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Representation of Cyclotomic Fields and Their Subfields

A. Satyanarayana Reddy∗ Shashank K Mehta † A. K. Lal‡

Abstract

Let K be a finite extension of a characteristic zero field F. We say that a pair of n × n

matrices (A,B) over F represents K if K ∼= F[A]/〈B〉, where F[A] denotes the subalgebra of Mn(F)

containing A and 〈B〉 is an ideal in F[A], generated by B. In particular, A is said to represent the

field K if there exists an irreducible polynomial q(x) ∈ F[x] which divides the minimal polynomial

of A and K ∼= F[A]/〈q(A)〉.

In this paper, we identify the smallest order circulant matrix representation for any subfield

of a cyclotomic field. Furthermore, if p is a prime and K is a subfield of the p-th cyclotomic field,

then we obtain a zero-one circulant matrix A of size p× p such that (A,J) represents K, where J

is the matrix with all entries 1. In case, the integer n has at most two distinct prime factors, we

find the smallest order 0, 1-companion matrix that represents the n-th cyclotomic field. We also

find bounds on the size of such companion matrices when n has more than two prime factors.

Keywords: Circulant matrix, Companion Matrix, Cyclotomic field, Cyclotomic Polynomial,

Möbius Function, Ramanujan Sum.

Mathematics Subject Classification 2010: 15A18, 15B05, 11C08, 12F10.

1 Introduction and Preliminaries

In this paper, we will be interested in fields F that have characteristic 0. Thus, one can assume that

Q ⊆ F ⊆ C, where Q is the field of rational numbers and C is the field of complex numbers. An

element α ∈ C is said to be algebraic over F, if α is a root of a polynomial f(x) ∈ F[x]. The polynomial

f(x) is said to be the minimal polynomial of α over F, if α is a root of f(x), f(x) is monic and is

irreducible in F[x]. In this paper, Mn(F) will denote the set of all n × n matrix over F. All vector

symbols will denote column vectors and they will be written in bold face. Also, the vector of all 1’s

will be denoted by e and a square matrix with all entries 1, will be denoted by J. Then J = eet,

where et denotes the transpose of e. The symbol 0 will denote either a vector or a matrix having all

entries zero.

Recall that for any A ∈ Mn(F), a celebrated result, commonly known as the Cayley-Hamilton

Theorem, states that the matrix A satisfies its own characteristic polynomial. That is, if ςA(x) =

det(xI − A) is the characteristic polynomial of A, then ςA(A) as an element of F[A], equals 0. Let

S = {f(x) ∈ F[x]|f(A) = 0}. Then S is an ideal in F[x] and S = 〈p(x)〉 for some monic polynomial
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p(x) ∈ F[x]. By definition, p(x) divides ςA(x) and for any B ∈ F[A], there exists a unique polynomial

g(x) ∈ F[x], with deg(g(x)) < deg(p(x)) such that B = g(A). The polynomial p(x) is called the

minimal polynomial of A and is denoted by pA(x).

We are now ready to state a few results from matrix theory and abstract algebra. For proofs and

notations related with these results the reader is advised to refer to the book Abstract Algebra by

Dummit & Foote [6] and Linear Algebra by Hoffman & Kunze [10].

Lemma 1.1 (Hoffman & Kunze, Pages 204, 231 [10]). Let A be a square matrix.

1. Then A is diagonalizable if and only if its minimal polynomial is separable.

2. Let A be a matrix with distinct eigenvalues. Then a matrix B commutes with A if and only if

B is a polynomial in A.

Before stating the next result, recall that for a monic polynomial f(x) = xn − cn−1x
n−1 −

cn−2x
n−2 − · · · − c1x− c0 ∈ F[x], its companion matrix, denoted C(f), is defined as

C(f) =

















0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
. . .

. . .
...

...

0 0 0 . . . 0 1

c0 c1 c2 . . . cn−2 cn−1

















.

For example, the n× n matrix

Wn =

















0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
. . .

. . .
...

...

0 0 0 . . . 0 1

1 0 0 . . . 0 0

















is the companion matrix of the polynomial xn − 1. Note that Wn is a 0, 1-circulant matrix and xn − 1

is its minimal polynomial. It is well known (for example, see Davis [5]) that every circulant matrix is

a polynomial in Wn. Due to the above property, the matrix Wn is called the fundamental circulant

matrix. The next result also appears in [10].

Lemma 1.2 (Hoffman & Kunze, Page 230 [10]). Let C(f) be the companion matrix of f(x) = xn −
cn−1x

n−1 − cn−2x
n−2 − · · · − c1x− c0 ∈ F[x] . Then

1. f(x) is both the minimal and the characteristic polynomial of C(f).

2. all eigenvalues of the companion matrix C(f) are distinct if and only if C(f) is diagonalizable.

The next result is also well known. The proof can be easily obtained by using basic results in

abstract algebra and it also appears in [6].

Theorem 1.3. Let pA(x) be the minimal polynomial of A ∈ Mn(F).

1. Let g(x) ∈ F[x] and let h(x) = gcd(g(x), pA(x)). Then 〈g(A)〉 = 〈h(A)〉.

2. If q(x) is a non-constant factor of pA(x) in F[x] then F[A]/〈q(A)〉 ∼= F[x]/〈q(x)〉. In particular,

if q(x) is irreducible and q(α) = 0 for some α ∈ C then F[A]/〈q(A)〉 ∼= F[x]/〈q(x)〉 ∼= F(α). That

is, F[A]/〈q(A)〉 is a field.
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As a corollary of Theorem 1.3, one has the following result. To state the result, recall that a pair

of n× n matrices (A,B) over F is said to represent an extension field K if K ∼= F[A]/〈B〉, where 〈B〉
is an ideal in F[A] generated by B.

Corollary 1.4. Let α ∈ C. Then the matrix pair (A,B) represents F(α), a field, if and only if α is

an eigenvalue of A, q(x) is the minimal polynomial of α over F and 〈B〉 = 〈q(A)〉 in F[A].

That is, suppose that q(x) is the minimal polynomial of an eigenvalue α of A. Then the matrix

pair (A,B) represents an extension K = F(α) of F if and only if 〈B〉 = 〈q(A)〉. Hence with an abuse

of the language, we may say that the matrix A represent K to mean that K = F(α), whenever α is an

eigenvalue of A. Also, it is well known that the choice of α is not unique. Therefore, depending on

the choice of α the corresponding matrices that represent K can vary. This issue becomes significant

when we search for a smallest representation (in terms of order).

We are now ready to explain the motivation for our study. Let G be a finite group and let n ∈ Z+.

A matrix representation of G is a homomorphism from G into GLn(F), where GLn(F) is the group

of invertible n× n matrices with entries from F. The representation is called faithful if the image of

the homomorphism is isomorphic to G. A similar question arises whether an extension field of F has

a representation in Mn(F). For example, let α be an algebraic number over F with q(x) ∈ F[x] as its

minimal polynomial. Then, using Lemma 1.2 and Corollary 1.4, we see that F(α) ∼= F[C(q))], where
C(q) is the companion matrix of q(x). This leads to the following natural questions:

1. does there exist a matrix A in Mn(F) with some specified properties such that F[A] ∼= F(α)?

2. if it exists, what is the smallest possible positive integer n?

For example, fix a positive integer n and consider ζn, a primitive n-th root of unity. Then the

polynomial Φn(x) over Q, called the n-th cyclotomic polynomial, is the minimal polynomial of ζn and

hence is irreducible over Q. In this case, is it possible to find a matrix A which is either circulant over

Q or is a 0, 1-companion matrix of Φn(x) such that Q[A] ∼= Q(ζn)? It can easily be checked that this

is true only when n = 1 or n = 2. For n > 2, such a result is not true. To understand this, recall

that xn − 1 =
∏

d|n

Φd(x), where Φd(x) ∈ Z[x] is the minimal polynomial of ζd in Q[x] and for any two

integers s, t, the notation s|t means that s divides t. Consequently, from Corollary 1.4, it follows that

for each divisor d of n,

Q[Wn]/〈Φd(Wn)〉 ∼= Q(ζd). (1)

In particular, Q[Wn]/〈Φn(Wn)〉 ∼= Q(ζn). That is, in this case, the pair (Wn,Φn(Wn)) represents the

field Q(ζn).

To proceed further, we need the following definitions and notations. A directed graph (in short,

digraph) is an ordered pair X = (V,E) that consists of two sets V , the vertex set, and E, the edge

set, where V is non-empty and E ⊂ V × V . If e = (u, v) ∈ E with u 6= v then the edge e is said to

be incident from u to v or u is said to be the initial vertex and v the terminal vertex of e. An edge

e = (u, u) is called a loop. A digraph is called a graph if (u, v) ∈ E whenever (v, u) ∈ E, for any two

elements u, v ∈ V . If u, v ∈ V , then an edge between u and v in the graph X is denoted by e = {u, v}
and in this case, we say that e is incident with u and v or the vertex u is adjacent to the vertex v, or

vice-versa. For any finite set S, let |S| denote the number of elements in S. Then a graph/digraph is

said to be finite, if |V | (called the order of X) is finite. A graph is called simple if it has no loops.

Let X = (V,E) be a graph. Then the degree of a vertex v ∈ V , denoted d(v), is the number of

edges incident with it. In case v is a vertex of a digraph X , one defines in-degree of v, denoted d+(v),
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as the number of edges that have v as a terminal vertex and out-degree of v, denoted d−(v), as the

number of edges that have v as an initial vertex. The simple graph X that has an edge for each pair

of vertices is called a complete graph, denoted Kn, where n is the number of vertices of X . A graph

with no edge is called a null graph. The cycle graph on n vertices, say u1, u2, . . . , un, denoted Cn, is

a simple graph in which {ui, uj} is an edge if and only if i− j ≡ ±1 (mod n). A graph on n vertices,

say u1, u2, . . . , un, denoted Xn, is called a path graph, if for each i, 1 ≤ i ≤ n− 1, the set {ui, ui+1} is

an edge. A graph (digraph) X is said to be k- regular if d(v) = k (d+(v) = d−(v) = k) for all v ∈ V .

Unless specified otherwise, all the graphs in this paper are assumed to be finite and simple.

Let X = (V,E) be a digraph. Then the adjacency matrix of X , denoted A = [aij ] is a square

matrix of order |V | with aij = 1 whenever (i, j) ∈ E and 0, otherwise. In case X is a graph then it

can be easily seen that A is a symmetric matrix.

Now, let A be the adjacency matrix of a connected k-regular graph X on n vertices. Then, it is

well known that k is a simple eigenvalue of A. Thus, the minimal polynomial of A is of the form

(x − k)q(x) for some q(x) ∈ Z[x]. Note that k is a simple eigenvalue of A implies that q(k) 6= 0 and

for any other eigenvalue α of A, q(α) = 0. Then with q(x) as defined, we state the following well

known result. We present the proof for the sake of completeness.

Lemma 1.5 (Hoffman [8]). Let X be a connected k-regular graph on n vertices with minimal poly-

nomial (x− k)q(x) ∈ Z[x]. Then the matrix J equals
n

q(k)
q(A).

Proof. As X is a k-regular graph, its adjacency matrix A satisfies Ae = ke and hence

JA = AJ = kJ and q(A)e = q(k)e. (2)

Also, the eigenvectors of A can be chosen to form an orthonormal basis B of Rn. Hence
1√
n
e ∈ B

and thus, for any vector x ∈ B,x 6= e, xte = 0. Therefore, Jx = 0 and using Equation (2),

J
1√
n
e =

n√
n
e =

( n

q(k)
q(k)

) 1√
n
e =

n

q(k)
q(A)

1√
n
e. Also, q(λ) = 0 for any eigenvalue λ 6= k of A

implies that q(A)x = q(α)x = 0. That is,
n

q(k)
q(A)x = 0.

Thus, the image of two matrices J and
n

q(k)
q(A) on a basis of Rn are same and hence the two

matrices are equal. Therefore J =
n

q(k)
q(A).

The next corollary is an immediate consequence of Theorem 1.3 and Lemma 1.5.

Corollary 1.6. Let A be the adjacency matrix of a connected k-regular graph X on n vertices. Then

F[A]/〈J〉 ∼= F[x]/〈q(x)〉.

Proof. Since q(x) is a factor of the minimal polynomial (x − k)q(x) of A, using Theorem 1.3 and

Lemma 1.5, one has F[x]/〈q(x)〉 ∼= F[A]/〈q(A)〉 ∼= F[A]/

〈

n

q(k)
q(A)

〉

= F[A]/〈J〉.

A.J. Hoffman & M.H. McAndrew [9] extended Lemma 1.5 to digraphs and is stated below. Note

that in their paper, regular digraph were referred as strongly regular digraph.

Lemma 1.7 (Hoffman &McAndrew(1965) [9]). Let A be the adjacency matrix of a digraph X. Then

there exists a polynomial g(x) ∈ Q[x] such that J = g(A) if and only if X is strongly connected and

regular.
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In this paper, we determine the smallest order circulant matrix representation for all subfields of

cyclotomic fields. We also determine smallest order 0, 1-companion matrix representation for cyclo-

tomic fields in a restricted sense. We only consider those 0, 1-companion matrices which have ζn as

an eigenvalue. We begin with a review of some facts related with the representation of cyclotomic

fields and their subfields by circulant matrices in Section 2. The results about representations of p-th

cyclotomic field, p a prime, by 0, 1-circulant matrices are given in Section 2.1. In section 3 we present

results on the size of the smallest order 0, 1-companion matrix representations of cyclotomic fields.

2 Representation of cyclotomic fields and their subfields

We start this section with a result about the irreducible factors of the minimal polynomial of a

companion matrix. The proof of this result can be easily obtained using the theory of minimal

polynomials and Lemmas 1.1 and 1.2. Hence we omit the proof.

Lemma 2.1. Let f(x) ∈ F[x] be a monic separable polynomial with irreducible factors q1(x), q2(x), . . . , qk(x)

in F[x]. Suppose A ∈ Mn(F) commutes with the companion matrix C(f).

1. Then A = g(C(f)) for some g(x) ∈ F[x].

2. Let αi be a root of qi(x) and let χqi,g(x) be the minimal polynomial of g(αi) over F. Then the

minimal polynomial of A is the maximal square-free factor of
k
∏

i=1

χqi,g(x).

In particular, the number of irreducible factors of the minimal polynomial of g(A) in F[x] are at

most the number of irreducible factors of f(x) in F[x].

Recall that for a fixed positive integer n, deg(Φn(x)) = ϕ(n), where ϕ(n) denotes the well known

Euler-totient function. The function ϕ(n) also gives the number of integers between 1 and n that are

coprime to n. We omit the proof of the next result as it directly follows from Lemma 2.1, Theorem

1.3.2 and the fact that xn − 1 =
∑

d|n

Φd(x).

Theorem 2.2. Fix a positive integer n and let A = g(Wn), for some g(x) ∈ Q[x] with 1 ≤ deg(g(x)) ≤
n− 1. Also, for each divisor d of n, let χΦd,g(x) be the minimal polynomial of g(ζd) over Q. Then

1. pA(x), the minimal polynomial of A, is the maximal square free factor of
∏

d|n

χΦd,g(x) and

deg(χΦd,g(x)) divides deg(Φd(x)).

2. the number of irreducible factors of pA(x) is at most the number of divisors of n.

3. Q
(

g(ζd)
) ∼= Q[A]/〈χΦd,g(A)〉.

Furthermore, if n is a prime, say p, then the number of irreducible factors of pA(x) is exactly two.

One of the factors is of degree 1 and the degree of the other factor is a divisor of ϕ(p) = p− 1.

Proof. Proofs of Part 1, 2 and 3 are direct consequence of Lemma 2.1 and Theorem 1.3. For the last

statement, note that n is prime and hence it has exactly two factors, namely 1 and n. Hence, using

Lemma 2.1, it is sufficient to prove that pA(x) has at least two irreducible factors.

As A = g(Wn), the eigenvalues of A are g(ζin) for 0 ≤ i ≤ n − 1. Now observe that for i = 0,

g(ζ0n) = g(1) ∈ Q as g(x) ∈ Q[x]. Therefore, (x − g(1)) is an irreducible factor of pA(x). Also, for
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some i, 1 ≤ i ≤ n − 1, if g(ζin) 6= g(1) then the minimal polynomial of g(ζin) is another irreducible

factor of pA(x). Hence, pA(x) has at least two irreducible factors.

Thus, we need to show that g(ζin) = g(1) cannot hold true for all i ∈ {1, 2 . . . , n − 1}. On the

contrary, assume that g(ζin) = g(1) for all i, 1 ≤ i ≤ n− 1. Define, h(x) = g(x) − g(1) ∈ Q[x]. Then

h(x) has n distinct zeros, ζin, 0 ≤ i ≤ n−1. This contradicts the definition of h(x) and the assumption

that deg(g(x)) ≤ n− 1 as a polynomial f(x) has at most deg(f(x)) zeros over C.

Theorem 2.2 establishes that, any field which is represented by an n × n circulant matrix is a

subfield of the d-th cyclotomic field for some d that divides n. It also describes the correspondence

between the set of all circulant matrices and the set of all subfields of cyclotomic fields. It can also

be concluded that the minimal polynomial of every circulant matrix other than the scalar matrix has

at least two irreducible factors. One also concludes the next result and hence the proof is omitted.

Corollary 2.3. Let A be an n× n circulant matrix. Then A represents a field F over Q if and only

if F is a subfield of Q[ζd], for some d dividing n.

The next result gives the smallest positive integer d for which a field L over Q (as a subfield of

Q[ζd]) is represented by a circulant matrix.

Corollary 2.4. Let L be a finite extension of Q. If d is the smallest positive integer such that L is a

subfield of Q(ζd) then the smallest circulant matrix representation of L is of order d.

Proof. Since L is a subfield of Q(ζd) there exists g(x) ∈ Q[x] such that L = Q
(

g(ζd)
)

. Thus, by

Theorem 2.2.3, L is represented by A = g(Wd).

Now, assume that there exists a d′ × d′ circulant matrix B = h(Wd′) that represents L, for some

d′ < d. Let χΦd′,h
(x) ∈ Q[x] be the minimal polynomial of h(ζd′). Then, using Theorem 2.2.3, one

has L ∼= Q[B]/〈χΦd′,h
(B)〉 ∼= Q[h(ζd′)]. That is, L is a subfield of Q[ζd′ ] as well. This contradicts our

hypothesis that d was the smallest positive integer such that L was a subfield of Q[ζd]. Hence, one

has the required result.

Let n,m and a be positive integers with n = 2am and a ≥ 1. Then it is known that Q[ζm] ∼= Q[ζn],

whenever m is odd and a = 1. Let n = 2a · m for some odd positive integer m. Then, using

Corollaries 2.3 and 2.4, the smallest representation of Q[ζn] is of order n, whenever a 6= 1 and its

order is n
2 , whenever a = 1. The following theorem gives a 0, 1-symmetric and circulant matrix

representation of order n for the largest subfield of Q[ζn].

Theorem 2.5. Let δn = ζn + ζ−1
n .

1. Then Q[δn] has a symmetric 0, 1-circulant matrix representation of order n.

2. Let L be a subfield of Q[δn]. Then there exists a symmetric circulant matrix that represents L.

Proof. Proof of part 1: Let K = Q[ζn]. Then Q[δn] is a subfield of K and ζn is a zero of the polynomial

x2 − δnx + 1 ∈ Q[δn][x]. So, [K : Q[δn]] = 2. As A = Wn +W−1
n , A is a symmetric, 0, 1-circulant

matrix. Also δn is an eigenvalue of Wn + Wn−1
n = Wn + W−1

n = A. Thus, by Theorem 2.2, A

represents Q[δn]. This completes the proof of Part 1.

Proof of part 2: Since L is a subfield of Q[δn], there exists a polynomial g(x) ∈ Q[x] such that

L = Q[g(δn)]. So L = Q[h(ζn)] where h(x) = g(x+ xn−1). Hence L can be represented by h(Wn) =

g(Wn +Wn−1
n ) = g(A). Clearly, h(Wn) is a symmetric, circulant matrix. Thus, the required result

follows.
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We end this subsection, by a remark that gives an improvement on the order of the matrix A of

Theorem 2.5, whenever n is an even integer. It is important to note that the representation given in

the next remark, need not be a circulant representation. To do this, one uses a well known result that

relates the eigenvalues of a cycle graph with the eigenvalues of a path graph.

Remark 2.6 (Bapat, page 27, [3]). Let n be an even positive integer and let A denote the adjacency

matrix of the cycle Cn. Then the following results are well known:

1. 2 and −2 are eigenvalues of A.

2. Let Bm be the adjacency matrix of the path Xm, on m vertices. Then the set of eigenvalues of

Bn/2−1 and the set of distinct eigenvalues of A, different from 2 and −2, are equal.

Thus, the subfields of Q[δn] can also be represented by g(Bn/2−1), for some polynomial g(x) ∈ Q[x].

2.1 Representations of prime order

Let p be a prime and let K be a subfield of Q[ζp]. Then it is shown in this subsection that there exists

a zero-one circulant matrix A of order p such that the pair (A,J) represents K. To do this, we define

Cayley graphs/digraphs.

Definition 2.7. Let G be a group and let S be a non-empty subset of G that does not contain

the identity element of G. Then the Cayley digraph/graph associated with the pair (G,S), denoted

Cay(G,S), has the set G as its vertex set and for any two vertices x, y ∈ G, (x, y) is an edge if

xy−1 ∈ S.

Observe that Cay(G,S) is a graph if and only if S is closed with respect to inverse (S = S−1 =

{s−1 : s ∈ S}). Also, the graph is k-regular if S has k elements. The set S is called the connection

set of the graph and it can be easily verified that the graph Cay(G,S) is connected if and only if

G = 〈S〉. We also recall that a digraph is called a circulant digraph if its adjacency matrix is a

circulant matrix. The next lemma, due to Biggs, states that every circulant digraph can be obtained

as a Cayley digraph.

Lemma 2.8 (Biggs [4]). Consider Zn as a cyclic group of order n. Then every Cayley digraph

Cay(Zn, S) is a circulant digraph. Conversely, every circulant digraph on n vertices is Cay(Zn, S),

for some non-empty subset S of Zn.

We now state a result due to Turner [18] that relates the isomorphism of two circulant graphs of

prime order with their eigenvalues.

Lemma 2.9 (Turner [18]). Let X1 and X2 be two circulant graphs of prime order. Then they are

isomorphic if and only if they have the same set of eigenvalues. Or equivalently, their connection sets

are equivalent.

Before proving a couple of results, we recall the following facts. These facts are not stated in

the present form but they can be obtained from the results stated on Pages 554, 577 of Dummit &

Foote [6].

Fact 2.10 (Dummit & Foote, Pages 554, 577 [6]). Let p be a prime. Then

1. the polynomial f(x) = 1 + x+ · · ·+ xp−1 is irreducible over Q.
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2. the Galois group of Q[ζp] over Q is isomorphic to Z∗
p, a cyclic group of order p− 1.

3. for each divisor d of p−1, Z∗
p has a unique subgroup of order d and there exists a unique subfield

of Q[ζp] whose degree of extension over Q is d.

Lemma 2.11. Let p be a prime number and let k be any factor of p − 1. Then the edge set of

Kp = (Zp, E), the complete graph on p vertices, can be partitioned into k subsets E0, E1, . . . , Ek−1

such that the digraphs Xi = (Zp, Ei), for 0 ≤ i ≤ k − 1, are r-regular circulant digraphs, where

r = p−1
k . Moreover, the digraphs Xi and Xj, for 0 ≤ i < j ≤ k − 1, are isomorphic.

Proof. Let α be a generator of Z∗
p. Then H = 〈αk〉 = {1, αk, . . . , αk(r−1)} is a subgroup of Z∗

p having

r elements and let Hj = αjH , for j = 0, 1, . . . , k − 1, be the cosets of H in Z∗
p with H0 = H . It

is important to note that Hj , as a subset of Zp, generates Zp, for each j = 0, 1, . . . , k − 1. Let us

now define a digraph Xj by having Zp as its vertex set and any two vertices x, y ∈ Zp, (x, y) is

an edge in Xj if and only if y − x ∈ Hj . Then it is easy to verify that Xj is an r-regular Cayley

digraph, Cay(Zp, Hj). Also, observe that if we define Aj =
∑

h∈Hj

Wh
p , for 0 ≤ j ≤ k − 1, then Aj is a

0, 1-circulant matrix and is the adjacency matrix of Xj .

Since the cosets Hj , for 0 ≤ j ≤ k − 1, are disjoint, one has obtained k disjoint digraphs that are

r-regular and this completes the proof of the first part.

We now need to show that the k digraphs, Xj , for 0 ≤ j ≤ k − 1, are mutually isomorphic. We

will do so by proving that the digraphs X0 and Xj are isomorphic, for 1 ≤ j ≤ k − 1.

Let us define a map ψ : V (X0) → V (Xj) by ψ(s) = αjs for each s ∈ V (X0). Then it can be

easily verified that ψ is one-one and onto. Thus, we just need to show that ψ
(

(x, y)
)

is an edge in Xj

if and only if (x, y) is an edge in X0. Or equivalently, we need to show that ψ(y)− ψ(x) ∈ Hj if and

only if y − x ∈ H0 = H . And this holds true as

y − x ∈ H ⇔ αj(y − x) ∈ Hj ⇔ (αjy − αjx) ∈ Hj ⇔ ψ(y)− ψ(x) ∈ Hj .

This completes the proof of the lemma.

Before coming to the main result of this section, we have the following remark.

Remark 2.12. Let p be a prime and let the cyclic group Z∗
p = 〈α〉 and its cosets Hj = αjH, for

0 ≤ j ≤ k − 1, be defined as in Lemma 2.11. Then

1. using Fact 2.10.3, the Cayley digraphs, X0, X1, . . . , Xk−1, constructed in the proof of Lemma 2.11

are unique.

2. for a fixed j, 0 ≤ j ≤ k, we observe the following.

(a) For each h ∈ H,hHj = Hj. That is, for each t, 0 ≤ t ≤ r − 1, αtkHj = Hj. That is,

αjH = αj+tkH, for all t, 0 ≤ t ≤ r − 1.

(b) Let ζp be a primitive p-th root of unity. Then, for each t, 0 ≤ t ≤ r − 1,

∑

h∈H

(

ζα
j

p

)h
=
∑

s∈Hj

ζsp =
∑

h∈H

(

ζα
j+tk

p

)h
.

We are now ready to state and prove the main result of this section.

Theorem 2.13. Let p be a prime and let L be a subfield of Q[ζp]. Then there exists a circulant

digraph on p vertices whose adjacency matrix represents L.
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Proof. Let r = [L : Q]. Then r divides p − 1 = [Q[ζp] : Q], as Q ⊂ L ⊂ Q[ζp]. Let k = p−1
r . We

now claim the existence of a 0, 1-circulant matrix A of order p whose minimal polynomial has an

irreducible factor of degree r.

As k divides p− 1, Lemma 2.11, gives us a collection, say X0, X1, . . . , Xk−1, of r-regular circulant

digraphs on p vertices that are mutually isomorphic. Let A be the adjacency matrix of X0. Then,

using the definition of X0, its adjacency matrix A =
∑

h∈H

Wh
p . Thus, A is a circulant matrix and

hence diagonalizable. Thus, we just need to find the eigenvalues of A to get the minimal polynomial

of A. By definition, the eigenvalues of A are λi =
∑

h∈H

(ζip)
h, for 0 ≤ i ≤ p− 1. Observe that |λi| ≤ r

and λi = r if and only if i = 0. Fix an i ∈ {1, 2, . . . , p − 1}. Then, i ∈ Hj , for some coset Hj ,

0 ≤ j ≤ k− 1, of Z∗
p. Therefore, using Remark 2.12.2, we see that λαj = λαj+k = · · · = λαj+(r−1)k , for

each j ∈ {0, 1, 2, . . . , k− 1}. That is, for each fixed j ∈ {0, 1, . . . , k− 1} and s, t ∈ Hj , λs = λt. Thus,

A has exactly k distinct eigenvalues other than the eigenvalue r. Also, note that A is a circulant

matrix of order p, a prime. Therefore, by Theorem 2.2.2, the minimal polynomial of A factors into

two distinct irreducible factors. One of the factor is x− r, corresponding to the simple eigenvalue r of

A and the other must contain all the distinct eigenvalues of A, different from r. Hence, the minimal

polynomial of A equals (x − r)
k
∏

i=1

(x− λi) = (x− k)q(x) ∈ Q[x].

As deg(q(x)) = k, the 0, 1-circulant matrix A represents a subfield, say K, of Q[ζp] such that

[K : Q[ζp]] = k. Thus, the proof of the claim is complete.

Now, using Fact 2.10.3, the subfield K is indeed the subfield L.

We have seen that if p is a prime then Q[ζp] has a unique subfield for each divisor d of p− 1. But

all the real subfields of Q[ζp] are also subfields of Q(ζp+ζ
−1
p ). This observation leads to the last result

of this section.

Corollary 2.14. Let p be a prime number. Then every real subfield of Q[ζp] has a symmetric 0, 1-

circulant matrix representation of order p.

Let p be a prime and consider the digraph X0 in the proof of Theorem 2.13. Since p is a prime, it

can be easily verified that X0 is a strongly connected regular digraph. Hence, using Lemma 1.7, one

immediately obtains the following result and hence the proof is omitted.

Corollary 2.15. Let L be a subfield of Q[ζp]. Then there exists a 0, 1-circulant matrix A of order p

such that (A,J) represents L.

3 Smallest 0, 1- Companion Matrices Whose Minimal Polyno-

mial is Divisible by Φn(x)

In this section, for a fixed positive integer n, our objective is to find a 0, 1-companion matrix of

the smallest order that represents Q[ζn]. Let α denote the generic element such that Q[α] = Q[ζn].

Using Corollary 1.4, this is equivalent to finding the smallest 0, 1-companion matrix whose minimal

polynomial is divisible by the minimal polynomial of α. As there are infinitely many choices for α,

we restrict ourselves to α = ζn. Hence, we search for a polynomial f(x) ∈ Z[x] of least degree such

that Φn(x) divides f(x) and C(f), the companion matrix of f(x), is a matrix with entries 0 and

1. A similar study was made by Filaseta & Schinzel [7] and Steinberger [16], where they looked at

polynomials with integer coefficients that are divisible by Φn(x).
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Let f(x) = xn − an−1x
n−1 − · · · − a1x − a0 ∈ Z[x]. Then C(f) is a 0, 1-matrix if and only if for

each i, 0 ≤ i ≤ n − 1, ai ∈ {0, 1}. Since gcd(xk,Φn(x)) = 1 for all k ≥ 1, without loss of generality,

we can assume that a0 = 1. By definition, Φn(x) divides g(x) = xn− 1. Hence C(g) is a 0, 1-matrix of

order n that represents Q[ζn]. In order to determine whether there exists a matrix of smaller order,

we define a set An as

An = {f(x) ∈ Z[x] : Φn(x) | f(x), f(x) ≡ xm − am−1x
m−1 − · · · a1x− 1

m < n, ai ∈ {0, 1} for 1 ≤ i < m} (3)

and try to find the polynomial of least degree in An.

Let f(x) ∈ An. Then f(x) has at least three terms as m < n. Hence, f(1) 6= 0. Now, let p be a

prime. Then deg(f(x)) > deg(Φp(x)) = p− 1. Thus, Ap is an empty set. This is stated as our next

result.

Lemma 3.1. Let p be a prime number. Then Ap is an empty set.

Remark 3.2. Let p be a prime. Then, starting with the field Q[ζp], a 0, 1-matrix representing Q[ζp]

of least order is Wp, the companion matrix of xp − 1. But, it can be easily seen that if there exists a

0, 1-matrix A ∈ Mℓ(C) representing Q[α] ∼= Q[ζp] then ℓ ≥ p − 1. Thus, it may be possible to get a

0, 1-matrix A ∈ Mp−1(C) such that A represents Q[α] ∼= Q[ζp].

We now state a well known result about cyclotomic polynomials which enables us to consider only

square-free positive integers n, where recall that a positive integer n is said to be square free if the

decomposition of n into primes does not have any repeated factors.

Lemma 3.3 (Prasolov, Page:93 [15]). Let p be a prime number and let n be a positive integer. Then

Φpn(x) =







Φn(x
p), if p | n,

Φn(x
p)

Φn(x)
, if p ∤ n.

In particular, if n = pa1
1 · · · pak

k is a prime factorization of n into distinct primes p1, p2, . . . , pk and if

n0 = p1p2 · · · pk then Φn(x) = Φn0(x
n/n0).

Steinberger [16] pointed out that the problem of finding polynomials divisible by Φn(x) is equiv-

alent to finding polynomials divisible by Φn0(x), where n0 is the maximum square-free factor of n.

Following is a similar assertion in the current context. We give the proof for the sake of completeness.

Lemma 3.4. Let n = pa1
1 p

a2
2 · · · pak

k be a factorization of n into distinct primes p1, p2, . . . , pk and let

n0 = p1p2 · · · pk. Then

min{deg(f(x)) : f(x) ∈ An} =
n

n0
min{deg(f(x)) : f(x) ∈ An0}.

Proof. Let f(x) ∈ An0 . Then by Lemma 3.3, f(xn/n0) ∈ An.

Conversely, suppose f(x) ∈ An. Then Φn(x) divides f(x) and therefore using Gauss lemma on

polynomials [see Dummit & Foote, Page 304 [6]] and Lemma 3.3,

f(x) = Φn(x)g(x) = Φn0(x
n/n0)g(x) for some g(x) ∈ Z[x].

We now group the terms of g(x) such that g(x) =

n
n0

−1
∑

i=0

gi(x
n/n0 )xi, where gi(x

n/n0) is a polynomial

in xn/n0 (collect the terms containing the exponents that are equivalent to i (mod n/n0)). Therefore,

f(x) =

n
n0

−1
∑

i=0

Φn0(x
n/n0 )gi(x

n/n0 )xi =

n
n0

−1
∑

i=0

fi(x)x
i (say).

10



That is, the polynomials fi(x), for 0 ≤ i ≤ n/n0 − 1, are divisible by Φn(x) = Φn0(x
n/n0 ). Let the

polynomial fj(x)x
j contain xm, the leading term of f(x). Then f(x) ∈ An implies that

Φn0(x
n/n0 )gj(x

n/n0 )xj = xm − xrℓ − xrℓ−1 − · · · − xr1 , with j ≤ r1 < r2 < · · · < rℓ.

As gcd(Φn(x), x
r1 ) = 1, the polynomial h(x) = xm−r1 − xrℓ−r1 − · · · − xr2−r1 − 1 is expressible as

a polynomial in xn/n0 and is divisible by Φn0(x
n/n0). Hence, one obtains a polynomial h1(y) =

ym
′ − yr

′

ℓ − · · · − yr
′

2 − 1 ∈ An0 such that h(x) = h1(x
n/n0) and n

n0
deg(h1) ≤ deg(f) = m. Thus, the

desired result follows.

Remark 3.5. Lemma 3.4 implies that in order to determine min{deg(f(x)) : f(x) ∈ An}, it is

sufficient to solve the same problem in An0 , where n0 equals the product of all the prime factors of n,

a square-free positive integer. Henceforth, n will be a square-free positive integer.

Lemma 3.1 together with Lemma 3.4 leads to our next result.

Lemma 3.6. Let p be a prime and let n = pk for some k ∈ Z+. Then An is an empty set.

Thus, we will be interested only in those positive integers n that has at least two prime factors.

In this case, it will be shown (see Corollary 3.11 on Page 12) that the set An in non-empty. To start

with, note that

ϕ(n) ≤ min{deg(f(x)) : f(x) ∈ An} < n. (4)

Using a small observation, we improve the lower-bound in Equation (4) as follows.

Lemma 3.7. Let n be a positive integer. Then

max{ϕ(n), ⌈n
2
⌉} < min{deg(f(x)) : f(x) ∈ An} < n. (5)

Proof. The lemma is immediate from Equation (4) if we can show that deg(f(x)) > ⌈n
2 ⌉. Suppose

f(x) = xm − xkℓ − xkℓ−1 − · · · − xk1 − 1 ∈ An with 0 < k1 < k2 < · · · < kℓ < m. As Φn(x)

divides f(x), f(ζn) = 0. Now, let if possible, m ≤ n
2 . Then n − 2m ≥ 0 and using the fact that

ζn = ζ22n = cos(2π/n) + i sin(2π/n) and ζn2n = −1, we get

0 = f(ζn) = −ζmn + ζkℓ
n + ζkℓ−1

n + · · ·+ ζk1
n + 1 = −ζ2m2n + ζ2kℓ

2n + ζ
2kℓ−1

2n + · · ·+ ζ2k1
2n + 1

= 1 + ζn−2m+2kℓ

2n + ζ
n−2m+2kℓ−1

2n + · · ·+ ζn−2m+2k1
2n + ζn−2m

2n

= 1 +

ℓ
∑

j=0

(

cos

(

(n− 2m+ 2kj)π

n

)

+ i sin

(

(n− 2m+ 2kj)π

n

))

,

where k0 = 0. Now using the choice of kj ’s, one gets n − 2m + 2kj < n for each j = 0, 1, 2, . . . , ℓ.

Hence,
ℓ
∑

j=0

sin(
(n−2m+2kj)π

n ) cannot be zero. Thus, we have arrived at a contradiction and therefore

the required result follows.

This section is arranged as follows: the first subsection is devoted to characterizing An in terms

of certain subsets of roots of unity. In Subsection 3.2, the exact value of min{deg(f(x)) : f(x) ∈ An}
is obtained whenever n has exactly two prime factors. The last subsection, namely Subsection 3.3,

gives a bound on min{deg(f(x)) : f(x) ∈ An} whenever n has 3 or more prime factors.
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3.1 Characterization of A
n
by One-Sums

For a fixed positive integer n, let Un = {k : 1 ≤ k ≤ n, gcd(k, n) = 1} and Rn = {ζkn : 0 ≤ k ≤ n− 1}.
Then |Un| = ϕ(n), Rn contains all the n-th roots of unity and {ζkn : k ∈ Un} contains all the primitive

n-th roots of unity. The following result can be found in Apostol [1].

Lemma 3.8 (Apostol [1]). Let n be a positive integer. Then
∑

k∈Un

ζkn = µ(n), where

µ(n) =















0, if n is not square free,

1, if n has even number of prime factors,

−1, if n has odd number of prime factors.

Fix a positive integer n and let T ⊂ Rn. Let σ(T ) =
∑

α∈T

α, denote the sum of all the elements of

T . In particular, recall that σ(Rn) = 0. We now define a subset Bn of Rn by

Bn = {T ⊂ Rn \ {1} : σ(T ) = 1}. (6)

Then the next result gives a bijection between the sets An and Bn. This correspondence is useful in

constructing members of An.

Theorem 3.9. Let An and Bn be defined as above. Then there exists a bijection between An and Bn

such that xm − 1− xk1 − xk2 − · · · − xkl ∈ An corresponds to {ζn−m, ζn−m+k1 , · · · , ζn−m+kl} ∈ Bn.

Proof. Let f(x) = xm − 1 − xk1 − xk2 − · · · − xkℓ ∈ An with 1 ≤ k1 < k2 < · · · < kℓ < m <

n. As f(x) ∈ An, f(ζn) = 0 and hence ζmn = 1 + ζk1
n + ζk2

n + · · · + ζkℓ
n . Or equivalently, T =

{ζn−m
n , ζn−m+k1

n , . . . , ζn−m+kℓ
n } ∈ Bn as σ(T ) = 1.

Conversely, let T = {ζk0
n , ζk0+k1

n , ζk0+k2
n , . . . , ζk0+kℓ

n } ∈ Bn, where 1 ≤ k0 < k0 + k1 < k0 + k2 <

· · · < k0 + kℓ < n. Then
ℓ
∑

i=1

ζk0+ki
n + ζk0

n = 1, or equivalently, ζn−k0
n = 1 + ζk1

n + · · ·+ ζkℓ
n = 0. Thus,

f(x) = xn−k0 − xkℓ − xkℓ−1 · · · − xk1 − 1 ∈ An and the required result follows.

Theorem 3.9 leads to the following important remark.

Remark 3.10. Fix a positive integer n and let f(x) be a polynomial of least degree in An. Then

deg(f(x)) = n − k0, where k0 is obtained as follows: “for each element T of Bn, let kT be the least

positive integer such that ζkT
n ∈ T. Then k0 = max{kT : T ∈ Bn}”.

We now observe the following. Let n be a positive integer and let d be the product of an even

number of distinct prime divisors of n. Also, let us write ζ
n/d
n = ζd. Then using Lemma 3.8, {ζkd :

k ∈ Ud} ∈ Bn. Observe that Ud = {1, 1 + k1, 1 + k2, . . . , 1 + kℓ = d − 1} for some ki’s satisfying

1 ≤ k1 < k2 < · · · < kℓ = d− 2. Therefore, ζd−1
d = ζ−1

d = 1 + ζk1

d + · · ·+ ζ
kl−1

d + ζd−2
d and hence

f(x) = x
n
d
(d−1) − x

n
d
(d−2) − x

n
d
(kℓ−1) − · · · − x

n
d
(k1) − 1 ∈ An

is the corresponding polynomial. Note that deg(f(x)) = n − n
d . This observation leads to the first

part of the following result. The second part directly follows from the first part and hence the proof

is omitted.

Corollary 3.11. Let n = pa1
1 p

a2
2 · · · pak

k be a factorization of n into distinct primes and let d be the

product of an even number of distinct prime divisors of n. If Ud = {1, 1 + k1, 1 + k2, . . . , 1 + kℓ} with

1 ≤ k1 < k2 < · · · < kℓ = d− 2, then
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1. Φn(x) divides the polynomial f(x) = x
n
d
(d−1) − x

n
d
(d−2) − x

n
d
(kℓ−1) − · · · − x

n
d
(k1) − 1.

2. min{deg(f(x)) : f(x) ∈ An} ≤ n− n

p1p2
, where p1 and p2 are the two smallest prime divisors

of n.

3.2 Integers with Two Prime Factors

Let n = pa1
1 p

a2
2 be the factorization of n as product of two distinct primes p1 and p2. Then it is shown

that the upper bound obtained in Corollary 3.11 is indeed attained. That is, min{deg(f(x)) : f(x) ∈
An} = n

p1p2
{p1p2 − 1}.

Before proceeding further, recall that for any positive integer n and non-negative integer m, the

Ramanujan’s sum is defined as cn(m) =
∑

k∈Un

(ζkn)
m. The next lemma is a well known result related

with the Ramanujan’s sum (for results related with Ramanujan’s sum and coefficients of cyclotomic

polynomials, see Moree & Hommerson [14]).

Lemma 3.12 (Moree & Hommerson [14]). Fix positive integers m and n. Then, for each divisor d

of n, cn(d) = µ(nd )
ϕ(n)
ϕ(n

d
) . Furthermore, cn(m) = cn(d) whenever gcd(m,n) = d.

Letm < n be a positive integer. Then Ramanujan’s sum is used to assign a number to a polynomial

g(x) =
m
∑

i=0

aix
i ∈ Q[x] via the sum

∑

k∈Un
g(ζkn), denoted Sg. Then

Sg =
m
∑

i=0

aicn(i) = a0ϕ(n) +
∑

d|n

(

∑

i∈Ud

ani/d

)

µ(d)
ϕ(n)

ϕ(d)
. (7)

Since, Φn(x) divides f(x), f(ζ
k
n) = 0 for each k ∈ Un. Thus, the next result is immediate and hence

the proof is omitted.

Lemma 3.13. Let n be a positive integer. Then for each f(x) ∈ An, Sf = 0.

Therefore, for any f(x) ∈ Q[x], Sf = 0 gives a necessary condition for Φn(x) to divide f(x).

The next result is the main result of this subsection and it is shown that min{deg(f(x)) : f(x) ∈
Ap1p2} = p1p2 − 1, whenever p1 and p2 are distinct primes. This result together with Lemma 3.4

implies that if p1 and p2 are distinct primes and n = pa1
1 p

a2
2 , for some positive integers a1 and a2,

then min{deg(f(x)) : f(x) ∈ An} = n
p1p2

{p1p2 − 1} .

Theorem 3.14. Let p1 and p2 be two distinct primes. Then

min{deg(f(x)) : f(x) ∈ Ap1p2} = p1p2 − 1.

Proof. Let n = p1p2. Then using a contrapositive argument, we will first show that min{deg(f(x)) :
f(x) ∈ An} ≥ n− 1. Let f(x) ∈ An be the polynomial of least degree with deg(f(x)) < n− 1. Then

Theorem 3.9 gives the existence of a subset T = {ζk1
n , ζk2

n , . . . , ζkℓ
n } of Bn with 2 ≤ k1 < k2 < · · · < kℓ

that corresponds to f(x). Define g(x) =
ℓ
∑

i=1

xki − 1. Then g(x) ∈ Z[x] and g(ζn) = 0. Thus, for all

k ∈ Un, g(ζ
k
n) = 0 and Sg = 0.

Now, for each divisor d of n, define Nd = {ind : i ∈ Ud}∩{k1, k2, . . . , kℓ}. Then, using Equation (7),

one has 0 = Sg =
∑

d|n

|Nd| µ(d) ϕ(n)
ϕ(d) − ϕ(n). Or equivalently, ϕ(n) =

∑

d|n

|Nd| µ(d) ϕ(n)
ϕ(d) . Therefore,

using µ(pi) = −1 for i = 1, 2 and µ(p1p2) = 1, one gets

|Nn|
ϕ(n)

= 1 +
|Np1 |
ϕ(p1)

+
|Np2 |
ϕ(p2)
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as |N1| = 0. But observe that |Nn| < ϕ(n) as k1 ≥ 2. That is, the left hand side of the above

identity is less than 1 which contradicts the expression that appears on the right hand side. Thus,

our assumption is not valid and hence min{deg(f(x)) : f(x) ∈ An} ≥ n− 1.

As n = p1p2, Corollary 3.11.2 implies that An is non-empty and hence min{deg(f(x)) : f(x) ∈
An} ≤ n− 1. Thus, the required result follows.

3.3 Even Integers with 3 or more Prime Factors

In this subsection, we improve the bound given in Corollary 3.11 for all even positive integers that

have more than 2 prime factors.

Theorem 3.15. Let p1 < p2 < · · · < pk be odd primes and let n = 2p1p2 · · · pk. Then min{deg(f(x)) :
f(x) ∈ An} ≤ n− v where

v =















n
2 · p1+p2

p1p2
, if 2p1 > p2,

3n
2p2

, if 2p1 < p2 < 3p1,

n
2p1

, if 3p1 < p2.

Proof. Let f0(x) be the polynomial of least degree in An. We will find numbers v1 and v2, as lower

bounds for n− deg(f0(x)) and take v = max{v1, v2}. The value of v1 = n
2p1

is a direct application of

Corollary 3.11 as 2 and p1 are the smallest two prime divisors of n. Now, let us compute v2.

To get the value of v2, consider T = {ζnr/2p1
n : r ∈ U2p1} ∪ {ζnℓ/p2

n : ℓ ∈ Up2}. Then using

Lemma 3.8,
∑

z∈T

z =
∑

r∈U2p1

ζ
nr/2p1
n +

∑

ℓ∈Up2

ζ
nℓ/p2
n = 1 + (−1) = 0. Multiplying both sides by ζ

n/2p2
n

and observing that
(

ζ
n/2p2
n

)p2

= −1 (as p2 is an odd prime), one gets

0 =
∑

r∈U2p1

ζnr/(2p1)+n/(2p2)
n +

∑

ℓ∈Up2

ζnℓ/p2+n/(2p2)
n

=
∑

r∈U2p1

ζnr/(2p1)+n/(2p2)
n +

∑

ℓ∈Up2 ,2ℓ<p2−1

ζnℓ/p2+n/(2p2)
n + ζ

n
2
n

+
∑

ℓ∈Up2 ,2ℓ>p2−1

ζnℓ/p2+n/(2p2)
n

=
∑

r∈U2p1

ζnr/(2p1)+n/(2p2)
n +

∑

ℓ∈Up2 ,2ℓ<p2−1

ζnℓ/p2+n/(2p2)
n − 1

+
∑

ℓ∈Up2 ,2ℓ>p2−1

ζnℓ/p2+n/(2p2)
n . (8)

Thus, Equation (8) implies

T ′ = {ζnr/(2p1)+n/(2p2)
n : r ∈ U2p1} ∪ {ζnℓ/p2+n/(2p2)

n : ℓ ∈ Up2 \ {(p2 − 1)/2}} ∈ Bn.

That is, v2 = min{r : ζrn ∈ T ′} =







n
2

(

p1+p2

p1p2

)

, if 2p1 > p2,

3n
2p2

, if 2p1 < p2.

Hence, using Remark 3.10 the required result follows.

3.4 When n is Even and Φ
n
(x) is Flat

In this subsection, the upper bound for min{deg(f(x)) : f(x) ∈ An} is improved further whenever n

is even and the cyclotomic polynomial Φn(x) is flat. To do so, recall that the height of a polynomial
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in Z[x] is the largest absolute value of its coefficients and a polynomial is said to be flat if its height

is 1. Let A(n) be the height of Φn(x). It is known that for all n < 105, Φn(x) is flat and height of

Φ105(x) is 2. In fact, the height of Φn(x) is unbounded [see Emma Lehmer [13]].

Let k be the number of distinct odd prime factors of n. For square-free n, this number k is

called the order of the cyclotomic polynomial Φn(x). It is known that all cyclotomic polynomials of

order 1 and order 2 are flat. Gennady Bachman [2] gave the first infinite family of flat cyclotomic

polynomials of order three and this family was expanded by Kaplan [11]. In [12], Kaplan gave some

flat polynomials of order four. It is unknown whether there are any flat cyclotomic polynomials of

order greater than four.

Fix a positive integer k and let n = 2p1p2 · · · pk, for distinct odd primes p1 < p2 < · · · < pk. Let

Φn(x) =
ϕ(n)
∏

i=1

(x − xi) =
ϕ(n)
∑

t=0
(−1)tetx

ϕ(n)−t, where x1, x2, . . . , xϕ(n) are distinct roots of Φn(x) and

et =
∑

1≤i1<i2<···<it≤ϕ(n)

t
∏

j=1

xij . Then it is known that et = eϕ(n)−t, for 0 ≤ t ≤ ϕ(n) and e0 = 1 [see

Thangadurai [17]]. Further, by Newton-Girard formulas

mem = em−1cn(1)− em−2cn(2) + · · ·+ (−1)me1cn(m− 1) + (−1)m−1cn(m). (9)

where cn(m) is the Ramanujan’s sum defined in Page 13. In particular, using Lemma 3.8 e1 = cn(1) =

µ(n) = −1.

Now let k be an even integer. That is, n is product of odd number of distinct primes. Then for

any positive integer m < p1,

cn(m) =







−1, if m is odd,

1, if m is even.

Now, using Equation (9) recursively, it is easy to show that e2 = · · · = ep1−1 = 0 and ep1 = 1.

With these observations, we have

Φn(x) =







xϕ(n) − xϕ(n)−1 ± · · · − x+ 1, if k is odd,

xϕ(n) + xϕ(n)−1 − xϕ(n)−p1 ± · · · − xp1 + x+ 1, if k is even.
(10)

From now on, we consider only flat cyclotomic polynomials. Then Φn(x) = f1(x) − f2(x), for

some 0, 1-polynomials f1(x) and f2(x). Observe that the representation of Φn(x) as difference of two

0, 1-polynomials is unique. Also, Φn(ζn) = 0 implies that f1(ζn) − f2(ζn) = 0 and hence f1(ζn) +

ζ
n/2
n · f2(ζn) = 0. That is, Φn(x) divides f1(x) + xn/2f2(x).

Let ΦT
n (x) = f1(x) + xn/2f2(x). Then ΦT

n (x) is a 0, 1-polynomial and ΦT
n (ζn) = 0. And from

Equation (10), we have

deg(ΦT
n (x)) =







φ(n)− 1 + n
2 , whenever k is odd,

φ(n)− p1 +
n
2 , whenever k is even.

(11)

We now construct a polynomial Φ∗
n(x) ∈ An from ΦT

n (x) as follows. Let the degree of ΦT
n (x) be

D. Consider the monomials in ΦT
n (x) having exponent strictly between D−n/2 and n/2. If xb is the

monomial with smallest exponent among these, then Φ∗
n(x) = xb+n/2 + xb − ΦT

n (x). Since n is even,

Φn(x) divides xn/2 + 1 and hence Φn(x)
∗ ∈ An. Also, the monomial xb comes from the polynomial

f1(x) and therefore

deg(Φ∗
n(x)) =







n
2 + ϕ(n), if k is odd,

n
2 + ϕ(n)− 1, if k is even.

(12)
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Since Φ∗
n(x) ∈ An, using Equation (12), the following result follows and hence the proof is omitted.

Lemma 3.16. Let n = 2p1p2 · · · pk be the factorization of n into odd primes p1 < p2 < · · · < pk.

Suppose that the cyclotomic polynomial Φn(x) is flat. Then

min{deg(f(x)) : f(x) ∈ An} ≤







n
2 + ϕ(n), if k is odd,

n
2 + ϕ(n)− 1, if k is even.

Remark 3.17. In general, we are not able to give exact comparison between the bounds obtained in

Theorem 3.15 and the bound in Lemma 3.16. But it can be checked that whenever 3p1 < p2 then the

bound in Lemma 3.16 is better than the bound in Theorem 3.15.

Conclusion

In this paper, we have tried to study the representations of subfields of a cyclotomic field with the

help of circulant and 0, 1-companion matrices. In particular, the following results have been obtained.

1. A subfield of a cyclotomic field is representable by some circulant matrix and conversely every

circulant matrix represents a subfield of a cyclotomic field.

2. Every real subfield of Q[ζn] is representable by a polynomial in the adjacency matrix of Cn, the

cyclic graph. Consequently, every real subfield of Q[ζn] has integer symmetric circulant matrix

representation.

3. Let p be a prime and let K be a subfield Q[ζp]. Then a 0, 1 circulant matrix A of order p is

obtained such that (A,J) represents K.

4. Let n = pk for some prime p. Then the smallest 0, 1-companion matrix having ζn as an eigenvalue

is Wn, the companion matrix of xn − 1.

5. Let n = pa1
1 p

a2
2 be the prime factorization of n as product of distinct primes. Then min{deg(f(x)) :

f(x) ∈ An} = n
p1p2

(p1p2 − 1).

6. Let n be a positive integer having 3 or more prime factors. Then min{deg(f(x)) : f(x) ∈ An} ≤
n

p1p2
(p1p2 − 1), where p1 and p2 are the smallest two distinct primes dividing n. Furthermore,

if n is even then this upper bound is improved in Theorem 3.15 and Lemma 3.16.

It will be nice to improve the bounds obtained in this paper. Also, it will be nice to get examples

where the bounds are attained.
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