�R±

=

∞∑

n1,n2=1

[(
−iŴy1

)
ψ

(n1,n2)
R∓ (x)(∂y1

∓ i∂y2
)fn1,n2

(y)

+ Mψ
(n1,n2)
R± (x)fn1,n2

(y)
]
, (3.15)

which implies the form of �L± as

�L±(x, y) =

∞∑

n1,n2=1

[
η

(n1,n2)
L± (x) an1,n2

(∂y1
∓ i∂y2

)fn1,n2
(y)

+ Mζ
(n1,n2)
L± (x) bn1,n2

fn1,n2
(y)

]
(+ zero modes), (3.16)

where η
(n1,n2)
L± and ζ

(n1,n2)
L± are 4d left-handed chiral spinors; values of an1,n2

and bn1,n2
should 

be determined through correct normalizations. The possible zero-mode part is out of our consid-

eration at this stage, and we come back to the discussion on it later.

Additional information on an1,n2
η

(n1,n2)
L± (x) and bn1,n2

ζ
(n1,n2)
L± (x) is extracted when we sub-

stitute the form of (3.16) in Eqs. (3.7) and (3.8) at the boundaries, which is

iŴy1ζ
(n1,n2)
L∓ (x) bn1,n2

= Mη
(n1,n2)
L± (x) an1,n2

. (3.17)

Now, the form of �L± can be expressed without bn1,n2
ζ

(n1,n2)
L± (x) as

�L±(x, y) =

∞∑

n1,n2=1

an1,n2

[
η

(n1,n2)
L± (x)(∂y1

∓ i∂y2
)fn1,n2

(y)

+ M
(
iŴy1

)
η

(n1,n2)
L∓ (x)fn1,n2

(y)
]
(+ zero modes). (3.18)

When we re-substitute (3.14) and (3.18) in Eqs. (3.5)–(3.8), after some manipulations, the 

relations between ηL±(x) and ψR±(x) are declared as follows,

an1,n2
iŴμ∂μη

(n1,n2)
L∓ (x) +

(
iŴy1

)
ψ

(n1,n2)
R± (x) = 0, (3.19)

iŴμ∂μψ
(n1,n2)
R± (x) − an1,n2

(mn1,n2
)2
(
iŴy1

)
η

(n1,n2)
L∓ (x) = 0, (3.20)

with

mn1,n2
=

√

M2 +

(
n1π

L1

)2

+

(
n2π

L2

)2

. (3.21)

From Eqs. (3.19) and (3.20), with algebraic calculations, we reach the Klein–Gordon equations,

[∂μ∂μ − (mn1,n2
)2]ψ

(n1,n2)
R± (x) = 0,

[
∂μ∂μ − (mn1,n2

)2
]
η

(n1,n2)
L± (x) = 0, (3.22)

where the form of an1,n2
is not yet determined.
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By use of the whole information which we have obtained, to derive the effective Lagrangian 

of the KK part is tedious but straightforward. After a bit lengthy estimation, the following form 

is derived

S|KK part =

∫
d4x

∞∑

n1,n2=1

{
ψ

(n1,n2)

R+ (x)iŴμ∂μψ
(n1,n2)
R+ (x) + ψ

(n1,n2)

R− (x)iŴμ∂μψ
(n1,n2)
R− (x)

+ η
(n1,n2)
L+ (x)iŴμ∂μη

(n1,n2)
L+ (x) + η

(n1,n2)
L− (x)iŴμ∂μη

(n1,n2)
L− (x)

− mn1,n2
ψ

(n1,n2)

R+ (x)
(
iŴy1

)
η

(n1,n2)
L− (x) − mn1,n2

ψ
(n1,n2)

R− (x)
(
iŴy1

)
η

(n1,n2)
L+ (x)

+ mn1,n2
η

(n1,n2)
L+ (x)

(
iŴy1

)
ψ

(n1,n2)
R− (x) + mn1,n2

η
(n1,n2)
L− (x)

(
iŴy1

)
ψ

(n1,n2)
R+ (x)

}
,

(3.23)

where the factors an1,n2
are fixed through the correct normalizations in the η

(n1,n2)
L± ’s kinetic terms 

as

|an1,n2
|2 =

1

(mn1,n2
)2

→ an1,n2
=

1

mn1,n2

. (3.24)

Finally, let us convert the above form into the standard shape by the redefinition of the fields of

ξ
(n1,n2)
L± (x) ≡

(
iŴy1

)
η

(n1,n2)
L∓ (x),

χ
(n1,n2)
± (x) ≡ ψ

(n1,n2)
R± (x) + ξ

(n1,n2)
L± (x), (3.25)

where adopting these bases leads to

S|KK part =

∫
d4x

∞∑

n1,n2=1

{
χ

(n1,n2)
+ (x)

[
iŴμ∂μ − mn1,n2

]
χ

(n1,n2)
+ (x)

+ χ
(n1,n2)
− (x)

[
iŴμ∂μ − mn1,n2

]
χ

(n1,n2)
− (x)

}
. (3.26)

Here, in each level of the KK indices, two Dirac fermions χ
(n1,n2)
± (x) appear with the corre-

sponding physical mass mn1,n2
.

3.1.2. Zero modes

Here, zero modes mean massless modes which should satisfy the following relations

iŴμ∂μ�
(0)
L±(x, y) = 0, (3.27)

iŴμ∂μ�
(0)
R±(x, y) = 0, (3.28)

under which the 6d Dirac equations in (3.9) and (3.10) are reduced to

(∂y1
∓ i∂y2

)iŴy1�
(0)
R∓(x, y) − M�

(0)
R±(x, y) = 0, (3.29)

(∂y1
∓ i∂y2

)iŴy1�
(0)
L∓(x, y) − M�

(0)
L±(x, y) = 0, (3.30)

where the superscript (0) designates that the fields are zero modes. Here, right-handed and left-

handed modes are not entangled in the equations, which is the significant feature emerging only 

in the massless mode.

Under the chiral boundary conditions in Eq. (3.2), no nonvanishing localized profile is possi-

ble for the right-handed components within the finite system of the rectangle. Thereby, we focus 



Y. Fujimoto et al. / Nuclear Physics B 922 (2017) 186–225 201

on the left-handed components described by Eq. (3.30). Different from the right-handed part, no 

boundary condition is assigned for the left modes.

It is easy to derive the following forms from Eq. (3.30),

[
(∂y1

)2 + (∂y2
)2 − M2

]
�

(0)
L±(x, y) = 0. (3.31)

We note that the massless zero modes of the above equations are suggested to be bound states 

since the eigenvalues of (∂y1
)2 + (∂y2

)2 should be positive, i.e. M2. In this manuscript, we take 

the following Ansatz, which may describe the simplest localized solution on the 2d plane,

�
(0)
L±(x, y) = N± ξ

(0)
L±(x)ea±y1+b±y2 , (3.32)

where a± and b± are complex numbers in general which should obey the relation derived from 

Eq. (3.31) of

(a±)2 + (b±)2 = M2. (3.33)

It is reasonably parametrized as

a± ≡ M cos θ±, b± ≡ M sin θ± (θ± ∈ C), (3.34)

which is ensured by the trigonometric relation cos2 θ± + sin2 θ± = 1 (even though the parameters 

θ± are complex).

Substituting the Ansatz shown in Eq. (3.32) in the two equations of (3.30) brings us the fol-

lowing relations,

θ+ = θ− ≡ θ, (3.35)

N+ ξ
(0)
L+(x) = N− e−iθ iŴy1ξ

(0)
L−(x), (3.36)

N− ξ
(0)
L−(x) = N+ e+iθ iŴy1ξ

(0)
L+(x), (3.37)

where (3.36) or (3.37) describes the connection between the ‘+’ mode and ‘−’ mode. Now, we 

find the zero modes �
(0)
L±(x, y) to be of the form10

�
(0)
L+(x, y) =

n∑

j=1

Nj ξ
(0)
Lj (x) eM(cos θj y1+sin θj y2), (3.39)

�
(0)
L−(x, y) =

n∑

j=1

Nj eiθj
(
iŴy1

)
ξ

(0)
Lj (x) eM(cos θj y1+sin θj y2), (3.40)

where n denotes the number of independent zero modes, which are discriminated by the index j . 

It is important to note that the number n is not determined at the present stage.

The value of n is fixed through the process of deriving effective action of the zero modes. 

After some straightforward calculations, we reach

10 We mention that the integrated form over the complex parameter θ

�
(0)
L+(x, y) = N ξ

(0)
L

(x) ×

∫
d2θ h(θ)eM(cos θy1+sin θy2) (3.38)

with an arbitrary function h(θ) on θ is a solution of the equation. Details of such a generalized case are not touched in 

this manuscript.
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S|zero-mode part =

∫
d4x

L1∫

0

dy1

L2∫

0

dy2

{
�

(0)

L+(x, y)iŴμ∂μ�
(0)
L+(x, y)

+ �
(0)

L−(x, y)iŴμ∂μ�
(0)
L−(x, y)

}

=

∫
d4x

{
n∑

j=1

|Nj |
2
(
1 + e

−i(θ∗
j −θj ))

ξ
(0)

Lj (x)iŴμ∂μξ
(0)
Lj (x)

×

L1∫

0

dy1

L2∫

0

dy2 e
M[(cos θ∗

j +cos θj )y1+(sin θ∗
j +sin θj )y2]

+

n∑

j,k=1,
j �=k

N∗
j Nk

(
1 + e

−i(θ∗
j −θk)

)
ξ

(0)

Lj (x)iŴμ∂μξ
(0)
Lk (x)

×

L1∫

0

dy1

L2∫

0

dy2 e
M[(cos θ∗

j +cos θk)y1+(sin θ∗
j +sin θk)y2]

}
. (3.41)

Here, if the second kind of terms in the above form remains, where kinetic mixing is observed, 

the two modes j and k become dependent. Thereby, these terms should vanish, which requests 

the condition

1 + e
−i(θ∗

j −θk) = 0 (3.42)

that means in terms of {θj }

θ∗
j − θk = π (mod 2π) for j �= k. (3.43)

The above formula tells us two important things: (i) the maximum number of the independent 

zero modes are two due to the periodicity. (ii) the corresponding two angles θ1 and θ2 should be 

correlated as

θ1 = θ, θ2 = θ∗ + π, (θ ∈ C). (3.44)

Taking account of the issues, we rewrite the form of the KK expansion of the left-handed zero 

modes in Eqs. (3.39) and (3.40)

�
(0)
L+(x, y) = N1 ξ

(0)
L1 (x) eM(cos θy1+sin θy2) + N2 ξ

(0)
L2 (x) e−M(cos θ∗y1+sin θ∗y2), (3.45)

�
(0)
L−(x, y) = N1 eiθ

(
iŴy1

)
ξ

(0)
L1 (x) eM(cos θy1+sin θy2)

− N2 eiθ∗(
iŴy1

)
ξ

(0)
L2 (x) e−M(cos θ∗y1+sin θ∗y2), (3.46)

where the two normalization factors are easily estimated as

|N1|
2 =

M2(cos θ∗ + cos θ)(sin θ∗ + sin θ)

(1 + e−i(θ∗−θ))(eM(cos θ∗+cos θ)L1 − 1)(eM(sin θ∗+sin θ)L2 − 1)
, (3.47)

|N2|
2 =

M2(cos θ∗ + cos θ)(sin θ∗ + sin θ)

(1 + e+i(θ∗−θ))(1 − e−M(cos θ∗+cos θ)L1)(1 − e−M(sin θ∗+sin θ)L2)
. (3.48)

It is noted that |N2|
2 can be obtained by the replacement θ → θ∗ + π in the form of |N1|

2. Also, 

we rerun the form of the zero-mode four-dimensional effective action for convenience
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S|zero-mode part =

∫
d4x

{
ξ

(0)

L1(x)iŴμ∂μξ
(0)
L1 (x) + ξ

(0)

L2(x)iŴμ∂μξ
(0)
L2 (x)

}
. (3.49)

We comment on the cross terms between the zero modes and the KK modes appearing in the 

evaluation of the 4d effective action of S in Eq. (2.1). By use of the zero-mode equation in 

Eqs. (3.29) and (3.30) and integration by parts, we can show that all of such kind of terms vanish 

and do not contribute. Here, let us explicitly check that no overlap term appears in the effective 

action irrespective of the form of the zero modes, which is expected. We focus on the mixing of 

the (n1, n2)-KK state and zero-mode states,

S|mixing ⊃

∫
d4x

L1∫

0

dy1

L2∫

0

dy2

{
�

(n1,n2)

L± (x, y)iŴμ∂μ�
(0)
L±(x, y)

+ �
(n1,n2)

R± (x, y)
[
(∂y1

∓ i∂y2
)
(
iŴy1

)
�

(0)
L∓(x, y) − M�

(0)
L±(x, y)

]
+ h.c.

}
. (3.50)

The EOMs for wavefunction profile of �
(0)
L±(x, y) in Eq. (3.30) immediately tells us that the 

second part of (3.50) vanishes. Also, after the following deformation with the form in Eq. (3.18),

�
(n1,n2)

L± (x, y)iŴμ∂μ�
(0)
L±(x, y)∼

f ∗
n1,n2

(y)

mn1,n2

[
−η

(n1,n2)
L± (x)(∂y1

± i∂y2
)

− Mη
(n1,n2)
L∓ (x)iŴy1

]
iŴμ∂μ�

(0)
L±(x, y)

=
f ∗

n1,n2
(y)

mn1,n2

η
(n1,n2)
L± (x)

(
iŴμ∂μ

)(
iŴy1

)

×
[
−(∂y1

± i∂y2
)iŴy1�

(0)
L±(x, y)+M�

(0)
L∓(x, y)

]

+ h.c., (3.51)

where the ∼ symbol shows the equivalence up to total derivative terms on y1,2, we recognize 

that no overlap term emerges from the first part of (3.50) through Eq. (3.30). Since the Dirichlet 

boundary condition is imposed on fn1,n2
(y), surface terms do not contribute to the effective 

action.

Finally, we briefly touch Case I defined in Eq. (3.1), where right-handed zero modes can 

exist. Since we never use properties coming from eigenvalues of the 4d chirality, except for the 

chiral boundary conditions which determine which chirality is realized in the zero-mode sector. 

Thereby, when we consider Case I, exchanging R and L in the results of Case II is enough for 

obtaining corresponding solutions of zero modes and KK modes.

3.2. Case III — a vector-like possibility

Different from Case II, the present BCs shown in Eq. (3.3) do not distinguish four dimensional 

chirality, which implies that the lowest energy states are vector-like and massive. On the other 

hand, the two-dimensional chirality defined in Eq. (2.8) is discriminated, where the ‘+’ DOFs 

are projected out at the boundaries. Therefore, Dirac equations in the following “vector-like” 

forms are suitable for the present analysis, which is given by the summation of Eqs. (3.9) and 

(3.10) as
[
iŴμ∂μ − M

]
�+(x, y) + (∂y1

− i∂y2
)iŴy1�−(x, y) = 0, (3.52)

[
iŴμ∂μ − M

]
�−(x, y) + (∂y1

+ i∂y2
)iŴy1�+(x, y) = 0. (3.53)

We note that the following discussions are basically parallel to the previous ones.
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3.2.1. KK modes

Like the previous case, the form of the KK expansion of �+ is easily written down,

�+(x, y) =

∞∑

n1,n2=1

ψ
(n1,n2)
+ (x)fn1,n2

(y), (3.54)

where ψ
(n1,n2)
+ (x) is the corresponding 4d fields and the mode functions fn1,n2

(y) take the same 

forms as in Eq. (3.11), which fulfill the BCs (3.12) shown in Eq. (3.3) and the orthonormal-

ity (3.13). Substituting the above form in Eq. (3.53) leads to

[
iŴμ∂μ − M

]
�−(x, y) =

∞∑

n1,n2=1

(
−iŴy1

)
ψ

(n1,n2)
+ (x)(∂y1

+ i∂y2
) fn1,n2

(y), (3.55)

which suggests the following form for �−

�−(x, y) =

∞∑

n1,n2=1

η
(n1,n2)
− (x)gn1,n2

(y) + (zero modes), (3.56)

gn1,n2
(y) ≡

1

m̃n1,n2

(∂y1
+ i∂y2

)fn1,n2
(y), (3.57)

where m̃n1,n2
is a normalization constant with mass dimension one. In this section, we do not 

touch the zero modes, which is discussed in subsection 3.2.2. The value of m̃n1,n2
is determined 

through the normalization of the kinetic terms of η
(n1,n2)
− via the 6d term �−iŴμ∂μ�− as

m̃n1,n2
=

√(
n1π

L1

)2

+

(
n2π

L2

)2

. (3.58)

Now, we straightforwardly evaluate the form of the effective action of the KK modes, which is 

given by

S|KK part

=

∫
d4x

∞∑

n1,n2=1

{
ψ

(n1,n2)

+ (x)
(
iŴμ∂μ

)
ψ

(n1,n2)
+ (x) + ξ

(n1,n2)

+ (x)
(
iŴμ∂μ

)
ξ

(n1,n2)
+ (x)

−
(
ψ

(n1,n2)

+ (x) ξ
(n1,n2)

+ (x)

)(
M m̃n1,n2

m̃n1,n2
−M

)(
ψ

(n1,n2)
+ (x)

ξ
(n1,n2)
+ (x)

)}
, (3.59)

where we refine η
(n1,n2)
− as

ξ
(n1,n2)
+ ≡

(
iŴy1

)
η

(n1,n2)
− (x). (3.60)

Here, the action is chiral in the sense of the internal chirality (±), while it is vector-like in the 

4d chirality point of view. Similar to Case II, two Dirac fermions appear in each level of the KK 

tower. The mass eigenvalues of the two types of Dirac states are obtained as

±
√

M2 + (m̃n1,n2
)2. (3.61)
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After the redefinition of the fields with two-by-two unitary matrices Un1,n2
such as

(
ψ ′(n1,n2)

+ (x)

ξ ′(n1,n2)
+ (x)

)
= Un1,n2

(
ψ

(n1,n2)
+ (x)

ξ
(n1,n2)
+ (x)

)
, (3.62)

the mass matrix is diagonalized as

Un1,n2

(
M m̃n1,n2

m̃n1,n2
−M

)
(Un1,n2

)† =

(√
M2 + (m̃n1,n2

)2 0

0 −
√

M2 + (m̃n1,n2
)2

)
.

(3.63)

3.2.2. Zero modes

Here, zero modes mean the physical spectrum obeying the equations
[
iŴμ∂μ − M

]
�

(0)
+ (x, y) = 0, (3.64)

[
iŴμ∂μ − M

]
�

(0)
− (x, y) = 0, (3.65)

where these states are massive states with the common mass eigenvalue M if they exist consis-

tently. As we pointed out beforehand, we cannot obtain a chiral theory since the present BCs in 

Eq. (3.3) do not discriminate the 4d chirality.

Under the presence of the above conditions, the 6d Dirac equations take the simplified form

(∂y1
∓ i∂y2

)�
(0)
∓ (x, y) = 0, (3.66)

where, different from Eqs. (3.29) and (3.30), the massive parameter M does not contribute. In 

the language of mode function, (3.66) are represented as

(∂y1
+ i∂y2

)f0(y) = ∂z̄f0(y) = 0, (3.67)

(∂y1
− i∂y2

)g0(y) = ∂zg0(y) = 0, (3.68)

where we remind that f0 and g0 are zero-mode eigenfunction of the internal chirality being 

+ and −, respectively. Here, we define the holomorphic and anti-holomorphic coordinates and 

corresponding derivatives as follows,

z ≡
1

2
(y1 + iy2) (↔ ∂z = ∂y1

− i∂y2
), z̄ ≡

1

2
(y1 − iy2) (↔ ∂z̄ = ∂y1

+ i∂y2
). (3.69)

No zero mode for f0 will exist because �+ has to satisfy the Dirichlet BC (3.3) and hence the 

set {fn1,n2
(y); n1, n2 = 1, 2, 3, · · · } forms a complete set without zero modes.

On the other hand, g0 could exist and a general solution to (3.68) would be given by

g0j (y) = φj (z), (3.70)

where φj (z) are arbitrary anti-holomorphic functions of z with the index j (= 1, 2, · · · , n) spec-

ifying independent zero-mode solutions. For the n number of physical modes are well defined, 

we may impose the orthonormal condition such as

L1∫

0

dy1

L2∫

0

dy2

(
φj (z)

)∗
φk(z) = δjk. (3.71)

Even though the zero-mode solutions take the generic form, no cross term between zero modes 

and nonzero KK modes emerges, which is ensured by the equation for g0j in Eq. (3.68) with the 

manipulation of integration by parts over y1 and y2, as discussed concretely in Case II.
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Finally, let us mention the “opposite” case where �−(x, y) = 0 at the boundaries. Here, no 

meaningful zero-mode solution would exist for g0, while f0 forms arbitrary holomorphic func-

tions of z as follows,

f0j (y) = φj (z). (3.72)

3.3. Comment on 6d Weyl case

Here, we briefly comment on the mode functions in the case that a 6d Weyl fermion is con-

sidered. As summarized in Eqs. (2.74) and (2.75), only the type-I and type-II BCs are possible 

for �Ŵ7=+1 or �Ŵ7=−1, which can be regarded as a 4d Dirac fermion, while no other reasonable 

condition is derived in the type-III. Since the two BCs discriminate 4d chiralities, the zero modes 

can become chiral. In the present Weyl cases, a nonzero bulk mass parameter M is not allowed 

for a 6d Weyl fermion. In the type-I and type-II cases, when M → 0, the equations of motion in 

Eqs. (3.29) and (3.30) are reduced to that in Eq. (3.66) under the constraint M = 0. Following 

the discussion in section 3.2.2, we conclude that the profile of the chiral mode can take arbitrary 

holomorphic or anti-holomorphic function, depending on the form of corresponding equations. 

We mention that the multiplicity of the chiral mode is not determined, as in the case argued in 

section 3.2.2. Both of the choices in the 6d chirality, +1 or −1, is fine for obtaining a 4d Weyl 

mode. Apparently in each level of KK states, a 4d Dirac fermion appears.

4. Correspondence to orbifolds

In this section, we argue correspondence between the 6d Dirac theory on a rectangle and that 

on orbifolds based on the two-dimensional torus T 2 to accomplish a deeper understanding on the 

theory on a rectangle. At first, we glance at the geometry of T 2, defined by the two identifications,

y1 ∼ y1 + 2L1, y2 ∼ y2 + 2L2. (4.1)

Here, a choice of the fundamental domain of T 2 is

y1 : [−L1,L1], y2 : [−L2,L2]. (4.2)

In the following discussion, we consider the periodic boundary condition for 6d fermions. The 

6d free action of a 6d Dirac fermion on T 2 is written down as

ST 2 =

∫
d4x

L1∫

−L1

dy1

L2∫

−L2

dy2 �(x,y)
(
iŴA∂A − M

)
�(x,y) (4.3)

=

∫
d4x

L1∫

−L1

dy1

L2∫

−L2

dy2

{
�+(x, y1, y2) iŴμ∂μ�+(x, y1, y2)

+ �−(x, y1, y2) iŴμ∂μ�−(x, y1, y2)

+ �+(x, y1, y2) iŴy1∂z�−(x, y1, y2) + �−(x, y1, y2) iŴy1∂z̄�+(x, y1, y2)

− M
[
�+(x, y1, y2)�+(x, y1, y2) + �−(x, y1, y2)�−(x, y1, y2)

]}
(4.4)

=

∫
d4x

L1∫

−L1

dy1

L2∫

−L2

dy2

{
�R+(x, y1, y2) iŴμ∂μ�R+(x, y1, y2)



Y. Fujimoto et al. / Nuclear Physics B 922 (2017) 186–225 207

+ �R−(x, y1, y2) iŴμ∂μ�R−(x, y1, y2)

+ �L+(x, y1, y2) iŴμ∂μ�L+(x, y1, y2) + �L−(x, y1, y2) iŴμ∂μ�L−(x, y1, y2)

+ �R+(x, y1, y2) iŴy1∂z�L−(x, y1, y2) + �L−(x, y1, y2) iŴy1∂z̄�R+(x, y1, y2)

+ �L+(x, y1, y2) iŴy1∂z�R−(x, y1, y2) + �R−(x, y1, y2) iŴy1∂z̄�L+(x, y1, y2)

− M
[
�R+(x, y1, y2)�L+(x, y1, y2) + �L+(x, y1, y2)�R+(x, y1, y2)

+ �R−(x, y1, y2)�L−(x, y1, y2) + �L−(x, y1, y2)�R−(x, y1, y2)
]}

, (4.5)

where we used the complex coordinate defined in Eq. (3.69) and (iŴy1)2 = I8. Here, we de-

composed � into the eigenstates of PR/L and P±. The mode functions on T 2 (without Scherk–

Schwarz twist) take the generic form

exp

(
iπn1

L1
y1

)
exp

(
iπn2

L2
y2

)
, (4.6)

where n1 and n2 (= 0, ±1, ±2, · · · ) are KK indices and we do not take care of correct normal-

ization of wavefunctions throughout this section.

4.1. T 2/ZN twisted orbifold

In this part, we address a direction of the twisted orbifolds on T 2, namely T 2/Z2, T 2/Z3, 

T 2/Z4 and T 2/Z6. The ZN (N = 2, 3, 4, 6) operations are defined as the identifications of the 

points on T 2 under the rotation on the y1y2 plane,11

(
y′

1

y′
2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
y1

y2

)
(θ = 2π/N), (4.7)

where subsequently the 6d spinor fields are also rotated as designated by the matrix Ry following 

the corresponding generator Ly for 6d spinors,

Ry = e−iθLy = cos

(
θ

2

)
I8 − i sin

(
θ

2

)
Ŵy, Ly ≡

i

4

[
Ŵy1 ,Ŵy2

]
. (4.8)

The commutativity [Ry, Ŵ
7] = 0 tells us that the following ZN parity assignments are possible,

�Ŵ7=±1

(
x, y′

1, y
′
2

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η
(±)
Z2

(
I4 0

0 −I4

)
�Ŵ7=±1(x, y1, y2) in T 2/Z2,

η
(±)
Z3

(
I4 0

0 ei2π/3I4

)
�Ŵ7=±1(x, y1, y2) in T 2/Z3,

η
(±)
Z4

(
I4 0

0 eiπ/2I4

)
�Ŵ7=±1(x, y1, y2) in T 2/Z4,

η
(±)
Z6

(
I4 0

0 eiπ/3I4

)
�Ŵ7=±1(x, y1, y2) in T 2/Z6,

(4.9)

11 For T 2/Z3 , T 2/Z4 and T 2/Z6 , the condition L1 = L2 is required to keep the rotations well defined.
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with intrinsic ZN parities for �Ŵ7=±1, η
(±)
ZN

which take one of the values of the N -th roots of 

unity, (e2πi/N )j (j = 0, · · · , N − 1).

A point is that we cannot obtain chiral zero mode from a 6d Dirac fermion on T 2/ZN if η
(+)
ZN

=

η
(−)
ZN

, where the lowest mode is a 4d Dirac state in the cases of η
(±)
ZN

= 1 or e−2πi/N . Two chiral 

modes appear if different BCs are imposed for �Ŵ7=±1, namely {η
(+)
ZN

, η
(−)
ZN

} = {1, e−2πi/N } (for 

right modes) or {η
(+)
ZN

, η
(−)
ZN

} = {e−2πi/N , 1} (for left modes), where the zero mode spectrum is 

the same as that of Type I and Type II, respectively. On the other hand, a notable difference is also 

found on the 6d bulk mass term. When η
(+)
ZN

�= η
(−)
ZN

, the term is forbidden by the ZN symmetry.12

This fact means that the lowest modes cannot take localized profiles like in Eqs. (3.39) and (3.40), 

which should be constant. The KK mode functions also take different shapes from those on a 

rectangle, e.g. in T 2/Z2,

cos

(
πn1y1

L1
+

πn2y2

L2

)
for Z2 even, sin

(
πn1y2

L1
+

πn2y2

L2

)
for Z2 odd, (4.10)

where one refers to Eq. (3.11). This fact implies that if we introduce interaction terms with other 

6d fields, then magnitudes of 4d coupling constants of interaction terms in the T 2/ZN twisted 

orbifold model will be different from those of our model. Thus, the T 2/ZN twisted orbifold 

models turn out not to realize the 6d Dirac theory on a rectangle. This conclusion also can be 

seen from the fact that the T 2/ZN twisted orbifolds are geometrically different from a rectangle.

4.2. T 2/(Z2 × Z′
2) reflectional orbifold

Next, we argue the possibility of the T 2/(Z2 × T ′
2) reflectional orbifold, where the following 

reflections are imposed,

Z2 : (y1, y2) → (−y1, y2) ←→ (z, z̄) → (−z̄,−z), (4.11)

Z′
2 : (y1, y2) → (y1,−y2) ←→ (z, z̄) → (z̄, z). (4.12)

In the present setup, the fundamental domain of (y1, y2), which is shrunk by the projections, can 

be chosen as y1: [0, L1] and y2: [0, L2], which corresponds to the rectangle one. In such orbifold 

constructions with two different identifications, consistent conditions for 6d fermions may take 

rather nontrivial forms.

4.2.1. A simple trial, failed

The first expression of Eq. (4.3) tells us the conditions on transformations of fermion requested 

by the Z2 symmetries. When a 6d Dirac fermion � is transformed as

Z2 : �(x,−y1, y2) = G1�(x,y1, y2) with (G1)
2 = I8, (4.13)

Z′
2 : �(x,y1,−y2) = G2�(x,y1, y2) with (G2)

2 = I8, (4.14)

all of the following relations should be realized to keep the original action to be invariant,

12 We could add a kink-like mass term that is consistent with the ZN parity as introduced in the S1/Z2 geometry (e.g., 

in Ref. [72]).
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Z2 :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ŵ0G
†
1Ŵ

0ŴμG1 = +Ŵμ,

Ŵ0G
†
1Ŵ

0Ŵy1G1 = −Ŵy1 ,

Ŵ0G
†
1Ŵ

0Ŵy2G1 = +Ŵy2 ,

Ŵ0G
†
1Ŵ

0I8G1 × M = +I8 × M,

Z′
2 :

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ŵ0G
†
2Ŵ

0ŴμG2 = +Ŵμ,

Ŵ0G
†
2Ŵ

0Ŵy1G2 = +Ŵy1 ,

Ŵ0G
†
2Ŵ

0Ŵy2G2 = −Ŵy2 ,

Ŵ0G
†
2Ŵ

0I8G2 × M = +I8 × M.

(4.15)

The choice of G1 and G2,

G1 = i Ŵy1 , G2 = i Ŵy2 , (4.16)

fulfills the requirements in Eq. (4.15) when M = 0. However, the present case cannot be defined 

well since the two operations are not commutative, which is recognized by

[G1,G2] = 2G1G2 �= 0
(
since {G1,G2} = 0

)
. (4.17)

Then, we should abandon this possibility.

4.2.2. Consistent configuration, corresponding to Case II

Here, we explore a consistent configuration where two left-handed zero modes emerge, which 

is derived in Case II. A key point is to focus on the last form of the 6d action in Eq. (4.3). 

The bilinear terms that contains the matrix Ŵy1 is invariant when the following conditions are 

considered,

Z2(z ↔ −z̄) :

⎧
⎪⎨
⎪⎩

�R±(x,−y1, y2) = −�R±(x, y1, y2),

∂z�L+(x,−y1, y2) = +∂z̄�L+(x, y1, y2),

∂z̄�L−(x,−y1, y2) = +∂z�L−(x, y1, y2),

(4.18)

Z′
2(z ↔ z̄) :

⎧
⎪⎨
⎪⎩

�R±(x, y1,−y2) = −�R±(x, y1, y2),

∂z�L+(x, y1,−y2) = −∂z̄�L+(x, y1, y2),

∂z̄�L−(x, y1,−y2) = −∂z�L−(x, y1, y2),

(4.19)

where the factor (−1) would appear even times in every term of the last form (4.5) of Eq. (4.3), 

irrespective of the part of the 6d Dirac mass term. We mention that these conditions do not contain 

Ŵy1 and Ŵy2 , and then no unwanted minus sign from exchanging gamma matrices would emerge. 

Thus, it is apparent that the two operations are commutative. We note that the Z2 conditions are 

rewritten as follows,

Z2(z ↔ −z̄) :

{
PR�(x,−y1, y2) = −PR�(x,y1, y2),

PL(I8∂y1
− iŴy∂y2

)�(x,−y1, y2) = +PL(I8∂y1
+ iŴy∂y2

)�(x, y1, y2),

(4.20)

Z′
2(z ↔ z̄) :

{
PR�(x,y1,−y2) = −PR�(x,y1, y2),

PL(I8∂y1
− iŴy∂y2

)�(x, y1,−y2) = −PL(I8∂y1
+ iŴy∂y2

)�(x, y1, y2).

(4.21)

It is proved that, except for the 6d Dirac mass terms, all of the terms of ST 2 in Eq. (4.3) is 

invariant under the Z2 × Z′
2 orbifolding. We provide the proof of the invariance of the action in 

Eq. (4.3) under the Z2 × Z′
2 operation in Appendix A.

To know parities of the fermion profiles under the reflections y1 → −y1 and y2 → −y2, it is 

very convenient to express the two Z2 conditions in the following way,
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Z2(y1 → −y1) :

⎧
⎪⎨
⎪⎩

�R±(x, y1, y2)|y1→−y1
= −�R±(x, y1, y2),

∂z̄�L+(x, y1, y2)|y1→−y1
= −∂z̄�L+(x, y1, y2),

∂z�L−(x, y1, y2)|y1→−y1
= −∂z�L−(x, y1, y2),

(4.22)

Z′
2(y2 → −y2) :

⎧
⎪⎨
⎪⎩

�R±(x, y1, y2)|y2→−y2
= −�R±(x, y1, y2)(x, y1, y2),

∂z̄�L+(x, y1, y2)|y2→−y2
= −∂z̄�L+(x, y1, y2),

∂z�L−(x, y1, y2)|y2→−y2
= −∂z�L−(x, y1, y2).

(4.23)

At first, we easily recognize that the profiles of �R±, ∂z̄�L+ and ∂z�L− are odd under the two 

reflections, y1 → −y1 and y2 → −y2, and thereby their values become zero at (y1, y2) = (0, 0). 

Here, we advert to the fact that the possibility of the geometry T 2/(Z2 × Z′
2) was pointed out as 

T 2/D2 in the work for classifying S1-based (in 5d) and T 2-based (in 6d) orbifolds in Ref. [40]. 

On the other hand, to the best of our knowledge, the way of a realization of the Z2 × Z′
2 orbifold 

condition by use of derivatives for 6d (Dirac) fermions is proposed for the first time on this 

manuscript.

Combined with the (assumed) periodicity of mode functions, we reach the conditions at the 

circumference of the fundamental region of T 2/(Z2 × Z′
2),

�R±(x, y1, y2) = 0 at y1 = 0, L1 and y2 = 0, L2, (4.24)

∂z̄�L+(x, y1, y2) = 0 at y1 = 0, L1 and y2 = 0, L2, (4.25)

∂z�L−(x, y1, y2) = 0 at y1 = 0, L1 and y2 = 0, L2, (4.26)

which corresponds to Case II on a rectangle (Type-II-y1 BC in Eq. (2.55) and Type-II-y2 BC in 

Eq. (2.70), respectively).

We comment on mode functions of T 2/(Z2 ×Z′
2). The form on T 2 in Eq. (4.6) and the above 

boundary conditions immediately lead to

for �R±, sin

(
πn1

L1
y1

)
sin

(
πn2

L2
y2

)
, (4.27)

for �L±,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

πn1
L1

cos(πn1
L1

y1) sin(
πn2
L2

y2) ∓ i
πn2
L2

sin(
πn1
L1

y1) cos(πn2
L2

y2)

for (n1, n2) �= (0,0),

constant

for (n1, n2) = (0,0),

(4.28)

where the forms of the KK mode functions are completely the same with those on the rectan-

gle. We note that the independent range of (n1, n2) is shrunk as n1, n2 = 0, +1, +2, · · · from 

n1, n2 = 0, ±1, + ± 2, · · · from that in T 2, where the two modes (n1, n2) = (1, 0) and (0, 1)

are absent since the mode functions vanish. Here, the existence of two left-handed zero modes 

is explicitly shown, but being different from the rectangle case, the profile should be constant. 

This is because the 6d Dirac mass term should vanish when we impose the Z2 × Z′
2 condition 

and therefore a finite M cannot contribute to wavefunctions.

Finally, we briefly mention the correspondence to Case I on a rectangle, where two right-

handed chiral zero modes come out. Because the 4d chirality and the internal chirality are 
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determined independently, the simple exchange of R ↔ L is enough to obtain the corresponding 

situation on T 2/(Z2 × Z′
2) from the discussion developed in this section.

4.2.3. Consistent configuration, corresponding to Case III

Next, we consider the T 2/(Z2 × Z′
2) orbifold corresponding Case III, where the internal 

chirality is discriminated by the boundary of a rectangle. Referring to the second form (4.4) of 

ST 2 in Eq. (4.3) and the way of constructing the Z2 × Z′
2 condition in the previous chiral case 

straightaway leads to the conditions,

Z2(z ↔ −z̄) :

{
�+(x,−y1, y2) = −�+(x, y1, y2),

∂z̄�−(x,−y1, y2) = +∂z�−(x, y1, y2),
(4.29)

Z′
2(z ↔ z̄) :

{
�+(x, y1,−y2) = −�+(x, y1, y2),

∂z̄�−(x, y1,−y2) = −∂z�−(x, y1, y2),
(4.30)

or in the 6d-manifest form

Z2(z ↔ −z̄) :

{
P+�(x,−y1, y2) = −P+�(x,y1, y2),

P−∂z̄�(x,−y1, y2) = +P−∂z�(x,y1, y2),
(4.31)

Z′
2(z ↔ z̄) :

{
P+�(x,y1,−y2) = −P+�(x,y1, y2),

P−∂z̄�(x,y1,−y2) = −P−∂z�(x,y1, y2).
(4.32)

We can easily check that under the transformation, every term of ST 2 is invariant, including the 

6d bulk mass term. Different from the previous chiral case, a nonzero M is still consistent with 

the imposed discrete symmetry, like Case III on a rectangle (ref. Appendix A).

Also like as the previous discussion, the reworded conditions

Z2(y1 → −y1) :

{
�+(x, y1, y2)|y1→−y1

= −�+(x, y1, y2),

∂z�−(x, y1, y2)|y1→−y1
= −∂z�−(x, y1, y2),

(4.33)

Z′
2(y2 → −y2) :

{
�+(x, y1, y2)|y2→−y2

= −�+(x, y1, y2)(x, y1, y2),

∂z�−(x, y1, y2)|y2→−y2
= −∂z�−(x, y1, y2),

(4.34)

immediately tells us the BCs at the circumference of the fundamental region of T 2/(Z2 × Z′
2)

�+(x, y1, y2) = 0 at y1 = 0, L1 and y2 = 0, L2, (4.35)

∂z�−(x, y1, y2) = 0 at y1 = 0, L1 and y2 = 0, L2. (4.36)

Now, the forms of mode functions of �+ and �− correspond to that in Eq. (4.27) [for �R±

in the previous case] and one in Eq. (4.28) [for �L− in the previous case], respectively. Also in 

the present case with nonzero bulk mass, only the constant profile is possible in the lowest mass 

states. Like in the previous discussion, we find a significant difference on the profile of the lowest 

mode (with a nonzero mass eigenvalue: M).

5. Miscellaneous issues

In this section, we provide several comments on the configurations under the BCs of Case II 

[in Eq. (3.2)] and Case III [in Eq. (3.3)] obtained in the previous section. At first, let us summarize 

the mass spectrum, where concrete information is found in Tables 1 (for Case II) and 2 (for 
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Table 1

Summary of the 4d mass spectrum via the 6d Dirac fermion � under BCs of Case II in Eq. (3.2).

Type Fields Dirac/Weyl Masses

KK modes χ
(n1,n2)
+ (x) Dirac

√
M2 + (

n1π
L1

)2 + (
n2π
L2

)2 (n1, n2 = 1,2, · · · )

χ
(n1,n2)
− (x) Dirac

√
M2 + (

n1π
L1

)2 + (
n2π
L2

)2 (n1, n2 = 1,2, · · · )

Zero modes ξ
(0)
L1

(x), ξ
(0)
L2

(x) left-Weyl 0

Table 2

Summary of the 4d mass spectrum via the 6d Dirac fermion � under BCs of Case III in Eq. (3.3).

Type Fields Dirac/Weyl Masses

KK modes ψ ′(n1,n2)
+ (x) Dirac

√
M2 + (

n1π
L1

)2 + (
n2π
L2

)2 (n1, n2 = 1,2, · · · )

ξ ′(n1,n2)
+ (x) Dirac

√
M2 + (

n1π
L1

)2 + (
n2π
L2

)2 (n1, n2 = 1,2, · · · )

Zero modes η
(0)
+j

(x) Dirac M (j = 1,2, · · · , n)

Case III). The spectrum of the KK modes takes the same form, where two Dirac particles appear 

in each pair of the KK indices n1 and n2 with the common mass.

On the other hand, the structure of the zero modes is completely different. When we take the 

boundary conditions which discriminate 4d chirality as Case II, chiral fermions are realized as 

the lowest energy states as in the similar situation in 5d, where the condition �
(5d)
R (x, y) = 0 is 

imposed for a 5d Dirac fermion �
(5d)
R at the boundaries of an interval. An important difference 

between the 5d (on an interval) and the 6d (on a rectangle) is found at the number of the realized 

chiral zero modes, where one is in the 5d and two is in the 6d. A simple way to understand the 

difference is that a 6d Dirac fermion contains the twice DOFs compared with that in 5d. Under 

the specific Ansatz in Eq. (3.32), we reconfirmed the above simple understanding by discussing 

how many zero modes can be independent each other, where the answer which we obtained is 

also two.

Another fascinating aspect is found in the specific solution via the Ansatz in Eq. (3.32), where 

a complex angle parameter is not determined through the BCs in Eq. (3.2) since the form of the 

left-handed zero modes are not restricted by them. After solutions become free from the informa-

tion on the boundaries, the rectangle looks the two-dimensional Euclidian space for the solutions, 

and the symmetry under the (complexified) two-dimensional rotation is spontaneously realized 

inside the form of the solutions as in Eqs. (3.36) and (3.37). Note that in the 6d action (2.1), 

the existence of the boundaries is manifest and this rotational symmetry is explicitly broken. In 

other words, when the value of the angle θ is different, theories become different. It is noted 

that this symmetry can be addressed in a generic manner by focusing on the covariance of the 

Dirac equation for the zero modes. A discussion for this subject is ready in Appendix B. We 

mention that the value of θ does not deform mass spectrum, while it affects overlap integrals 

among a pair of the fermion and other bulk fields with localized profiles. In this sense, we can 

conclude that the value of θ is physical. See Appendix C for a concrete discussion on a possible 

situation that the value of θ becomes physical. For better understanding, we also comment on the 

situation on an interval. Here, left-handed modes also cannot feel the presence of the boundaries 

(when we impose the condition �
(5d)
R (x, y) = 0 at the two boundaries), but the co-dimension of 
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Table 3

Comparison of the T 2/(Z2 × Z′
2
) orbifold and the rectangle.

T 2/(Z2 × Z′
2
) orbifold Rectangle

Boundary condition Z2 & Z′
2

parities Variational principle

Bulk mass Type I, II : forbidden Type I, II, III : allowed

Type III : allowed

Non-zero KK modes [M2 + (
n1π
L1

)2 + (
n2π
L2

)2]1/2 (n1, n2 = 1,2, · · · )

# of zero modes two Weyls or one Dirac undetermined in general

Zero mode profile constant localized with parameters

the extra space is just one and no such enhancement of a rotational symmetry occurs.13 As a 

generalization, when we introduce n 6d Dirac fermions with suitable BCs, 2n numbers of chiral 

fermions are obtained. If these right-handed and left-handed chiral fermions couple to a scalar 

whose vacuum expectation value is y1- and/or y2-position dependent, a part of exotic particles 

can be very heavy, keeping three particles to be still around GeV scale.

In Case III, we saw a more drastic situation. When the zero-mode equations are free from the 

information on the boundaries and the dimensionful parameter M does not appear in the equa-

tions, the 2d rotational symmetry observed at the zero modes is eventually promoted to the 2d 

conformal symmetry, where the (anti-)holomorphy restricts the form of the zero mode functions 

as in Eq. (3.70) or (3.72). Here, the number of such zero modes is not fixed within the discussion 

done in the manuscript. At least, the orthonormality in Eq. (3.71) would be imposed for defining 

the conformal zero modes as physically independent states. We point out that when we take the 

limit M → 0 in Case II, the form of the zero-mode equations is reduced to Eq. (3.67) or (3.68)

and the mode functions of ψ
(0)
L+ and ψ

(0)
L− take the general holomorphic and anti-holomorphic 

forms, respectively.

Finally, we summarize and compare the situations on the rectangle and on the T 2/(Z2 × Z′
2)

in Table 3. The properties of the KK modes, namely the spectrum and the form of the mode 

functions, coincide completely, while we found differences in presence of the bulk mass and 

zero mode properties. Here we emphasize that the profile in Eqs. (3.39) and (3.40) is a specific 

solution in Case II, where more general solutions may be possible. Apparently on a rectangle, 

a wider class of solutions is realizable compared with on the T 2/(Z2 × Z′
2) orbifold.

When we focus on Type-III BCs along y1 and y2 directions, another important dissimilarity 

may happen. On a rectangle, two sets of S2 parameters (φ(′), θ (′)), which describe U(2) rotations 

among two 4d chiral components of a 6d Dirac fermion, are able to be introduced consistently. 

Here, a 6d Dirac fermion is decomposed based on the eigenvalue �n(′) · ��(′) [(�n(′) · ��(′))2 = I8] as 

� = P�n(′)· ��(′)=+1� + P�n(′)· ��(′)=−1� . On the T 2/(Z2 × Z′
2) orbifold, it would be very difficult 

to introduce such degrees of freedom since the following relations,

(�1,�2,�3)�
μ = �μ(−�1,�2,�3), (5.1)

(�1,�2,�3)�
y1 = �y1(�1,−�2,−�3), (5.2)

(�1,�2,�3)�
y2 = �y2(−�1,�2,−�3), (5.3)

13 The general issue that an energy eigenvalue cannot be degenerated in boundary-less one-dimensional quantum me-

chanical systems, also ensure that one independent mode appears in the 5d case. Situations are changed if multiple 

boundary points exist in 5d, where degenerated zero modes become possible (see e.g. [15–17]).
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implies that to construct two different Z2 conditions consistently may face a problem except for 

the three trivial cases,

i) �n(′) = (1,0,0), ii) �n(′) = (0,1,0), iii) �n(′) = (0,0,1). (5.4)

The cases of i) and ii) might be inconsistent like the one discussed in section 4.2.1 since two 

projections along y1 and y2 becomes different. The case iii) is just the one that we focused on in 

section 4.2.3. In conclusion, a rectangle allows wider possibilities also in the choice of BCs of a 

6d Dirac fermion.

6. Conclusions and discussions

In this manuscript, we classified possible BCs of a 6d Dirac fermion � on a rectangle under 

the requirement that the 4d Lorentz structure is maintained, and derived the profiles of the zero 

modes and nonzero KK modes under the two specific boundary conditions, (i) �R(x, y) = 0 at 

the boundaries and (ii) �+(x, y) = 0 at the boundaries.

Here, the two BCs are a limited part of the possible configurations, where along either of the 

direction y1 or y2, three types of BCs [in Eqs. (2.54)–(2.56) for y1, in Eqs. (2.69)–(2.71) for 

y2] were derived, where Type-I and Type-II conditions discriminate 4d chirality (R or L), while 

Type-III conditions put conditions on linear combinations of the four eigenstates of the 4d and 2d 

chiralities (R±, L±) at the corresponding boundaries. Type-III conditions are parametrized by a 

position of a unit 2d sphere S2, where the two specific cases (φ, θ) = (0, π) and (0, 0) correspond 

to the projection condition for the internal chirality of + and −, respectively. Apparently, Type-

III conditions do not discriminate the 4d chirality and the corresponding zero modes becomes 

vector-like. Therefore, such possibilities are not suitable for regenerating the chiral structure of 

the SM at the zero-mode sector. On the other hand, the emergence of such rotational parameters 

in BCs of a single 6d field looks nontrivial, and an exhaustive analysis of mode functions when 

φ and θ take generic values is of interest in a theoretical point of view.

Zero modes are distinctive in general since additional conditions are imposed [Eqs. (3.27) and 

(3.28) for (i), Eqs. (3.64) and (3.65) for (ii)] to the 6d Dirac equations. In the two cases of (i) and 

(ii), either of the “chiral” mode [R for (i), + for (ii)] is constrained by the BCs and the remaining 

counterparts are free from conditions on the boundaries. Hence, corresponding zero modes are 

not restricted from the information on the boundaries and for them, the rectangle looks the 2d 

Euclidean space which is symmetric under the rotation with an axis. We explicitly looked at the 

symmetry in the specific solution via the Ansatz with exponential function in Eq. (3.32), while 

this symmetry can be addressed in a generic manner by focusing on the covariance of the Dirac 

equation for the zero modes as discussed in Appendix B. Such emergence of rotational symme-

tries never occurs in 5d since one additional spacial DOF is not enough for defining rotations, 

which is specific in (more than or equal to) six dimensions. Another characteristic feature of 

the zero modes in (i) is the number of chiral modes is two and these two modes are localized 

towards different directions of a rectangle. If the Higgs vacuum expectation value are dependent 

on y1 and y2, a natural mass hierarchy is expected among the two states, where we might be-

hold the occurrence of the two-fold degenerated states. This direction would be interesting for 

addressing an origin of the number of matter generations, fermion mass hierarchies and mixing 

patterns simultaneously, even though three generations are impossible in 6d. More detailed dis-

cussions would be fruitful on general aspects of such solutions, including situations more than 

six dimensions.
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As we discussed in section 4, we can construct the corresponding cases of Case I, II, III on a 

rectangle, in the language of orbifolding on T 2/(Z2 × Z′
2), where the two fundamental domains 

[of a rectangle and T 2/(Z2 × Z′
2)] are equivalent. A part of properties, i.e. on the nonzero KK 

modes, is the same, while we found differences on the zero modes and on possible BCs. Then, we 

concluded that wider possibilities are realized on a rectangle, compared with on T 2/(Z2 × Z′
2).

In (ii), situations are more drastic, where not only the BCs, but also the mass parameter M

is decoupled from the equation for determining the profile of �
(0)
− , where the zero modes can 

take the generic anti-holomorphic forms, where no other properties, e.g. the number of the zero 

modes, are determined. In a theoretical sense, it looks interesting since this zero modes are mas-

sive with the physical mass eigenstate M , while they hold such a “conformal” property. For this 

concrete case, further studies are meaningful.

Finally, let us mention that the classification of possible BCs and properties of the spectrum 

of a 6d Dirac fermion under the BCs can be addressed in a quantum mechanical supersymmetry 

(see e.g. Refs. [73–76] and references in [71] therein) point of view, whose details are declared 

in a separate publication [71].
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Appendix A. Invariance of ST 2 under Z2 × Z
′

2

In this appendix, we show the invariance of the action ST 2 shown in Eq. (4.3) under the 

Z2 × Z′
2 transformations which corresponds to Case II (discussed in section 4.2.2) and Case III

(discussed in section 4.2.3) on a rectangle.

At first, we argue the former case, where the Z2 × Z′
2 transformation is defined in Eqs. (4.18)

and (4.19). We focus on the three patterns of transformation of y1 → −y1,

L1∫

−L1

dy1

L2∫

−L2

dy2 �R+(x, y1, y2) iŴy1∂z�L−(x, y1, y2)

−→︸︷︷︸
y1→−y1

L1∫

−L1

dy1

L2∫

−L2

dy2 �R+(x,−y1, y2) iŴy1(−∂z̄)�L−(x,−y1, y2)

(4.18)
=

L1∫

−L1

dy1

L2∫

−L2

dy2

(
−�R+(x, y1, y2)

)
iŴy1(−1)∂z�L−(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 �R+(x, y1, y2) iŴy1∂z�L−(x, y1, y2), (A.1)
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L1∫

−L1

dy1

L2∫

−L2

dy2 �L+(x, y1, y2) iŴy1∂z�R−(x, y1, y2)

∼

L1∫

−L1

dy1

L2∫

−L2

dy2 (−1) ∂z̄�L+(x, y1, y2) iŴy1�R−(x, y1, y2)

−→︸︷︷︸
y1→−y1

L1∫

−L1

dy1

L2∫

−L2

dy2 ∂z�L+(x,−y1, y2) iŴy1�R−(x,−y1, y2)

(4.18)
=

L1∫

−L1

dy1

L2∫

−L2

dy2 ∂z̄�L+(x, y1, y2) iŴy1�R−(x, y1, y2)

∼

L1∫

−L1

dy1

L2∫

−L2

dy2 �L+(x, y1, y2) iŴy1∂z�R−(x, y1, y2), (A.2)

L1∫

−L1

dy1

L2∫

−L2

dy2 �L+(x, y1, y2) iŴμ∂μ�L+(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 �L+(x, y1, y2) iŴμ∂μ∂z

1

∂z∂z̄

∂z̄�L+(x, y1, y2)

∼

L1∫

−L1

dy1

L2∫

−L2

dy2 (−1)∂z̄�L+(x, y1, y2) iŴμ∂μ

1

∂z∂z̄

∂z̄�L+(x, y1, y2)

−→︸︷︷︸
y1→−y1

L1∫

−L1

dy1

L2∫

−L2

dy2 (−1)∂z�L+(x,−y1, y2) iŴμ∂μ

1

∂z̄∂z

∂z�L+(x,−y1, y2)

(4.18)
∼

L1∫

−L1

dy1

L2∫

−L2

dy2 �L+(x, y1, y2) iŴμ∂μ∂z

1

∂z̄∂z

∂z̄�L+(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 �L+(x, y1, y2) iŴμ∂μ�L+(x, y1, y2), (A.3)

where two terms connected by ∼ are equivalent up to surface terms by integral by parts. In the 

above, we formally inserted the identity (∂z∂z̄)/(∂z∂z̄), where the commutative relation [∂z, ∂z̄] =
0 holds. We skipped to show the following deformation

L1∫

−L1

dy1 −→︸︷︷︸
y1→−y1

−L1∫

L1

d(−y1) =

L1∫

−L1

dy1. (A.4)
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The terms of �R− iŴy1∂z̄�L+, �L− iŴy1∂z̄�R+, �L− iŴμ∂μ�L− can be proved straightfor-

wardly, while the cases of �R± iŴμ∂μ�R± is obvious to be shown.

On the other hand in this situation linking to Case II, the bulk mass term is not invariant as

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�R+(x, y1, y2)�L+(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�R+(x, y1, y2)∂z

1

∂z∂z̄

∂z̄�L+(x, y1, y2)

−→︸︷︷︸
y1→−y1

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�R+(x,−y1, y2)∂z̄

1

∂z̄∂z

∂z�L+(x,−y1, y2)

(4.18)
=

L1∫

−L1

dy1

L2∫

−L2

dy2 (+M)�R+(x, y1, y2)∂z̄

1

∂z̄∂z

∂z̄�L+(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 (+M)�R+(x, y1, y2)
1

∂z

∂z̄�L+(x, y1, y2). (A.5)

Thus, M should be zero for keeping consistency. The discussion for the transformation of y2 →
−y2 is completely parallel to the present one and then we skip to describe.

Next, we move to the situation corresponding to Case III. Almost all the calculations are 

simple repetitions of the above. A notable difference is in the bulk mass term. For �−�−, the 

following deformation declares the invariance,

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�−(x, y1, y2)�−(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�−(x, y1, y2)∂z̄

1

∂z̄∂z

∂z�−(x, y1, y2)

∼

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)(−1)∂z�−(x, y1, y2)
1

∂z̄∂z

∂z�−(x, y1, y2)

−→︸︷︷︸
y1→−y1

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)(−1)∂z̄�−(x,−y1, y2)
1

∂z∂z̄

∂z̄�−(x,−y1, y2)

(4.29)
=

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)(−1)∂z�−(x, y1, y2)
1

∂z̄∂z

∂z�−(x, y1, y2)
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∼

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�−(x, y1, y2)∂z̄

1

∂z̄∂z

∂z�−(x, y1, y2)

=

L1∫

−L1

dy1

L2∫

−L2

dy2 (−M)�−(x, y1, y2)�−(x, y1, y2). (A.6)

We note that to show the invariance of �+�+ is straightforward. In the present situation, corre-

sponding to Case III, the bulk mass term is consistent with the Z2 × Z′
2 symmetry. The key 

point is that the bulk mass term is decomposed into fields and their conjugated, namely as 

�� = �+�+ + �−�−.

Appendix B. Comments on zero modes in Case II

In this appendix, we give comments on the zero modes in Case II. We remind that zero modes 

are described by the Dirac equations in Eqs. (3.29) and (3.30) under the zero mode conditions 

in Eqs. (3.27) and (3.28). Under the present BCs (3.2), only left-handed modes can exist. But, 

the following discussions are applicable for the case, �L(x, y) = 0 at the boundaries, where 

right-handed modes are allowed as zero modes.

We can show that the Dirac equations in Eq. (3.30) (for left-handed zero modes) are covariant 

under the rotation on the y1y2-plane. Here, we define the rotation as
(

y′
1

y′
2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
y1

y2

)
(θ ∈ R), (B.1)

where y′
i (i = 1, 2) are rotated coordinates and we use the generator Ly defined in Eq. (4.8) for 

the corresponding spinor rotation. The following relations are established,
{

(∂y1
− i∂y2

)iŴy1�
(0)
L−(x, y) − M�

(0)
L+(x, y) = 0,

(∂y1
+ i∂y2

)iŴy1�
(0)
L+(x, y) − M�

(0)
L−(x, y) = 0,

(B.2)

⇒

{
(∂y′

1
− i∂y′

2
)iŴy1�

(0)
L−(x, y′) − M�

(0)
L+(x, y′) = 0,

(∂y′
1
+ i∂y′

2
)iŴy1�

(0)
L+(x, y′) − M�

(0)
L−(x, y′) = 0,

⇔

{
(∂y1

− i∂y2
)iŴy1(eiθ�

(0)
L−(x, y′)) − M�

(0)
L+(x, y′) = 0,

(∂y1
+ i∂y2

)iŴy1�
(0)
L+(x, y′) − M(eiθ�

(0)
L−(x, y′)) = 0,

(B.3)

where the first manipulation is a simple reparametrization about y1 and y2, and we use the prop-

erty e−iθLy Ŵy1 = Ŵy1e+iθLy which is easily shown from Eq. (2.2). The above sequence implies 

that if {�
(0)
L+(x, y), �

(0)
L−(x, y)} is a set of solutions of the equations in Eq. (B.2) [or (3.30)], the 

set {�
(0)
L+(x, y′), eiθ�

(0)
L−(x, y′)} also acts as a set of solutions. We can check this relationship by 

use of a concrete example. When we start with a special solution of one in Eq. (3.40) by setting 

j = 1 and θ = 0,

�
(0)
L+(x, y) = N ξ

(0)
L (x) eMy1 , (B.4)

�
(0)
L−(x, y) = N

(
iŴy1

)
ξ

(0)
L (x) eMy1 , (B.5)

the corresponding set of solutions takes the forms,
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�
(0)
L+(x, y) = N ξ

(0)
L (x) eM(cos θy1+sin θy2), (B.6)

�
(0)
L−(x, y) = N eiθ

(
iŴy1

)
ξ

(0)
L (x) eM(cos θy1+sin θy2), (B.7)

which are nothing but a general solution in Eq. (3.40) when the angle θ is real. This property 

manifestly shows the set of solutions being symmetric under the rotation.

We note that in the solution (3.40), the parameter θ can be complex, although θ should be real 

for rotations. This is because the derivation in Eq. (3.40) holds even for complex θ . This may be 

called a complexification of the rotation.

Appendix C. Physics of the angle θ as mass hierarchy

In this appendix, we show that the parameter θ in zero modes (3.45), (3.46) is not an un-

physical parameter but physical one, which affects the actual physical values, e.g., 4d masses of 

zero modes through Yukawa couplings. Imitating the structure of Yukawa couplings in the stan-

dard model (SM), we demonstrate the physical implication of the parameter θ in a toy example. 

To this end, let us consider the following Yukawa interaction term with two 6d Dirac fermions 

� ′(x, y), �(x, y) and a VEV 〈H(x, y)〉 of a 6d scalar field:

S(Y) =

∫
d4x

L1∫

0

dy1

L2∫

0

dy2

[
�

′
(x, y)

(
iŴA∂A − M ′

)
� ′(x, y)

+ �(x,y)
(
iŴA∂A − M

)
�(x,y)

+ λ�
′
(x, y)

〈
H ∗(x, y)

〉
�(x,y) + (h.c.)

]
. (C.1)

We find resemblance in � ′, � and H to a 4d right-handed chiral fermion, a 4d left-handed chiral 

fermion and the Higgs field H(x) in the SM. The complex conjugation in the VEV reflects the 

correspondence in gauge structure to the SM. Since � ′ (�) is an imitation of a 4d right-handed 

(left-handed) chiral fermion, we impose the following BCs:

PL� ′(x, y) = 0 at y1 = 0,L1, y2 = 0,L2, (C.2)

PR�(x,y) = 0 at y1 = 0,L1, y2 = 0,L2. (C.3)

Thanks to the above BCs, we obtain the twofold degenerated chiral zero modes ξ ′(0)
R1(x), ξ ′(0)

R2(x)

for � ′ and ξ
(0)
L1 (x), ξ

(0)
L2 (x) for � as a toy example of the SM. As expressed in Eqs. (3.45)–(3.46), 

the explicit form of the chiral zero modes are given as follows:

� ′(x, y) ⊃ � ′(0)
R+(x, y) + � ′(0)

R−(x, y), (C.4)

� ′(0)
R+(x, y) = N ′

1 ξ ′(0)
R1(x)eM ′(cos θ ′ y1+sin θ ′ y2) + N ′

2 ξ ′(0)
R2(x)e−M ′(cos θ ′∗ y1+sin θ ′∗ y2), (C.5)

� ′(0)
R−(x, y) = N ′

1 eiθ ′(
iŴy1

)
ξ ′(0)

R1(x)eM ′(cos θ ′ y1+sin θ ′ y2)

− N ′
2 eiθ ′∗(

iŴy1
)
ξ ′(0)

R2(x)e−M ′(cos θ ′∗ y1+sin θ ′∗ y2), (C.6)

�(x,y) ⊃ �
(0)
L+(x, y) + �

(0)
L−(x, y), (C.7)

�
(0)
L+(x, y) = N1 ξ

(0)
L1 (x) eM(cos θy1+sin θy2) + N2 ξ

(0)
L2 (x) e−M(cos θ∗y1+sin θ∗y2), (C.8)

�
(0)
L−(x, y) = N1 eiθ

(
iŴy1

)
ξ

(0)
L1 (x) eM(cos θy1+sin θy2)

− N2 eiθ∗(
iŴy1

)
ξ

(0)
L2 (x) e−M(cos θ∗y1+sin θ∗y2), (C.9)
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where N ′
1, N ′

2, N1, N2 are normalization factors given by

N ′
1 =

√
M ′2(cos θ ′∗ + cos θ ′)(sin θ ′∗ + sin θ ′)

(1 + e−i(θ ′∗−θ ′))(eM ′(cos θ ′∗+cos θ ′)L1 − 1)(eM ′(sin θ ′∗+sin θ ′)L2 − 1)
, (C.10)

N ′
2 =

√
M ′2(cos θ ′∗ + cos θ ′)(sin θ ′∗ + sin θ ′)

(1 + e+i(θ ′∗−θ ′))(1 − e−M ′(cos θ ′∗+cos θ ′)L1)(1 − e−M ′(sin θ ′∗+sin θ ′)L2)
, (C.11)

N1 =

√
M2(cos θ∗ + cos θ)(sin θ∗ + sin θ)

(1 + e−i(θ∗−θ))(eM(cos θ∗+cos θ)L1 − 1)(eM(sin θ∗+sin θ)L2 − 1)
, (C.12)

N2 =

√
M2(cos θ∗ + cos θ)(sin θ∗ + sin θ)

(1 + e+i(θ∗−θ))(1 − e−M(cos θ∗+cos θ)L1)(1 − e−M(sin θ∗+sin θ)L2)
. (C.13)

We now assume that the VEV of the 6d scalar field 〈H(x, y)〉 has a form of
〈
H(x,y)

〉
= v eMH y1 , (C.14)

where MH is a parameter which possesses mass-dimension one and the constant v possesses a 

mass-dimension two. We shall give some comments for the above VEV of the scalar field. In the 

context of higher-dimensional theory, it is known that the extra-dimension coordinate-dependent 

VEV of the scalar field gives a chance to solve the fermion mass hierarchy problem through an 

overlap integral with respect to the extra dimension [14]. Moreover, it was also unveiled that a 

VEV of a scalar field inevitably possesses an extra-dimension coordinate-dependence when we 

consider a general class of BCs [13]. Thus in a general framework, as we consider in this paper, 

the form of the VEV (C.14) is expected to be realized easily and convenient to discuss physics, 

e.g., 4d masses of zero modes and a mass hierarchy of them, though the form of the VEV (C.14)

is not essential and other y-dependent forms may work well, too.

From the forms (C.5), (C.6), (C.8), (C.9) and (C.14), we can read that ξ ′(0)
R1 and ξ

(0)
L1 localize 

to the direction y′ ≡ M ′(cos θ ′ y1 + sin θ ′ y2) and y ≡ M(cos θ y1 + sin θ y2). On the other hand, 

ξ ′(0)
R2 and ξ

(0)
L2 localize to the direction −y′ and −y. The fact that twofold degenerated zero modes 

possess different localization directions with each other plays an important role when we discuss 

4d masses of them. We put a localization direction of the 6d scalar VEV 〈H(x, y)〉 as y1-direction 

for simplicity.

Substituting the forms (C.4)–(C.9) and (C.14) into Eq. (C.1), we can derive the following 

action for the zero-mode part:

S(Y)|zero-mode part =

∫
d4x

{
2∑

j=1

ξ
′(0)
Rj (x)iŴμ∂μξ ′(0)

Rj (x) +

2∑

k=1

ξ
(0)

Lk (x)iŴμ∂μξ
(0)
Lk (x)

+

2∑

j=1

2∑

k=1

mjk ξ
′(0)
Rj (x)ξ

(0)
Lk (x) + (h.c.)

}
, (C.15)

where

m11 = λv N ′
1N1

(
1 − e−i(θ ′∗−θ)

)(e(MH +M ′ cos θ ′∗+M cos θ)L1 − 1

MH + M ′ cos θ ′∗ + M cos θ

)

×

(
e(M ′ sin θ ′∗+M sin θ)L2 − 1

M ′ sin θ ′∗ + M sin θ

)
, (C.16)
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m12 = λv N ′
1N2

(
1 + e−i(θ ′∗−θ∗)

)(e(MH +M ′ cos θ ′∗−M cos θ∗)L1 − 1

MH + M ′ cos θ ′∗ − M cos θ∗

)

×

(
e(M ′ sin θ ′∗−M sin θ∗)L2 − 1

M ′ sin θ ′∗ − M sin θ∗

)
, (C.17)

m21 = λv N ′
2N1

(
1 + e−i(θ ′−θ)

)(e(MH −M ′ cos θ ′+M cos θ)L1 − 1

MH − M ′ cos θ ′ + M cos θ

)

×

(
e(−M ′ sin θ ′+M sin θ)L2 − 1

−M ′ sin θ ′ + M sin θ

)
, (C.18)

m22 = λv N ′
2N2

(
1 − e−i(θ ′−θ∗)

)(e(MH −M ′ cos θ ′−M cos θ∗)L1 − 1

MH − M ′ cos θ ′ − M cos θ∗

)

×

(
1 − e−(M ′ sin θ ′+M sin θ∗)L2

M ′ sin θ ′ + M sin θ∗

)
. (C.19)

Obviously mjk (j = 1, 2; k = 1, 2) depends on the parameter θ and the degeneracy of zero 

modes can be resolved. Therefore we conclude that the parameter θ , which appears in zero mode 

solutions, actually affects to the physical quantities.

To show the possibility to solve the fermion mass hierarchy by use of this physical parame-

ter θ , let us consider the following special choice:

θ ′ = 0, θ + π = 0, M = −M ′, (C.20)

as an illustrative example.14 This parameter choice shows the possibility to solve the fermion 

mass hierarchy. Under the choice of the parameters, zero modes of the 6d Dirac fermions � ′ and 

� are expressed as

� ′(x, y) ⊃ � ′(0)
R+(x, y) + � ′(0)

R−(x, y)

=

√
M

(1 − e−2ML1)L2

(
ξ ′(0)

R1(x) + iŴy1ξ ′(0)
R1(x)

)
e−My1

+

√
M

(e2ML1 − 1)L2

(
ξ ′(0)

R2(x) − iŴy1ξ ′(0)
R2(x)

)
eMy1 , (C.21)

�(x,y) ⊃ �
(0)
L+(x, y) + �

′ (0)
L− (x, y)

=

√
M

(1 − e−2ML1)L2

(
ξ

(0)
L1 (x) − iŴy1ξ

(0)
L1 (x)

)
e−My1

+

√
M

(e2ML1 − 1)L2

(
ξ

(0)
L2 (x) + iŴy1ξ

(0)
L2 (x)

)
eMy1 . (C.22)

14 It is noted that under the specific condition on the angles, θ ′ = θ + π (θ, θ ′ ∈ R), the two limited configurations, 

MH = 0 or M ′ = M , lead to degenerated mass spectra, and also that a hierarchical spectrum can be obtained for θ ′ =

θ + π/2, independently of the value of θ with proper choices of the parameters. The authors thank the Referee for 

pointing out these properties.
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This expansion leads us to the results,

S(Y)|zero-mode part =

∫
d4x

{
2∑

j=1

ξ
′(0)
Rj (x)iŴμ∂μξ ′(0)

Rj (x) +

2∑

k=1

ξ
(0)

Lk (x)iŴμ∂μξ
(0)
Lk (x)

+

2∑

j=1

mjj ξ
′(0)
Rj (x)ξ

(0)
Lj (x) + (h.c.)

}
, (C.23)

where

m11 ≃ λv

(
2M

MH − 2M

)
e(MH −2M)L1 , (C.24)

m22 ≃ λv

(
2M

MH + 2M

)
eMH L1 , (C.25)

where we note that the factor λv has mass dimension one. In the above calculation, we introduced 

approximations (MH ± 2M)L1 ≫ 1 and ML1 ≫ 1 for convenience. We can easily find that a 

mass hierarchy m22 ≫ m11 appears to the two-generation fermions since the ratio of the masses 

are given as

m22

m11
≃

(
MH − 2M

MH + 2M

)
e2ML1 . (C.26)

So we can conclude that a mass hierarchy appears in the 4d masses of zero modes with introduc-

ing an extra-dimension coordinate-dependent VEV of the scalar since the parameter θ control 

a localization direction of zero modes and twofold degenerated zero modes possess different 

localization directions with each other.

Finally, we give a comment for a flavor mixing. In this special parameter choice, off diagonal 

components of the mass matrix, m12, m21 vanish. However, as we can see in Eqs. (C.17) and 

(C.18), off diagonal components appear naturally in a general choice of the parameters so that a 

flavor mixing can occur naturally in the case of general choices.
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