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Hilbert-Schmidt distance is one of the prominent distance measures in quantum information
theory which finds applications in diverse problems, such as construction of entanglement witnesses,
quantum algorithms in machine learning, and quantum state tomography. In this work, we calculate
exact and compact results for the mean square Hilbert-Schmidt distance between a random density
matrix and a fixed density matrix, and also between two random density matrices. In the course
of derivation, we also obtain corresponding exact results for the distance between a Wishart matrix
and a fixed Hermitian matrix, and two Wishart matrices. We verify all our analytical results using
Monte Carlo simulations. Finally, we apply our results to investigate the Hilbert-Schmidt distance
between reduced density matrices generated using coupled kicked tops.

I. INTRODUCTION

The statistical investigation of random density matri-
ces is a very active area of research [1–34]. It not only
touches upon some of the fundamental issues in quantum
mechanics, but is also crucial to various applications in
quantum information processing devices, such as quan-
tum computers, teleporters, cloners, etc [34–49]. One
of the important aspects in this context concerns with
various distance measures between quantum states [27–
36, 50–52]. A very important example of practical ap-
plicability of these distance measures is in quantifying
the accuracy of a signal transmission in quantum com-
munication, wherein one measures the distance between
the transmitted and received states [49]. Some exam-
ples of widely used distance measures are the trace dis-
tance (dtr), Hilbert-Schmidt distance (dHS), Bures dis-
tance (dB), and Hellinger distance (dH). For given two
density matrices ρ1, ρ2, these are defined respectively
as [34–36, 53–60]

dtr = tr |ρ1 − ρ2|,

dHS =
√

tr |ρ1 − ρ2|2,

dB =

√
2− 2 tr(

√
ρ1ρ2
√
ρ1)

1/2
,

dH =
√

2− 2 tr(
√
ρ1
√
ρ2).

Here, ‘tr’ represents trace and |A| for a given matrix or
operator A is defined as the positive square root of A†A,

i.e. |A| =
√
A†A. Often, some additional numerical fac-

tors are introduced in the above definitions to fix desired
normalizations. It may be noted that for density matrices
we have |ρ1−ρ2|2 = (ρ1−ρ2)2, since they are Hermitian.
Trace distance possesses the contractivity property, how-
ever it is non-Riemannian. Hilbert-Schmidt distance is
Riemannian, but not contractive (or, equivalently, mono-
tone) in general. Bures and Hellinger distances are both
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Riemannian and monotone. These and other properties
exhibited by these distance measures lead to correspond-
ing interesting physical consequences, and accordingly
their suitability for various applications in quantum in-
formation theory is decided [33–36, 49, 53–62].

Hilbert-Schmidt distance has been one of the promi-
nent and natural choices for quantifying the separation
between given two quantum states [33, 49, 60–80]. It
provides a direct interpretation as an information dis-
tance between quantum states [63]. It plays a crucial
role in connection to entanglement witness operators [64–
66], being equal to the maximal violation of the asso-
ciated inequality. A recent example in this context is
its implementation in the Gilbert algorithm [81] to con-
struct entanglement witnesses for unextendible product
basis bound entangled states [67, 68]. Moreover, Hilbert-
Schmidt distance has been utilized as a cost function in
variational hybrid quantum-classical algorithms in ma-
chine learning and other applications [49, 69–72]. It has
been regularly employed as an estimator in the precision
quantum-state tomography [73–76]. It also finds appli-
cations in the calculation of nonclassical correlations be-
tween quantum states other than entanglement, such as
quantum discord [33, 77–80]. As far as distinguishabil-
ity criterion is concerned, Hilbert-Schmidt distance does
have its limitations since it does not possess contractivity
property in general [34–36, 82, 83]. However, archetype
quantum systems such as qubits constitute useful ex-
ceptions where contractivity is retained and the Hilbert-
Schmidt distance equals the trace-distance up to a con-
stant factor [57]. Finally, a strong bound between trace
distance and Hilbert-Schmidt distance is now known due
to Ref. [51].

Several researchers have worked on the aforementioned
distance measures, including Hilbert-Schmidt, in the
context of random density matrices. For instance, in
Refs. [30, 32] the authors have derived, inter alia, aver-
ages of the above distances between two Hilbert-Schmidt
distributed random density matrices in large matrix-
dimension limit using free probability techniques [84, 85].
The average distance of random states from maximally
entangled and coherent states has been calculated in
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Ref. [31]. These results involving the random density
matrices serve as references with which one can compare
the distances between quantum states of interest [30–32].
This kind of statistical approach is adequate in view of
the typicality exhibited by various quantities in quantum
information theory. An example is the typicality of quan-
tum entanglement exhibited by random bipartite pure
states sampled using the unitarily invariant Haar mea-
sure [10, 27, 86–88]. The underlying phenomenon is that
of concentration of measure and such typical behavior
conform to the equal a priori postulate of the statistical
physics [89–92].

Exact and finite Hilbert-space dimension results hold
a special place in quantum information theory and are
especially suited for dealing with real world experi-
ments [37, 38, 44–49]. A prominent example is the semi-
nal result of Page for the average von Neumann entropy
associated with the subsystems of a composite bipartite
system [10]. This result has found application in diverse
problems, including many-body localization in spin sys-
tems [93], entanglement in neural network states [94], and
information in black hole radiation [95].

In this work, we derive exact and compact results for
the mean square Hilbert-Schmidt distance, i.e., the aver-
age of squared Hilbert-Schmidt distance,

D2 := E
[
d2HS] = E

[
tr(ρ1 − ρ2)

2]
,

where the average E[ · ] is with respect to the probability
measure governing the random density matrices. To this
end, we use the relationship between the Wishart ran-
dom matrix ensemble and the corresponding fixed trace
variant. The latter serves as a model for describing ran-
dom density matrices. To begin with, in Sec. II, we
derive exact results for the average of squared Hilbert-
Schmidt distance between a random matrix taken from
the Wishart ensemble and a fixed Hermitian matrix, and
also between two Wishart random matrices. These re-
sults are then used in Sec. III to compute exact results
for the mean square Hilbert-Schmidt distance between a
random density matrix taken from the set of density ma-
trices equipped with the Hilbert-Schmidt measure [1, 2]
and a fixed density matrix, and also between two random
density matrices. We verify all our analytical results us-
ing Monte Carlo simulations. In Sec. IV, we evaluate
the mean square Hilbert-Schmidt distance using random
density matrices generated via coupled kicked top sys-
tems and compare with our analytical results. Finally,
we conclude with a brief summary and outlook in Sec. V.

II. MEAN SQUARE HILBERT-SCHMIDT
DISTANCE FOR WISHART MATRICES

The probability density function associated with the
Wishart (or Wishart-Laguerre) random matrices is given
by [96–99]

P (W ) = C(detW )αe−
β
2 trW , (1)

where ‘det’ represents determinant and, as mentioned
earlier, ‘tr’ is the trace. The parameter α is decided by
the Dyson index β, the dimension n and the number of
degrees of freedom m,

α =
β

2
(m− n+ 1)− 1. (2)

For β = 1 the random matrix W is real positive-definite
and for β = 2 it is complex-Hermitian positive-definite.
The inverse of the normalization constant C (partition
function) is given by

C−1 =

(
2

β

)βnm/2
πβn(n−1)/4

n∏
i=1

Γ

(
β

2
(m− i+ 1)

)
.

(3)
The Wishart matrix W of Eq. (1) can be constructed as

W = GG†, (4)

where G is an n × m-dimensional real (for β = 1) or
complex (for β = 2) Ginibre-Gaussian random matrix
from the distribution

PG(G) =

(
β

2π

)βnm/2
e−

β
2 tr(GG†). (5)

Here, ‘†’ represents transpose and conjugate-transpose
for β = 1 and 2, respectively.

In the following subsections, we derive the desired av-
erages for squared Hilbert-Schmidt distance.

A. Wishart matrix and a fixed matrix

Let W be an n-dimensional Wishart random matrix
from the distribution given in Eq. (1). Also, consider X
to be a fixed n-dimensional real-symmetric (for β = 1) or
complex-Hermitian (for β = 2) matrix. We are interested
in calculating the average of the squared Hilbert-Schmidt
distance between W and X. It can be calculated as

D2
W,X =

∫
d[W ]P (W ) tr(W −X)

2

=

∫
d[W ]P (W ) trW 2 +

∫
d[W ]P (W ) trX2

− 2

∫
d[W ]P (W ) tr(WX). (6)

Here, d[W ] represents the differential of all the indepen-
dent components in W , i.e., d[W ] =

∏
j≤k dWjk for β = 1

and d[W ] =
∏
iWii

∏
j<k dRe(Wjk)dIm(Wjk) for β = 2.

Here, in the β = 2 case, ‘Re’ and ‘Im’ represent the real
and imaginary parts of the off-diagonal elements of W ,
which happen to be complex variables. The average of
trW 2 is well known in the existing literature for both
real and complex cases; see for example Refs. [100, 101].
Alternatively, it can be also obtained by calculating the
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corresponding average using the eigenvalues of W with
the aid of Selberg integrals [99, 102]. We obtain∫

d[W ]P (W ) trW 2 = nm(n+m+ 2/β − 1). (7)

We note that trW 2 is the second spectral moment of the
random matrix W , and therefore the above integral gives
its mean value. It is also known that [100, 101]∫

d[W ]P (W ) tr(WX) = m trX. (8)

The above can be viewed as the mean scalar (inner) prod-
uct between the random matrix W and the fixed matrix
X. Now, we have

D2
W,X = nm(n+m+ 2/β − 1) + trX2 − 2m trX

= nm(n+m+ 2/β − 1) +

n∑
i=1

χi(χi − 2m), (9)

where χi are the eigenvalues of X. The above result holds
even if we consider X → zX with z being some complex
scalar. It should be noted, however, that in this case zX
is not a real-symmetric or complex-Hermitian matrix in
general.

We compare the above analytical result with aver-
ages obtained using Monte Carlo simulation involving 105

Wishart matrices for both β = 1 and 2 cases. We con-
sider n = 2, 5, and m varying from n to n+ 3. The fixed
matrix X chosen in the n = 2 and 5 cases are(

2 1
1 −1/2

)
, β = 1,(

2 1 + 3i
1− 3i −1/2

)
, β = 2,

and 
3 1 4 6 8
1 −5 4 7 −1
4 4 2 1 3
6 7 1 9 0
8 −1 3 0 −2

 , β = 1,


3 1 + i 4− i/2 6 +

√
3 i 8− i

1− i −5 4 + 3i 7 −1
4 + i/2 4− 3i 2 2− 3i 3

6−
√

3 i 7 2 + 3i 9 i/5
8 + i −1 3 −i/5 −2

 , β = 2,

respectively. The comparison is shown with the aid of
various symbols in Fig. 1 and we observe that the ana-
lytical and simulation based results agree very well.

B. Two Wishart matrices

We now consider two n-dimensional Wishart-Laguerre
matrices W1 and W2 but with different choices for the

�
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FIG. 1. Mean-square Hilbert-Schmidt distance between a
Wishart matrix and a fixed matrix for (a) n = 2 and (b)
n = 5. The m (number of degrees of freedom) value for the
Wishart matrix varies from n to n+ 3 in both cases.

number of degrees of freedom in general, say m1 and
m2, i.e., we consider the respective probability densities

as Pj(Wj) = Cj(detWj)
β
2 (mj−n+1)−1e−

β
2 trWj ; j = 1, 2.

The average of the squared Hilbert-Schmidt distance be-
tween W1 and W2 then follows as

D2
W1,W2

=

∫
d[W1]

∫
d[W2]P1(W1)P2(W2) tr(W1 −W2)

2
.

(10)

We can evaluate the W2 integral first by keeping W1 fixed
and using Eq. (9). This gives us

D2
W1,W2

=

∫
d[W1]P1(W1)

[
nm2(n+m2 + 2/β − 1)

+ trW 2
1 − 2m2 trW1

]
.

(11)

Now, the integral over the first term in the above ex-
pression is trivial, the second term can be integrated us-
ing Eq. (7), and the third term can be integrated using
Eq. (8) with X = 1n. We obtain the desired expression
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as

D2
W1,W2

= nm1(n+m1 + 2/β − 1)

+ nm2(n+m2 + 2/β − 1)− 2nm1m2

= n
[
(m1 +m2)(n+ 2/β − 1) + (m1 −m2)2

]
. (12)

The above result is verified using Monte Carlo simula-
tions involving 105 pairs of Wishart matrices. In Fig. 2,
we show the comparison for n = 2 and 5 with various
combinations of m1 and m2 as indicated. We can see a
very good agreement in all cases.

�
�
�
��

�

�
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FIG. 2. Mean-square Hilbert-Schmidt distance between two
independent Wishart matrices of dimension (a) n = 2 and (b)
n = 5. In both cases, various combinations of the numbers of
degrees of freedom m1 and m2 have been considered.

III. MEAN SQUARE HILBERT-SCHMIDT
DISTANCE FOR RANDOM DENSITY

MATRICES

We now focus on random density matrices taken from
the set equipped with the Hilbert-Schmidt measure. The
corresponding probability density function is given by [1],

P(ρ) = C(det ρ)αδ(tr ρ− 1). (13)

As shown in the Appendix, the normalization factor C in
this case is related to the one in Eq. (3) as

C =

(
2

β

)βnm/2
Γ(βnm/2)C. (14)

The β = 1 case here can be associated with real random
states, while β = 2 corresponds to the usual scenario of
complex states [1].

The above described measure over random density ma-
trices arises in the following way. Consider a random pure
state |ψ〉 belonging to the Hilbert spaceHn⊗Hm which is
associated with a composite bipartite system of size nm
with n ≤ m. This random pure state may be represented
as |ψ〉 = U |ψ0〉, where U is a global random unitary ma-
trix distributed according to the Haar measure, and |ψ0〉
is an arbitrary state in Hn ⊗ Hm. Upon partial tracing
over the m-dimensional environment part, one obtains
the reduced density matrix of dimension n,

ρ =
trm(|ψ〉 〈ψ|)
〈ψ|ψ〉

. (15)

This reduced density matrix is then distributed as de-
scribed by the probability density in Eq. (13) [1]. The
n = m case is identified as the standard Hilbert-Schmidt
measure and is also induced by the Hilbert-Schmidt dis-
tance metric [1]. The construction appearing in Eq. (15)
maps to the random matrix model [1–3, 15]

ρ = W/ trW = GG†/ tr
(
GG†

)
, (16)

where W and G are matrices as in Eqs. (1) and (5).
Evidently, this results in the random matrix ρ having a
fixed trace 1 and therefore, in the random matrix the-
ory terminology, it is said to belong to the fixed trace
Wishart-Laguerre ensemble [1–3, 15, 99]. We exploit the
above relationship between the random density matrix ρ
and the Wishart matrix W to obtain the mean square
Hilbert-Schmidt distances for the former with the help
of results derived in the preceding section.

A. A random density matrix and a fixed density
matrix

Let ρ be a random density matrix from the distribution
given in Eq. (13) and σ be a fixed density matrix. We
need to calculate average of the squared Hilbert-Schmidt
distance between ρ and σ,

D2
ρ,σ =

∫
d[ρ]P(ρ) tr(ρ− σ)

2
, (17)

where d[ρ] is defined similar to d[W ]. We introduce an
auxiliary variable t inside the delta function to replace 1
in the expression of the density P(ρ). It will be set equal
to 1 towards the end of the calculation. We have

D2
ρ,σ(t) = C

∫
d[ρ] (det ρ)αδ(tr ρ− t) tr(ρ− σ)

2
. (18)
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Taking Laplace transform (t→ s), we get

D̃2
ρ,σ(s) = C

∫
d[ρ] (det ρ)αe−s tr ρ tr(ρ− σ)

2
. (19)

We now introduce ρ = ( β2s )W with s > 0, so that

d[ρ] = ( β2s )n[β(n−1)/2+1]d[W ]. After some simplification
we obtain

D̃2
ρ,σ(s) = C

(
β

2s

)βnm/2+2 ∫
d[W ] (detW )αe−

β
2 trW

× tr

(
W − 2s

β
σ

)2

=
C
C

(
β

2s

)βnm/2+2 ∫
d[W ]P (W ) tr

(
W − 2s

β
σ

)2

=
C
C

(
β

2s

)βnm/2+2 [
nm(n+m+ 2/β − 1)

+ (4s2/β2) trσ2 − (4m/β)s trσ
]
, (20)

where we employed Eqs. (1) and (9). Now, σ being a
density matrix, we have tr σ = 1. Taking the inverse
Laplace transform (s→ t) then yields

D2
ρ,σ(t) =

C
C

(
β

2

)βnm/2+2 [
4tβnm/2−1

β2Γ(βnm/2)
trσ2

− 4mtβnm/2

βΓ(βnm/2 + 1)
+ nm(n+m+ 2/β − 1)

tβnm/2+1

Γ(βnm/2 + 2)

]
.

Finally, setting t = 1 and substituting the ratio C/C from
Eq. (14), we obtain the desired result:

D2
ρ,σ = trσ2 +

β(n+m+ 2/β − 1)

βnm+ 2
− 2

n
. (21)

The above derivation, equivalently, may be carried out
by observing that P(ρ) ∝

∫
d[G]δ(ρ − GG†)δ(trGG† −

1)PG(G) and mapping the ρ-integral to G-integral. It
should be noted that the second term in Eq. (21) corre-
sponds to the average of tr ρ2, i.e., it is the average purity
for a random density matrix, viz.∫

d[ρ]P(ρ) tr ρ2 =
β(n+m+ 2/β − 1)

βnm+ 2
. (22)

Of special interest is the case when σ is a pure state or
a maximally mixed state. For these, we have trσ2 = 1
and 1/n, respectively and the corresponding average dis-
tances can be readily obtained from Eq. (21). Moreover,
for m = n� 1, we obtain

D2
ρ,σ = trσ2 +O

(
1

n2

)
, (23)

which, to the leading order, is just the purity of the state
σ. In the same limit, the leading contribution for pure
and maximally-mixed states are therefore D2

ρ,σ = 1 and

D2
ρ,σ = 1/n. The latter goes to 0 as n → ∞, as was

shown in Ref. [27].
We verify Eq. (21) by numerically simulating 105 ran-

dom density matrices using the random matrix model,
Eq. (16), and calculating the mean distance square with
the fixed matrix σ set as the maximally mixed state
n−11n. The results are depicted in Fig. 3 for n = 2, 5,
and m varying from n to n + 3. We find an impressive
agreement between the analytical and simulation based
results.

�
ρ
�σ
�

2 3 4 5
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0.35

(a) � = �
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β = �� Analytical� Simulation

5 6 7 8
0.10

0.12

0.14

0.16

0.18

0.20

0.22

(b) � = �
β = �� Analytical� Simulation

β = �� Analytical� Simulation

�

FIG. 3. Mean-square Hilbert-Schmidt distance between a ran-
dom density matrix and a fixed density matrix for (a) n = 2
and (b) n = 5. The m (Hilbert space dimension of the envi-
ronment) value varies from n to n+ 3 in both cases.

B. Two random density matrices

Let ρ1 and ρ2 be random density matrices from the
probability density given in Eq. (13), but unequal m in
general, say m1 and m2. We therefore need to calculate

D2
ρ1,ρ2 =

∫
d[ρ1]

∫
d[ρ2]P1(ρ1)P2(ρ2) tr(ρ1 − ρ2)

2
,

(24)

where Pj(ρj) = Cj(det ρj)
β
2 (mj−n+1)−1δ(tr ρj − 1); j =

1, 2. We can calculate the ρ2 integral first by treating ρ1
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fixed, and thus use Eq. (21). We obtain

D2
ρ1,ρ2 =

∫
d[ρ1]P1(ρ1)

[
tr ρ21 +

β(n+m2 + 2/β − 1)

βnm2 + 2
− 2

n

]
.

The first term can be integrated using Eq. (22), while the
integral over the other two terms is trivial. We have

D2
ρ1,ρ2 =

β(n+m1 + 2/β − 1)

βnm1 + 2

+
β(n+m2 + 2/β − 1)

βnm2 + 2
− 2

n
. (25)

For n = m1 = m2 � 1, we obtain

D2
ρ1,ρ2 =

2

n
+O

(
1

n2

)
, (26)

as was calculated in Ref. [32].
We simulate 105 pairs of random density matrices us-

ing the matrix model in Eq. (16) and obtain the average
of Hilbert-Schmidt distance square. These Monte Carlo
results are contrasted with the above analytical result in
Fig. 4. We have considered n = 2, 5 and several m1,m2

values and very good agreement can be seen in all cases.

IV. COUPLED KICKED TOPS

In this section, we compare the analytical results ob-
tained in the preceding section with the mean square
Hilbert-Schmidt distance obtained using random density
matrices generated via coupled kicked tops. Coupled
quantum kicked tops, inter alia, have been used exten-
sively to study the bipartite entanglement and effect of
chaos [22, 103–109]. In Ref. [32], it has been used to
study the spectrum of the difference of two density ma-
trices, the so called Helstrom matrix. In the same spirit,
we use here the couple kicked top system to generate ran-
dom density matrices distributed according to Hilbert-
Schmidt measure and then evaluate the corresponding
squared Hilbert-Schmidt distance averages. These re-
sults are compared with our random matrix theory based
analytical results.

The Hamiltonian for the coupled kicked top system
is [103, 104]

H = H1 ⊗ 1N2
+ 1N1

⊗H2 +H12. (27)

Here,

Hr =
π

2
Jyr +

kr
2jr

J2
zr

∞∑
ν=−∞

δ(t− ν), r = 1, 2, (28)

represent the Hamiltonians for the individual tops [110,
111], and

H12 =
ε√
j1j2

(Jz1 ⊗ Jz2)

∞∑
ν=−∞

δ(t− ν) (29)

�
ρ
�
�ρ
�

�

(2,2) (2,3) (2,4) (2,5) (3,3) (3,4) (3,5) (4,4) (4,5) (5,5)
0.2
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0.7

0.8

(a)
� = �
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β = �� Analytical� Simulation

(5,5) (5,6) (5,7) (5,8) (6,6) (6,7) (6,8) (7,7) (7,8) (8,8)
0.20
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� = �
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β = �� Analytical� Simulation

(��� ��)

FIG. 4. Mean-square Hilbert-Schmidt distance between two
independent random density matrices with (a) n = 2 and (b)
n = 5. For both cases, several combinations of m1,m2 values
have been considered.

is the interaction term. The Hamiltonians H1 and H2

correspond to N1 (= 2j1 + 1)-dimensional, and N2 (=
2j2 + 1)-dimensional Hilbert spaces H(N1) and H(N2), re-
spectively. Also, 1N1 and 1N2 are N1 and N2 dimensional
identity operators, respectively. The Hamiltonian for the
coupled kicked tops corresponds to an N1N2-dimensional
Hilbert space H(N1N2) = H(N1)⊗H(N2). Jxr , Jyr , Jzr are
angular momentum operators for the rth top and j is the
quantum number corresponding to the operator J2. The
stochasticity parameters kr for the two tops decide the
kick strengths and control their chaotic behavior. The
parameter ε takes care of the coupling between the two
tops.

The unitary time evolution operator (Floquet opera-
tor) corresponding to the Hamiltonian in Eq. (27) is

U = (U1 ⊗ U2)U12, (30)

with

Ur = exp

(
− ιπ

2
Jyr −

ιkr
2jr

J2
zr

)
, r = 1, 2; (31)

U12 = exp

(
− ιε√

j1j2
Jz1 ⊗ Jz2

)
. (32)
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�
(λ
)

λ

FIG. 5. Eigenvalue density for Hilbert-Schmidt distributed random density matrix: comparison between analytical result (solid
line) and the histogram obtained by diagonalising reduced density matrices obtained from coupled kicked top simulation with
k1 = k2 = 7, ε = 1. The density matrix dimension is n = 2j1 + 1 = 25 and the subplots depict the densities for varying
m = 2j2 + 1 values: (a) 25, (b) 27, (c) 29, and (d) 31.

Here ι =
√
−1 represents the imaginary unit. The Flo-

quet operator U is used to obtain the state |ψ(ν)〉 start-
ing from an initial state |ψ(0)〉 using the iteration scheme
|ψ(ν)〉 = U |ψ(ν − 1)〉. The initial state is taken as the
tensor-product of directed angular momentum states as-
sociated with the two tops. After ignoring a certain num-
ber of iterations that fall in the transient regime, one con-
siders the reduced density matrices obtained by partial
tracing over one of the tops (say, the second one), viz.
ρ(ν) = tr2(|ψ(ν)〉 〈ψ(ν)|); cf. Eq. (15). In the chaotic
regime (kr & 6), with sufficient coupling between the
two tops, these reduced density matrices belong to the
Hilbert-Schmidt measure as given in Eq. (13) [22, 106].

For comparison with our analytical result for distance
between a random density matrix and a fixed density
matrix, we generate 5000 reduced density matrices us-
ing the procedure described above. We consider j1 = 12
which gives n = N1 = 25 and vary j2 from 12 to 15
which corresponds to m = N2 = 25, 27, 29, 31. It should
be noted that for each choice of j2, we have to run a
separate simulation. The fixed density matrix is chosen
as n−11n, which represents the maximally mixed state.
Before we proceed to calculate the average distance be-
tween the quantum states, to demonstrate that the algo-
rithm does produce density matrices distributed accord-
ing to the Hilbert-Schmidt measure, we compare the cor-
responding eigenvalue density with the random matrix

prediction for β = 2 [19, 22], viz.,

p(µ) =

n∑
i=1

Ki µ
i+α−1(1− µ)−i+nm−α−1

×
[
(n− i)F−n,i−nm+α

α+1 − nF1−n,i−nm+α
α+1

]
. (33)

Here µ represents a generic eigenvalue of ρ and Fa,bc :=

2F1(a, b; c; µ
µ−1 )/Γ(c) with 2F1(· · · ) being the Gauss hy-

pergeometric function. The coefficient Ki is given by

Ki =
(−1)iΓ(m+ 1)Γ(nm)

nΓ(i)Γ(n− i+ 1)Γ(i+ α+ 1)Γ(nm− α− i)
.

(34)

As can be seen in Fig. 5, we find very good agree-
ment between the analytical eigenvalue densities and his-
tograms obtained from simulations. Thus, we use these
density matrices for evaluating the Hilbert-Schmidt dis-
tance. The results are depicted in Fig. 6 for three sets
of (k1, k2, ε) parameters along with the random matrix
theory based results based on Eq. (21). We find a very
good agreement, with the relative difference remaining
below 1% in each case.

For simulating the distance between two density matri-
ces we consider two independent coupled kicked tops, say
A and B. This helps us to realize different m1 = 2jA2 + 1
and m2 = 2jB2 + 1 values. Here, jA2 and jB2 represent the
j2 values for the two couple kicked tops, respectively. The
n value is decided by the common Hilbert-space dimen-
sion 2jA1 + 1 = 2jB1 + 1. We should add that if one does
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FIG. 6. Comparison between random matrix theory
(RMT) and coupled kicked top simulation results: (a)
mean square Hilbert-Schmidt distance between density ma-
trices ρ of dimension n = 25 generated from coupled
kicked top (CKT) simulations and the maximally mixed
density matrix σ = n−11n, along with the RMT predic-
tions; (b) the corresponding percent relative differences, i.e.,
100([D2

ρ,σ]CKT/[D
2
ρ,σ]RMT − 1)%. The sets of parameters

(k1, k2, ε) used for the coupled kicked tops are CKT I: (7, 8, 1),
CKT II: (6, 7, 0.75), CKT III: (6, 9, 0.5) and m has been varied
in each case, as indicated along the horizontal axis.

not require to consider different values for m1 and m2,
only one coupled kicked top would suffice. In this case,
ρ1 and ρ2 can be taken as reduced density matrices sep-
arated by a certain number of iterations within a single
simulation. In Fig. 7, we show the comparison between
the random matrix analytical and kicked top simulation
results for the mean square Hilbert-Schmidt distance for
n = 25 and several combinations of m1,m2. Three sets of
parameters (kA1 , k

A
2 , ε

A) and (kB1 , k
B
2 , ε

B) have been cho-
sen for the coupled tops A and B. Here also, we find
the agreement to be impressive with the relative differ-
ence with the random matrix result, Eq. (25), remaining
below 1%.
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FIG. 7. Comparison between random matrix theory and cou-
pled kicked top simulation results: (a) mean square Hilbert-
Schmidt distance between two random density matrices ρ1, ρ2
of dimension n = 25 and various m1,m2 combinations cal-
culated using coupled kicked top pairs (CKTP), along with
RMT predictions; (b) the corresponding percent relative dif-
ferences. The sets of parameters (kA1 , k

A
2 , ε

A; kB1 , k
B
2 , ε

B) used
for the coupled kicked top pairs are CKTP I: (8, 7, 0.5; 7, 8, 1),
CKTP II: (6, 6, 0.8; 7, 8, 0.75), CKTP III: (7, 7, 0.75; 8, 8, 0.75).

V. SUMMARY AND OUTLOOK

In this work, we obtained exact and compact expres-
sions for the mean square Hilbert-Schmidt distance be-
tween a random density matrix and a fixed density ma-
trix, and also between two random density matrices. This
derivation involved first computing the corresponding ex-
pressions for Wishart random matrices. These results
are compiled in Table 1 for a quick reference. We also
compared our analytical results with the average dis-
tances obtained using reduced density matrices simulated
via coupled kicked top system with appropriately chosen
parameters, and found very good agreement. Our re-
sults constitute a useful reference for comparing Hilbert-
distance between quantum states. Moreover, due to their
simplicity, our analytical expressions are amenable to fur-
ther analysis, such as examining asymptotic limits.

Distance measures other than Hilbert-Schmidt, such
as trace distance and Bures distance, are acknowledged
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TABLE I. Summary of results for the mean square Hilbert-Schmidt distance between a pair of matrices. For the Wishart
matrices, n is the matrix dimension and m is the number of degrees of freedom. For random density matrices, n is the matrix
dimension and m is the auxiliary dimension of the Hilbert-space corresponding to the environment.

Matrices Mean square Hilbert-Schmidt distance

A Wishart matrix (W ) and a fixed Hermitian matrix (X) D2
W,X = nm

(
n+m+

2

β
− 1

)
+ trX2 − 2m trX

Two Wishart matrices (W1,W2) D2
W1,W2

= n

[
(m1 +m2)

(
n+

2

β
− 1

)
+ (m1 −m2)2

]
A random density matrix (ρ) and a fixed density matrix (σ) D2

ρ,σ = trσ2 +
β(n+m+ 2/β − 1)

βnm+ 2
− 2

n

Two random density matrices (ρ1, ρ2) D2
ρ1,ρ2 =

β(n+m1 + 2/β − 1)

βnm1 + 2
+
β(n+m2 + 2/β − 1)

βnm2 + 2
− 2

n

to be better suited for characterizations such as distin-
guishability of quantum states. While large dimension
asymptotic results exist for averages of these distances,
it would be immensely useful if finite dimension results
can be obtained. Moreover, it would be of interest to go
beyond the mean of these distances and explore higher
moments and distributions. Finally, one would also like
to investigate the statistics of distances between random
states distributed according to measures other than the
Hilbert-Schmidt measure, such as Bures-Hall measure.
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Appendix A: Relationship between normalization
constants

We prove here the relationship between the normal-
ization constants C and C as given in Eq. (14). Since∫
dρP(ρ) = 1, we obtain from Eq. (13),

C−1(t) =

∫
d[ρ](det ρ)αδ(tr ρ− t), (A1)

where, as before, we have introduced the auxiliary vari-
able t inside the delta function. Taking the Laplace trans-
form (t→ s), we obtain

C̃−1(s) =

∫
d[ρ](det ρ)αe−s tr ρ. (A2)

We then consider the transformation, ρ = ( β2s )W with

s > 0, so that d[ρ] = ( β2s )n[β(n−1)/2+1]d[W ]. This gives

C̃−1(s) =

(
β

2s

)βnm/2 ∫
d[W ](detW )αe−

β
2 trW

=

(
β

2s

)βnm/2
C−1. (A3)

Taking the inverse Laplace transform we obtain

C−1(t) =
1

Γ(βnm/2)

(
β

2

)βnm/2
tβnm/2−1C−1. (A4)

Finally, setting t = 1, we get

C−1 =
1

Γ(βnm/2)

(
β

2

)βnm/2
C−1, (A5)

which yields the desired result appearing in Eq. (14).
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[50] J. Calsamiglia, R. Munõz-Tapia, L. Masanes, A. Acin,
and E. Bagan, Quantum Chernoff bound as a measure
of distinguishability between density matrices: Appli-
cation to qubit and Gaussian states, Phys. Rev. A 77,
032311 (2008).

[51] P. J. Coles, M. Cerezo, and L. Cincio, Strong bound
between trace distance and Hilbert-Schmidt distance for
low-rank states, Phys. Rev. A 100, 022103 (2019).

[52] G. Aubrun and C. Lancien, Locally restricted measure-
ments on a multipartite quantum system: data hiding
is generic, Quantum Inf. Comput. 15, 513 (2015).
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