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1. Introduction

The notion of quantum entanglement1–4 speaks of a shared existence of particles

having their properties interlinked with each other. An interesting manifestation of

entanglement is that the correlation survives even when the particles move to a large

distance after having come into contact. Different aspects of quantum entanglement

have been studied and a substantial literature has accumulated in this subject (see,

for instance,5, 6). In the PT -symmetry context an early attempt was made in.6 In

this article we push the issue a little further by addressing quantum entanglement

in the framework of a complex extension of quantum mechanics concentrating on

the special class of complex parity (P )-time (T )-symmetric Hamiltonians.

Almost two decades ago, Bender and Boettcher7 proposed a special class of

non-Hermitian Hamiltonians, which were manifestly (PT )-symmetric, that support

a real bound-state spectrum. The interplay between the parametric regions where

PT is unbroken and the ones in which it is not, as signaled by the appearance of

conjugate-complex eigenvalues, has also found experimental support through the

1
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observations of a phase transitiona that clearly marks out the separation of these

regions (see, for example,9 and earlier references therein): in particular, balancing

gain and loss of certain experimental properties has uncovered the relevance of

PT -symmetric structures in such systems.10–12

In standard quantum mechanics (SQM), a coherent description of physics is

possible when Dirac’s norm is employed.13 Of course there could be other norms

(see14 for their physical implications). However these norms run into one problem or

another. In particular, PTQM systems are generally plagued with negative norms.

The reason lies in the difference in the definition of the inner product in SQM as

introduced by Dirac namely,

(f, g) ≡
∫

ℜ

dx[Tf(x)]g(x), f, g ∈ L2(ℜ) (1)

where Tf(x) = f∗(x), and that of PTQM namely,

(f, g)PT ≡
∫

ℜ

dx[PTf(x)]g(x), f, g ∈ L2(ℜ) (2)

where one defines PTf(x) = [f(−x)∗]. The above definition of PT -norm very often

leads to an indefinite norm implying that a PT -systems lacks a viable probabilistic

interpretation.15, 16

However, an introduction of a linear operator C to construct a CPT -inner prod-

uct17 in the following sense

(f, g)CPT ≡
∫

ℜ

dx[CPTf(x)]g(x) (3)

with the positive-definiteness of the associated norm, enables one to get rid of this

handicap. Note that C commutes with both the Hamiltonian and the operator

PT . Further it is idempotent and has eigenvalues ±1. A PT -symmetric system is

supposed to evolve in a manner such that the accompanying time evolution of the

state vector is unitary with respect to the CPT inner product. For a plausible

construction of the C-operator see.18

We propose that no-signaling principle holds for bipartite systems whenever one

of the subsystems is PT -symmetric. In a different context, such a study19 has led to

the reproduction of the Clauser-Horne-Shimony-Holt (CHSH) inequality in connec-

tion with the invariance of the entanglement. Interestingly, an experimental search

seems to put in evidence that a simulated PT symmetric subsystem preserves no-

signaling.26 However, theoretical results pointing to the contrary have also been

noted.20, 21 Here, we must emphasize that in the bipartite scenario, no-signaling

means that, for two observers, say Alice and Bob, whatever Alice does the outcome

probability of any measurement by Bob is unchanged. This is the central assump-

aThe transition refers to the breaking of PT -symmetry when exceptional points appear.
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tionb that is implicit in our paper. In SQM , where the concept of Hermiticityc

holds confirming the reality of the associated energy spectrum, one shows that the

outcome probability of any measurement by Bob is determined entirely by his re-

duced density matrix. Consequently, no signaling can be proven by showing that

the reduced density matrix of Bob is unchanged whatever operation Alice does.

In the present work, we will consider a two-dimensional example of a PT -

Hamiltonian and compute the reduced density matrix of one party using the defini-

tion of CPT -inner product as just given. We will then show that the entanglement

entropy of the density matrix remains unaltered after applying a time evolution

operator on them. It should be noted that in our work we assumed the case of the

even time-reversal operator which is valid for bosonic systems.27

It needs to be mentioned that similar results as ours concerning the no-signaling

principle were obtained by the authors of19 , in which the former is shown for

bipartite systems where either one or both Hamiltonians of the subsystems are

non-Hermitian and PT -symmetric, as defined in a space of states controlled by a

CPT inner product. However the present work differs from their approach in our use

of modified density matrices, leading to an appropriate reasoning for the estimation

of the reduced density matrices of the parties by the employment of the CPT inner

product for the finite representation of the subsystems. We further highlight that

the work of19 suffered the lack of reasoning to establish the reduced density matrices

calculated under the modified norm as an appropriate quantity in realising the local

measurements made by the observer within the PTQM framework. However, this

work demonstrates to solve precisely that.

2. Prerequisites

2.1. Finite representation of unbroken PT -symmetric systems

For the operators in a PTQM theory it needs to be noted that their eigenstates

are not orthogonal under the standard Dirac inner product. An implication is that

the Hamiltonian given by

H =

N
∑

i=1

λi |ψi〉 〈φi| (4)

with eigenvalues {λi|1 ≤ i ≤ N} and eigenstates {|ψi〉 |1 ≤ i ≤ N} along with
∑N

i=1 |ψi〉 〈φi| = I, can never coincide with the more familiar

HS =

N
∑

i=1

λi |ψi〉 〈ψi| (5)

b
PT -symmetry is well established in the single-party case but for a multi-partite scenario the

problem of finding entangled states is NP-hard.3 It insists on the resolution for bipartite systems
first.
cHermiticity is known by the condition satisfied by an operator associated with an observable.
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which satisfies the Hermiticity condition of SQM .

The utmost we can do is to project H in a factorized form involving HS as one

of the factors

H =

(

N
∑

i=1

λi |ψi〉 〈ψi|
)





N
∑

j=1

|φj〉 〈φj |



 = HS η̂ (6)

where η̂ denoting the sum

η̂ =

N
∑

j=1

|φj〉 〈φj | . (7)

The feature of H is that it commutes with the PT operator defined by

PT =

N
∑

i=1

αi |ψi〉 〈φi| . (8)

Consider now an operator A admitting factorization

A = AS η̂, AS =
N
∑

i=1

λ
′

i |ni〉 〈ni| , |ni〉 =
N
∑

j=1

cij |ψj〉 (9)

where λ
′

i’s are the coefficient constants in the expansion. We can then write corre-

sponding to the modified inner product

(ψ,Aψ)η̂ = 〈ψ|η̂AS η̂|ψ〉 = 〈φ|AS |φ〉 . (10)

This makes the role of η̂ clear. With H defining the Hamiltonian of the system,

any valid measurement corresponding to the operator A over the energy eigenstates

satisfies the pseudo-hermiticity relationship23, 24

η̂Hη̂−1 = H†. (11)

The expectation value of A over the state ψ in a pseudo-Hermitian framework24 is

the same as the expectation value of AS over the state φ in the standard framework.

As in SQM , the outcome of measurements performed corresponding to the

operator AS solely depend on the state |φ〉 and given by the density matrix ρ =

|φ〉 〈φ| namely,

〈φ|AS |φ〉 = Tr (|φ〉 〈φ|AS) . (12)

Using the cyclic property of the trace, Tr (|φ〉 〈φ|AS) = Tr (η̂ |ψ〉 〈φ|AS) =

Tr (|ψ〉 〈φ|AS η̂) = Tr (|ψ〉 〈φ|A), and also (10), we can express the η-inner prod-

uct to be

(ψ,Aψ)η̂ = Tr (|ψ〉 〈φ|A) . (13)

The effective density operator of |ψ〉 in a pseudo-hermitian framework is thus

|ψ〉 〈φ| = |ψ〉 〈ψ| η̂. Note that when η̂ = I we recover the standard result of SQM .
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We now provide a scheme to calculate overlaps under a CPT -inner product by

introducing a generalized inner-product restricting to finite Hilbert space. For any

operator X̂ which shares simultaneous eigenstates with the Hamiltonian Ĥ, the

X-inner product is defined to be 〈−|−〉X and obeys

〈φ|ψ〉X = X̂ |φ〉 · |ψ〉 , 〈φ|X = (X̂ |φ〉)T . (14)

Replacing X̂ by the CPT -operator, the above equation showcases an appropriate

way to perform calculations when a CPT inner product is invoked. Indeed, one

could derive

〈φ|ψ〉CPT = CPT |φ〉 · |ψ〉 = 〈φ|(CP )T |ψ〉 . (15)

which implies that the intertwining operator η̂ for an unbroken PT -symmetric sys-

tem is (CP )T . For the density operator ρ in the state |ψ〉 we deduce easily that

ρ = |ψ〉 〈ψ|CPT = |ψ〉 〈ψ| (CP )T . (16)

With the above results at hand, we analyze in the next section the no-signaling

principle in a PT -symmetric framework.

2.2. Entanglement and the no-signaling principle in a

PT -symmetric framework

For N quantum subsystems defined over a set of Hilbert spaces {Hi|1 ≤ i ≤ N}, a
composite system generated out of these subsystems will exist in H1⊗H2⊗ ...⊗HN .

Let us define a joint state as the tensor product

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN 〉 ∈ H, |ψi〉 ∈ Hi. (17)

A pure state |ψ〉 of H such as the one given above is said to be separable.25 A state

of H which is non-separable is called an entangled pure stated.

For N = 2, which conforms to a bipartite system, a measure of entanglement is

provided by the following definition of information entropy

E(ψ) = −Tr1(ρ1 log2 ρ1) = −Tr2(ρ2 log2 ρ2) (18)

where ρ is the density matrix corresponding to |ψ〉 and the reduced density matrices

ρ1 and ρ2 are given respectively by the partial traces of ρ: ρ1 = Tr2(ρ) and ρ2 =

Tr1(ρ). The entropy E(ψ) is

E(ψ) = −
∑

i

λi log2 λi (19)

where λi’s are the eigenvalues of the relevant reduced density matrix. The scheme

of calculating the density matrix of the states of the system will, however, vary if

we dealing with pseudo-hermitian subsystems.e

dThis criterion also holds for an infinite representation of subsystems.
eOne can equivalently perform the calculation of the density operator by following the scheme for
the bra vector as provided in (14)
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Consider {|un〉} and {|vn〉} as basis sets of the respective Hilbert spaces H1 and

H2. The basis set of the composite Hilbert space H1 ⊗H2 is then {|un〉 ⊗ |vn〉}. As
such, an entangled of a pure bipartite state is given by

|ψ〉 =
D1,D2
∑

n,m=1

Cnm |un〉 ⊗ |vm〉 ,
∑

n,m

| Cnm |2= 1 (20)

where D1, D2 are the respective dimensions of the Hilbert spaces and Cnm are

constants. Since we restrict to bipartite systems only we take in what follows, D1 =

D2 = 2.

2.3. Overview of a 2 × 2 PT -Symmetric model

For calculational simplicity we adopt the following formf of a two-level PT -

symmetric Hamiltonian22

Ĥ =

(

iγ −ζ
−ζ −iγ

)

(21)

where γ > 0 and ζ > 0. With representation of the parity operator being P̂ =

[

0 1

1 0

]

and the time-reversal operation transforming like T : i → −i, the PT -symmetric

character of Ĥ is evident.

Because of the underlying PT -symmetry, the right and left eigenvectors of Ĥ

are not the same. Specifically, the right eigenvectors (for
∣

∣

∣

γ
ζ

∣

∣

∣
≤ 1) read

|ψ±〉 =
1√

2 cosφ

(

1

∓e∓iφ

)

(22)

where sinφ = γ
ζ
and the eigenvalues of Ĥ are

λ± = ±
√

ζ2 − γ2 (23)

These are entirely real if the inequality γ < ζ holds. The degeneracy of the eigen-

values takes place when γ = ζ. However for γ > ζ the eigenvalues become purely

imaginary complex conjugates.

Following,17 we adopt, up to a sign, the Ĉ operator in the form

Ĉ =

[

−i tanφ secφ

secφ i tanφ

]

. (24)

It is immediately verified that the actions of P̂ T̂ and Ĉ operators on the eigenstates

fThis structure is equivalent to the matrix considered in17 modulo an identity factor.
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|ψ±〉 work as

P̂T |ψ±〉 =
∓e±iφ

√
2 cosφ

[

1

∓e∓iφ

]

,

Ĉ |ψ±〉 =
∓1√
2 cosφ

[

1

∓e∓iφ

]

.

(25)

These lead to the positive definiteness of the CPT -inner product for an arbitrary

state |ψ〉 =
[

a

b

]

=

[

rae
iθa

rbe
iθb

]

which is given using

ĈP̂ T |ψ〉 = 1

cosφ

[

a∗ − ib∗ sinφ

b∗ + ia∗ sinφ

]

(26)

as

〈ψ|ψ〉CPT =
1

cosφ
[aa∗ + bb∗ − i(b∗a− a∗b) sinφ]

=
1

cosφ
[r2a + r2b + 2rarb sinφ sin (θa − θb)] ≥ 0,

(27)

consistent with the result obtained in.8

Finally, we might keep in mind that as φ→ 0, the framework of PT -symmetric

quantum mechanics (PTQM) transits to that of (SQM):

Ĥ → −ζσx
1√

2 cosφ

(

1

∓e∓iφ

)

→ 1√
2

(

1

∓1

)

±
√

ζ2 − γ2 → ±ζ

Ĉ =

[

−i tanφ secφ

secφ i tanφ

]

→
[

0 1

1 0

]

= P̂

〈−|−〉CPT → 〈−|−〉T

(28)

where we identify 〈−|−〉T as the usual Dirac norm. It is useful to note that the

Hamiltonian Ĥ also affords the following factorized representation

Ĥ = ĤQM η̂, ĤQM = −ζ cosφ
[

0 1

1 0

]

, η̂ =

[

secφ i tanφ

−i tanφ secφ

]

= (CP )T . (29)

3. Entanglement in PT -symmetric systems

In SQM , as the density operator of a bipartite system evolves, no-signaling is

established by showing the invariance of entropy for the initial and final entangled

state. For an unbroken PT -symmetric system, however, the same can be established

by adopting states to conform to pseudo-hermitian transformations. Specifically, the

following steps are followed:
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(1) First, for a pure entangled state |ψ〉, we determine the initial estimate of the

quantity E(ψt=0).

(2) Then, we apply the time evolution operator on the composite state in the given

Hilbert space H and calculate the reduced density matrix by performing par-

tial traces of the density operator. It puts us in a position to determine the

entanglement measure of ψt.

(3) Finally, we determine the time-dependent quantity E(ψt) to demonstrate the

invariant result E(ψt=0) = E(ψt=t′).

We now proceed to address the different subsystems as alluded to above.

3.1. Subsystems governed by PTQM

We focus on two subsystems each controlled by PTQM according to

Ĥ1 =

[

iγ −ζ
−ζ −iγ

]

, Ĥ2 =

[

iγ′ −ζ′
−ζ′ −iγ′

]

(30)

with one Hamiltonian for each subsystem. The associated time evolution operator

U(t) = e−iĤit, i = 1, 2 maps Ĥ1 and Ĥ2 to their time-dependent forms. The eigen-

states (normalised under CPT -inner product) of Ĥi, which serve as a basis set of

Hi, i = 1, 2, are given by

{|u1〉 , |u2〉} =

{

1√
2 cosφ

[

1

−e−iφ

]

,
1√

2 cosφ

[

1

+e+iφ

]}

{|v1〉 , |v2〉} =

{

1√
2 cosφ′

[

1

−e−iφ′

]

,
1√

2 cosφ′

[

1

+e+iφ′

]}

(31)

where sinφ = γ
ζ
and sinφ′ = γ′

ζ′
. We now construct an entangled state and look into

its behaviour upon the application of the time evolution operator I ⊗ U(t) where

for concreteness we take U(t) = e−iĤ2t. To this end, using the definition of (20) we

first arrive at the form

|ψ〉 =
2,2
∑

n,m=1

Cnm |un〉 ⊗ |vm〉 ,
∑

n,m

| Cnm |2= 1. (32)

having its bra counterpart reading

〈ψ| =
(

ĈP̂ T ⊗ ĈP̂ T |ψ〉
)T

=

2,2
∑

n,m=1

C∗
nm 〈un|CPT ⊗ 〈vm|CPT . (33)

with X replaced by CPT in the scheme formulated in (14). Although of no direct

concern here, the above notation of bra would be useful to handle entanglement for

the multi-partite cases where the individual subsystems contribute towards defining

an overall inner product of the composite system.
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The full density matrix of the entangled state which reads

ρ1,2 =

2
∑

n,m,a,b=1

CabC
∗
nm |ua〉 〈un|CPT ⊗ |vb〉 〈vm|CPT . (34)

has the individual elements as summarized below

〈ui|uj〉CPT
= δij

|u1〉 〈u1|CPT =
1

2 cosφ

[

eiφ −1

−1 e−iφ

]

|u2〉 〈u2|CPT =
1

2 cosφ

[

e−iφ 1

1 eiφ

]

|u1〉 〈u2|CPT =
1

2 cosφ

[

e−iφ 1

−e−2iφ −e−iφ

]

|u2〉 〈u1|CPT =
1

2 cosφ

[

eiφ −1

e2iφ −eiφ
]

.

(35)

These correspond to H1. A similar set can be found for H2 by replacing u by v

and φ by φ′. Concerning the trace of density operators it suffices to mention that it

follows the usual results of normalized eigenstates for an appropriate inner product.

Applying the partial trace in H2 gives us the reduced density operator for H1

ρ1 = Tr2[ρ1,2] =

2
∑

a,b,n=1

CabC
∗
nb |ua〉 〈un|CPT (36)

where ρ1 stands for the matrix

1

2 cosφ

[

N11 N12

N21 N22

]

(37)

whose elements read explicitly

N11 = (α + γ)eiφ + (β + δ)e−iφ,

N12 = (β + δ − α− γ),

N21 = (δ − α)− βe−2iφ + γe2iφ,

N22 = (δ − γ)eiφ + (α− β)e−iφ,

α = C11C
∗
11 + C12C

∗
12,

β = C11C
∗
21 + C12C

∗
22,

γ = C21C
∗
11 + C22C

∗
12 = β∗,

δ = C21C
∗
21 + C22C

∗
22 and

α+ δ = 1.

(38)
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What happens when we applyg the time evolution operator on the density matrix

of (32)? A straightforward calculation gives

|ψt〉 = I⊗ e−iĤ1t |ψ〉 =
2,2
∑

n,m=1

e−iλmtCnm |un〉 ⊗ |vm〉 ,

λ1 =
√

ζ′2 − γ′2, λ2 = −
√

ζ′2 − γ′2

(39)

resulting in the following time-dependent form ρ1,2

ρ1,2(t) =

2
∑

n,m,a,b=1

ei(λm−λb)tCabC
∗
nm |ua〉 〈un|CPT ⊗ |vb〉 〈vm|CPT . (40)

In particular ρ1(t) is expressible as

ρ1(t) =
1

2 cosφ

[

N11 N12

N21 N22

]

(41)

following the convention set up in (38).

We therefore obtain the result that (37) and (41) are the reduced density matri-

ces corresponding to H1 respectively holding before and after the operation of time

evolution operator. It shows invariance of the measurement made by the system

guided by H2 i.e. E(ψ) = E(ψt). Thus no-signaling is a valid criterion in PTQM .

To inquire as to whether the eigenvalues of the reduced density operators un-

dergo any change if we transform to the standard QM formalism, the answer is

self-explanatory if we look at the dependence of the eigenvalues (ω±) on the param-

eters of the Hamiltonian (30). It is easily seen that

ω± =
1

2

(

(α+ δ)±
√

1 + 4(βγ − αδ)
)

=
1

2

(

1±
√

1− 4 | C11C22 − C12C21 |2
)

(42)

implying that the parameters stay invariant.

3.2. Subsystems governed by PTQM and SQM

For concreteness let the Hamiltonian H1 be relevant for the PTQM while H2 holds

for the SQM system. For the latter we choose it to be represented by σx whose

eigenstates act as the basis states, under the usual inner product definition, are

{|v1〉 , |v2〉} = {|1〉 , |0〉} =

{

1√
2

[

1

−1

]

,
1√
2

[

1

1

]}

. (43)

gThe act of operation of time evolution is equivalent to making a measurement on the entangled
state by the first party here.
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The inner product structure, which is the same as in SQM , shows

〈ψ| = (ĈP̂ T ⊗K |ψ〉)T

=

2,2
∑

n,m=1

C∗
nm(ĈP̂ T |un〉)T ⊗ (|um〉)†

(44)

where K = T mimics the usual complex conjugation.

The initial density matrix of the composite state (32), using notations furnished

in (38), is the tensor product

ρ1,2 =
1

2 cosφ

[

N11 N12

N21 N22

]

⊗

1

2

[

1 + β + β∗ (δ − α) + (β − β∗)

(δ − α)− (β − β∗) 1− (β + β∗)

]

.

(45)

We immediately infer from (42) and (28) that finding the partial trace of ρ1,2 in

either of the Hilbert spaces would retain the same set of eigenvalues. In fact, if

we denote the density matrices by the notations ρP (t) and ρS(t) and have the

subsystems evolve by means of the operators U1(t) ⊗ I and I ⊗ U2(t) respectively,

where U1(t) = e−iĤ1t and U2(t) = e−iσxt, then it transpires that for ρP (t) we have

|ψt〉 = U1(t)⊗ I |ψ〉 =
2,2
∑

n,m=1

e−iλntCnm |un〉 ⊗ |vm〉 ,

λ1 =
√

ζ2 − γ2, λ2 = −
√

ζ2 − γ2,

ρP (t) =

2
∑

n,m,a,b=1

ei(λn−λa)tCabC
∗
nm |ua〉 〈un|CPT ⊗ |vb〉 〈vm|

(46)

while for ρS(t) the following holds

|ψt〉 = I⊗ U2(t) |ψ〉 =
2,2
∑

n,m=1

e−iλmtCnm |un〉 ⊗ |vm〉 ,

λ1 = −1, λ2 = 1,

ρS(t) =

2
∑

n,m,a,b=1

ei(λm−λb)tCabC
∗
nm |ua〉 〈un|CPT ⊗ |vb〉 〈vm| .

(47)

This implies that the entangled state (32) reflects no change in either of the sub-

systems demonstrating successfully the no-signaling hypothesis.

4. Concluding remarks

The problem of preservation of no-signaling principle is addressed for certain combi-

nations of PT -symmetric systems. Since all PT -symmetric Hamiltonians are known

to belong to the class of pseudo-Hermitian theory, we use the techniques of the lat-

ter to establish the result in the affirmative. In this regard, we considered the pair
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of subsystems governed each by PTQM as one possibility along with PTQM and

SQM as another. The key ingredient that we employed is the notion of CPT -inner

product, which is known to admit of a probabilistic interpretation for a PTQM

system, to establish the invariance of the relevant reduced density matrix before

and after the operation of time evolution operator. Although the results obtained

in this work is deemed to be similar with19 , we highlight the difference from our

work with the elaborate use of modified density matrices, a crucial feature missing

in the former.
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