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Abstract

In this paper, we discuss the parametric symmetries in different exactly solvable
systems characterized by real or complex PT symmetric potentials. We focus our at-
tention on the conventional potentials such as the generalized Pöschl Teller (GPT),
Scarf-I and PT symmetric Scarf-II which are invariant under certain parametric
transformations. The resulting set of potentials are shown to yield a completely dif-
ferent behavior of the bound state solutions. Further the supersymmetric (SUSY)
partner potentials acquire different forms under such parametric transformations
leading to new sets of exactly solvable real and PT symmetric complex potentials.
These potentials are also observed to be shape invariant (SI) in nature. We subse-
quently take up a study of the newly discovered rationally extended SI Potentials,
corresponding to the above mentioned conventional potentials, whose bound state
solutions are associated with the exceptional orthogonal polynomials (EOPs). We
discuss the transformations of the corresponding Casimir operator employing the
properties of the so(2, 1) algebra.
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1 Introduction

The exactly solvable (ES) models play an important role in our understanding of the
bound state problems in quantum mechanics. However, in the literature, ES systems
are hard come by as is evidenced by the appearence of only a handful of potentials that
yield to an exact treatment [1, 2]. With the advent of supersymmetric quantum mechanics
(SUSYQM), following a remarkable paper by Witten in 1981 [3], it was realized that SUSY
offers a clue to the general nature of solvability which basically amounts to a process of
factorizing the Schrödinger Hamiltonian. In effect this means that a nonlinear differential
equation for the superpotential that belongs to a Riccati’s class needs to be solved and
that it is only for a limited choices of the superpotentials that such a criterion can be
fulfilled. From the superpotential it is always possible to work out a pair of isospectral
partner Hamiltonians satisfying the condition of shape invariance (SI) [4]. In the unbroken
case of SUSY to which we shall restrict ourselves here, the ground state is nondegenerate
but otherwise both the Hamiltonians have an identical column of energies except with the
ground state belonging to only one of the components but not to both.

The list of exactly solvable systems was further expanded in the context of polynomial
Heisenberg algebras [5, 6] which offer additional degeneracies of the energy levels and new
families exceptional orthogonal polynomials (EOPs) (also known as Xm Laguerre and Xm

Jacobi polynomials) [7, 8, 9, 10, 11, 12] that start with polynomials of degree one or higher
but could be reduced to tractable forms of differential equations which give solvable forms
of the spectra [13, 14, 15, 16, 17, 18, 21, 19, 20, 22, 23, 24, 25, 26, 27, 28]. These include
three new classes of exactly solvable and SI potentials [13, 14, 15, 16, 29] which could
be identified as the rational extensions of the radial oscillator, generalized Pöschl Teller
(GPT) and Scarf I potentials.

A parallel development concerning complex extensions of quantum mechanics, a sub-
class of which is controlled by an underlying combined parity (P) and time reversal (T)
symmetry that yields a large family of exactly solvable potentials, have also attracted
much attention over the past one and half decades due to the realization of fully consis-
tent quantum theories within such a framework [30, 31, 32]. In the present work one of
our aim is to discuss the parametric symmetries for some of the exactly solvable Hermitian
as well as PT symmetric complex potentials and their rational extensions counterparts.
For concreteness we would focus on the conventional GPT, Scarf-I and PT symmetric
Scarf-II potentials. We observe that while under certain parametric transformations these
potentials remain invariant, the set of bound states change to a different one. In fact,
within SUSY QM , the corresponding superpotentials for these potentials change under
such parametric transformation leading to new partner potentials which satisfy usual SI
property. Thus the parametric symmetry in these potentials is responsible for a previ-
ously unnoticed set of bound state solutions as well as generating new ES potentials. We
further apply the same technique to rationally extended GPT, Scarf-I and PT symmetric
Scarf-II potentials and obtain the new bound state solutions associated with these poten-
tials. In all three cases it turns out possible for the new solutions to be written in terms
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of EOPs. This result is of interest. We further observe that the scattering amplitudes
corresponding to the two sets of bound states for GPT and complex PT symmetric Scarf
II potentials remain invariant under these parametric transformations. We also determine
new ES potentials which are isospectral to the conventional potentials for all three cases.

A point to note here: An algebraic technique based upon the use of so(2, 1) algebra for
the Schrödinger equation to construct exactly solvable potentials in quantum mechanics
was pioneered long time ago by Alhassid et al [33, 34, 35, 36, 37] along with some other
groups [38, 39, 40] in a series of papers which were later extended in [41] by considering
more general possibilities for the generators. Subsequently complex extensions of these
works were carried out in [42, 43, 44] and interesting results were derived such as the
existence of two series of energy levels stemming from two noncommuting classes of com-
plex Lie algebras. In particular for the PT -symmetric complex Scarf-II potential it was
observed that it supports two series of real eigenvalues with physically acceptable wave-
functions that is related to the invariance of the potential under exchange of its coupling
parameters.

These group theoretic techniques were recently extended to the case of rationally
extended potentials by extending the generators of the associated so(2, 1) group through
the introduction of a new operator U to express the Hamiltonian in terms of Casimir of
the group. Hence the bound states corresponding to the rationally extended potentials
are obtained in terms of EOPs in an elegant fashion [29]. In the following we will discuss
how the generators get modified under this parametric symmetry of the potentials .

The plan of the present paper is as follows: In section 2, we discuss the parametric
symmetries in conventional GPT, Scarf-I and PT symmetric complex Scarf-II potentials
and obtained their new solutions with new superpotentials. Corresponding to these con-
ventional potentials new rationally extended potentials whose solutions are in terms of
EOPs are also obtain in this section. In section 3, we discuss briefly the so(2, 1) algebra
corresponding to these extended potentials and obtain the modified generators of ratio-
nally extended GPT potential. The algebra corresponding to the rationally extended PT
symmetric Scarf II (i.e. sl(2,C) algebra) and the rationally extended Scarf I (i.e iso(2, 1)
algebra) potentials are discussed briefly. The corresponding modified generators are also
obtained in this section. Finally we summarize the results obtained in Section 4.

2 New bound state solutions of exactly solvable con-

ventional potentials and their rationally extended

counterparts

In this section, we focus on few exactly solvable shape invariant potentials which are in-
variant under certain parametric transformations. The curious thing is that the forms of
their supersymmtric partner potentials change under such transformations. This allows
us to obtain previously unnoticed sets of bound state solutions of the conventional poten-
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tials. We have based our investigations on three different types of potentials, namely the
generalized Pöschl Teller (GPT) potential, trigonometric Scarf (Scarf I) and PT symmet-
ric complex Scarf II potentials. In what to follow the new potentials determined by us
will be used as a springboard to undertake calculations for the more complicated rational
extensions of such potentials and go for a potential algebra treatment to tie them up in a
single framework of so(2, 1) complex algebra. The rationally extended SI potentials and
their solutions in terms of EOPs corresponding to the conventional GPT, Scarf I and PT
symmetric complex Scarf II potentials are already obtained in Refs. [13, 14]. We shall
briefly review certain aspects of the existing solutions and then proceed to obtain new
sets of rationally extended real and PT symmetric complex SI potentials corresponding
to the above three new conventional potentials by using parametric transformation which
leaves the usual rationally extended potentials invariant.

2.1 GPT potential

The conventional GPT potential defined on the half-line 0 < x <∞ is given by

V
(A,B)
1,GPT (x) = (B2 + A(A + 1))cosech2x− B(2A+ 1)cosechx coth x. (1)

The accompanying bound state energy eigenvalues and the eigenfunctions are [2]

En = −(A− n)2; n = 0, 1, 2.......nmax < A (2)

and

ψ(A,B)
n (x) = Nn(cosh x− 1)

B−A

2 (cosh x+ 1)−
B+A

2 P (α,β)
n (cosh x), B > A+ 1 > 1, (3)

where α = B − A− 1
2
, β = −B − A− 1

2
and Nn is the normalization constant.

Corresponding to (1) the superpotential W (x) is known to be

W (x) = A cothx− Bcosechx. (4)

As a result the partner potential to the GPT potential can be written as

V
(A,B)
2,GPT (x) = W 2(x) +

dW (x)

dx

= (B2 + A(A− 1))cosech2x− B(2A− 1)cosechx coth x. (5)

The potential V
(A,B)
2,GPT (x) can be recognized to be shape invariant [2] under a simple trans-

lation A→ A− 1.

The scattering amplitude corresponding to (1) has the form [45]

Sl=0(k) = 2−4ik Γ(2ik)Γ(−A− ik)Γ(B + 1
2
− ik)

Γ(−2ik)Γ(−A + ik)Γ(B + 1
2
+ ik)

. (6)
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where k is the wave number. The poles of the gamma functions give the bound state
energy spectrum (2).

We next exploit an interesting property of V
(A,B)
1,GPT (x) that its form is unaffected under

the joint replacements of B ←→ (A+ 1
2
) in addition to being symmetric corresponding to

simultaneous transformations B −→ −B and (A+ 1
2
) −→ −(A+ 1

2
). From the considera-

tion of the correct asymptotic behavior of the bound state wave functions we can restrict,
without loss of generality, to B > 0 , A > −1

2
. If we apply the former transformations

of parameters we notice that the energy eigenvalues and the eigenfunctions of (1) acquire
completely different forms being given by

En = −(B − n−
1

2
)2; n = 0, 1, 2.......nmax < B −

1

2
(7)

and

ψ
(B↔A+ 1

2
)

n (x) = N (B↔A+1/2)
n (cosh x− 1)

A−B+1
2 (cosh x+ 1)−

B+A

2 P (α,β)
n (cosh x), (8)

with A > −1
2
, B > 0 and the parameters α = A−B+ 1

2
, β = −A−B− 1

2
. The transposition

B ←→ (A + 1
2
) also leads to a different but a perfectly acceptable superpotential to (1)

namely

W (x) = (B −
1

2
) cothx− (A +

1

2
)cosechx. (9)

It induces a partner potential that has the form

V
(A,B)
2,GPT (x) = ((B − 1)2 + A(A+ 1))cosech2x− (B − 1)(2A+ 1)cosechx coth x. (10)

One can notice that (1) is also shape invariant under the translation B → B − 1.

The scattering amplitudes for the s-wave (l = 0) to include the new state of bound
states (7) is obtained from (6) by making the replacements B ←→ (A+ 1

2
):

S
(B↔A+ 1

2
)

l=0 (k) = 2−4ik Γ(2ik)Γ(−B + 1
2
− ik)Γ(A− ik + 1)

Γ(−2ik)Γ(−B + 1
2
+ ik)Γ(A+ ik + 1)

. (11)

Thus we see that the GPT potential has another scattering matrix1 because of its invari-
ance under the interplay of its coupling parameters. The poles of S-matrix (11) giving
correct bound states (7). Here we notice that thus so long as B−A− 1

2
is not an integer,

GPT has two sets of nodeless states, two states with one nodes etc. The true ground
state of the system will depend on which of A and B − 1

2
is less.

1Unlike the above two parametric transformations transformations i.e B ←→ (A + 1

2
) and B −→

−B, (A+ 1

2
) −→ −(A+ 1

2
), third parametric transformation B ←→ −(A+ 1

2
) is also possible under which

the S-matrix (6) remains invariant.
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2.1.1 Rationally extended GPT potential

The rationally extended SI GPT potential [14] which is isospectral to the conventional
GPT potential (1), defined for the parameter B > A + 1 > 1 is given by

V
(A,B)
1,extd (x) = (B2 + A(A + 1))cosech2x− B(2A+ 1)cosechx coth x

+
2(2A+ 1)

2B cosh x− 2A− 1
−

2(4B2 − (2A+ 1)2)

(2B cosh x− 2A− 1)2
. (12)

The wave functions of this extended potential in terms of X1 exceptional Jacobi polyno-
mials, P̂

(α,β)
n (cosh x) is given by

ψ
(A,B)
n,extd(x) = Nn,extd ×

(cosh x− 1)
(B−A)

2 (cosh x+ 1)−
(B+A)

2

[2B cosh x− 2A− 1]
P̂

(α,β)
n+1 (cosh x), (13)

where the parameters α and β are same as defined in Eq. (3) and Nn,extd is the normal-
ization constant. The superpotential corresponding to this potential is given by

W (x) = A cothx−Bcosechx+ 2B sinh x

×

(

1

(2B cosh x− 2A− 1)
−

1

(2B cosh x− 2A+ 1)

)

. (14)

On changing the parameters B ←→ (A + 1
2
), the above extended potential (12) becomes

V
(A,B)
1,extd (x) = (B2 + A(A + 1))cosech2x− B(2A+ 1)cosechx coth x

+
4B

2(A+ 1
2
) cosh x− 2B

−
8((A+ 1

2
)2 −B2)

(2(A+ 1
2
) cosh x− 2B)2

, (15)

and hence is not invariant unlike the conventional GPT potential (1). This new rationally
extended GPT potential is isospectral to the new conventional GPT potential whose
bound state spectrums are given in (7). The wave functions of this new extended potential

in terms of X1 exceptional Jacobi polynomials, P̂
(α,β)
n (cosh x) is given by

ψ
(B↔A+ 1

2
)

n,extd (x) = N
B↔A+ 1

2
n,extd ×

(cosh x− 1)
A−B+1

2 (cosh x+ 1)−
B+A

2

[2(A+ 1
2
) cosh x− 2B]

P̂
(α,β)
n+1 (cosh x). (16)

The superpotential is given by

W (x) = (B −
1

2
) coth x− (A+

1

2
)cosechx+ 2(A+

1

2
) sinh x

×

(

1

(2(A+ 1
2
) cosh x− 2B)

−
1

(2(A+ 1
2
) cosh x− 2B + 2)

)

. (17)

Using this superpotential, we get the partner potential

V
(A,B)
2,extd (x) = ((B − 1)2 + A(A + 1))cosech2x− (B − 1)(2A+ 1)cosechx coth x

+
4(B − 1)

[2(A+ 1
2
) cosh x− 2B + 2]

−
8((A+ 1

2
)2 − (B − 1)2)

[2(A+ 1
2
) coshx− 2B + 2]2

. (18)
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It can be easily shown that this new rationally extended GPT potential is also shape
invariant under the translation of parameter B → B − 1.

The above extended SI GPT potential (15) isospectral to (7) is easily generalized to
the Xm case given by

V
(A,B)
m,extd(x) = (B2 + A(A+ 1))cosech2 x− B(2A+ 1)cosech x coth x

+ 2m(2A−m+ 2)− (2A−m+ 2)[(2B − 2(A+ 1) cosh x)]

×
P

(−α,β)
m−1 (cosh x)

P
(−α−1,β−1)
m (cosh x)

+
(2A−m+ 2)2 sinh2 x

2

×

(

P
(−α,β)
m−1 (cosh x)

P
(−α−1,β−1)
m (cosh x)

)2

; 0 ≤ x ≤ ∞.

(19)

The corresponding wavefunctions in terms of Xm Jacobi polynomials (P̂
(α,β)
n+m (cosh x)) are

given by

ψ
(B↔A+ 1

2
)

n,m (x) = N
(B↔A+ 1

2
)

n,m,extd ×
(cosh x− 1)(

A−B+1
2

)(cosh x+ 1)−(B+A

2
)

P
(−B−A− 1

2
,−B−A− 3

2
)

m (cosh x)
P̂

(α,β)
n+m (cosh x). (20)

The scattering amplitudes corresponding to the above potentials (19) are obtained by
taking the asymptotic behaviors of the associated Xm Jacobi polynomials given by

Sm
l=0 = S

(B↔A+ 1
2
)

l=0 (k)

[

{(A+ 1
2
)2 − (ik − 1

2
)2}+ (A− ik + 1)(1−m)

{(A+ 1
2
)2 − (ik + 1

2
)2}+ (A + ik + 1)(1−m)

]

. (21)

For m = 1, the scattering amplitude corresponds to the X1 case and in the limit m = 0

it reduces to S
(B↔A+ 1

2
)

l=0 (k) given in Eq. (11). The above scattering amplitudes (21) can
be also obtained simply by replacing B ←→ A+ 1

2
in the scattering amplitudes obtained

in Ref. [23].

2.2 Trigonometric Scarf or Scarf I potential

We now consider the second example namely, the conventional Scarf I potential which
reads in the standard form

V
(A,B)
1,Scarf(x) = (B2 + A(A− 1)) sec2 x−B(2A− 1) sec x tan x; −

π

2
< x <

π

2
. (22)

The energy eigenvalues and eigenfunctions are [2]

En = (A + n)2; n = 0, 1, 2.... (23)

and

ψ(A,B)
n (x) = Nn(1− sin x)

A−B

2 (1 + sin x)
A+B

2 P (α,β)
n (sin x), 0 < B < A− 1, (24)
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where α = A − B − 1
2
, β = A + B − 1

2
and Nn is the normalization constant. The

superpotential corresponding to this potential is already known and given by

W (x) = A tanx− B sec x, (25)

yielding the partner potential

V
(A,B)
2,Scarf(x) = (B2 + A(A+ 1)) sec2 x− B(2A+ 1) sec x tan x. (26)

This potential is shape invariant under the translation of parameter A→ A + 1.

On transforming the parameters B ←→ (A − 1
2
), the given Scarf I potential (22)

remains invariant, but the energy eigenvalues, eigenfunctions and the superpotential have
completely different forms and are given by

En = (B + n+
1

2
)2; n = 0, 1, 2..... (27)

ψ
(B↔A− 1

2
)

n (x) = N
B↔A− 1

2
n (1− sin x)

B−A+1
2 (1 + sin x)

A+B

2 P (α,β)
n (sin x); B > A− 1 > 0,

(28)
and

W (x) = (B +
1

2
) tanx− (A−

1

2
) sec x, (29)

with a new set of parameters α = B − A+ 1
2
and β = A +B − 1

2
.

The partner potential corresponding to this new system is given by

V
(A,B)
2,Scarf(x) = ((B + 1)2 + A(A− 1)) sec2 x− (B + 1)(2A− 1) sec x tanx. (30)

Thus, we observe that on changing the parameters, the invariance potential V1(x) under
B ↔ (A − 1

2
) allows, as in the previous case of the GPT potential, a new defining

superpotential which provides a different partner potential to the Scarf-I potential than the
one considered in (26). The latter is also SI under the translation of a different parameter
B −→ B + 1. Here we also notice that the parametric transformation B ↔ (A − 1

2
)

generates two sets of bound states for the Scarf I potentials. In other words we have two
sets of nodeless states, two states with one node etc, but true ground state of the system
will depends on which of A and B + 1

2
is less.

2.2.1 Rationally extended Scarf I potential

The rationally extended Scarf I potential [13] isospectral to the conventional one (22) is
given by

V
(A,B)
1,extd (x) = (B2 + A(A− 1)) sec2 x− B(2A− 1) sec x tanx

+
2(2A− 1)

(2A− 1− 2B sin x)
−

2[(2A− 1)2 −B2]

(2A− 1− 2B sin x)2
, 0 < B < A− 1. (31)
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The wavefunctions in terms of exceptional X1 Jacobi polynomials are

ψ(A,B)
n (x) = Nn,extd ×

(1− sin x)
A−B

2 (1 + sin x)
A+B

2

(2A− 1− 2B sin x)
P̂

(α,β)
n+1 (sin x). (32)

The generalization to the Xm case is well known and given in detail in Ref. [15].

In the case of conventional Scarf I potential (22), we have shown that on changing
the parameters (B ↔ A − 1

2
), the potential is remain invariant but the bound states

solutions are different which are given in Eqs. (27) and (28). Under this parametric
transformation the rationally extended potential (31) is not invariant and we get a new
rationally extended Scarf I potential isospectral to the conventional Scarf I potential (22)
with the energy eigenvalues (27). This new set of rationally extended Scarf I potential is
given by

V
(A,B)
1,extd (x) = (B2 + A(A− 1)) sec2 x−B(2A− 1) sec x tan x

+
4B

(2B − 2(A− 1
2
) sin x)

−
8(B2 − (A− 1

2
)2)

(2B − 2(A− 1
2
) sin x)2

; (33)

with B > A − 1 > 0. The wavefunctions of this potential in terms of X1 exceptional
Jacobi orthogonal polynomials, P̂

(α,β)
n (sin x) become

ψ
(B↔A− 1

2
)

n (x) = N
B↔A− 1

2
n,ext ×

(1− sin x)
B−A+1

2 (1 + sin x)
A+B

2

2B − 2(A− 1
2
) sin x

P̂
(α,β)
n+1 (sin x). (34)

The superpotential for this new rationally extended Scarf I potential is

W (x) = (B +
1

2
) tanx− (A−

1

2
) sec x+ 2(A−

1

2
) cosx

×

(

1

2B + 2− (2A− 1) sin x
−

1

2B − (2A− 1) sin x

)

. (35)

Thus the partner potential can easily be obtained and is given by

V
(A,B)
2,extd (x) = ((B + 1)2 + A(A− 1)) sec2 x− (B + 1)(2A− 1) sec x tanx

+
4(B + 1)

(2(B + 1)− 2(A− 1
2
) sin x)

−
8((B + 1)2 − (A− 1

2
)2)

(2(B + 1)− 2(A− 1
2
) sin x)2

. (36)

This new rationally extended potential is also translationally SI under the translation of
parameter B −→ B + 1.
The potentials corresponding to the Xm case and their wavefunctions are given by

V
(A,B)
m,extd(x) =

(2α2 + 2β2)

4
sec2 x−

(β2 − α2)

2
sec x tan x− 2m(α− β −m+ 1)

− (α− β −m+ 1)(α+ β + (α− β + 1) sin x)
P

(−α,β)
m−1 (sin x)

P
(−α−1,β−1)
m (sin x)

+
(α− β −m+ 1)2 cos2 x

2

(

P
(−α,β)
m−1 (sin x)

P
(−α−1,β−1)
m (sin x)

)2

, −
π

2
< x <

π

2

(37)
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and

ψ(A,B)
n,m (x) = Nn,m,extd ×

(1− sin x)
1
2
(α+ 1

2
)(1 + sin x)

1
2
(β+ 1

2
)

P
(−α−1,β−1)
m (sin x)

P̂
(α,β)
n+m (sin x) (38)

respectively. The above potentials are isospectral to their conventional one (i.e the energy
eigenvalues are same as given in (27)) and are also SI under the translation of parameter
B −→ B + 1.

2.3 PT symmetric complex Scarf-II potential

As a third example, we consider the well known complex and PT symmetric Scarf II
potential [42, 43, 44, 47, 48, 49, 50]. In the usual notations the PT symmetric Scarf II
potential defined on the full line −∞ < x <∞ is given by

V
(A,B)
1,ScarfII(x) = −(B

2 +A(A+ 1)) sech2 x+ iB(2A+ 1) sech x tanhx; A > B −
1

2
> 0.

(39)

With the above definition of V
(A,B)
1,ScarfII(x), the energy eigenvalues are real [43] namely,

En = −(A− n)2; n = 0, 1, 2....nmax < A, (40)

and the accompanying eigenfunctions are given by

ψ(A,B)
n (x) = Nn(sech x)

A exp(−iB tan−1(sinh x))P (α,β)
n (i sinh x), (41)

with α = B − A− 1
2
and β = −B −A− 1

2
.

The superpotential
W (x) = A tanh x+ iB sech x (42)

and the partner potential is

V
(A,B)
2,ScarII(x) = −(B

2 + A(A− 1)) sech2 x+ iB(2A− 1) sech x tanh x. (43)

Thus the potential is translationally shape invariant under the translation of parameter
A→ A− 1.

In this case, the symmetry under the translation of parameters B ←→ (A+ 1
2
) has been

already discussed in Ref. [42]. Here we mention only the results to get the consistency
with the new rationally extended case discussed in next section.

The bound state energy eigenvalues and the wavefunctions under the above parametric
transformation are given by

En = −(B − n−
1

2
)2; n = 0, 1, 2, ..., nmax < B −

1

2
, (44)

and

ψ
(B↔A+ 1

2
)

n (x) = N
B↔A+ 1

2
n (sech x)B− 1

2 exp(−i(A +
1

2
) tan−1(sinh x))P (α,β)

n (i sinh x) (45)

10



respectively, where the parameters α = A− B + 1
2
and β = −A− B − 1

2
.

The transimission t(k) and reflection r(k) amplitudes for the potential (39) is in fact
invariant under the transformation B ←→ A+ 1

2
, as can be seen from the expressions [49]

t(k) =
Γ(−A− ik)Γ(A+ 1− ik)Γ(−B − ik + 1

2
)Γ(B − ik + 1

2
)

Γ(−ik)Γ(1 − ik)Γ2(1
2
− ik)

(46)

and
r(k) = t(k)

[

i cos(πA) sin(πB) sech(πk) + i sin(πA) cos(πB)cosech(πk)
]

. (47)

The poles of the gamma functions Γ(−A− ik) and Γ(−B − ik + 1
2
) give the exact bound

state energy spectrums (40) and (44) respectively.

2.3.1 Rationally extended PT symmetric complex Scarf II potential

The rationally extended PT symmetric complex Scarf II potential [14] isospectral to the
conventional one (39) is given by

V
(A,B)
1,ScarfII(x) = −(B2 + A(A+ 1)) sech2 x+ iB(2A+ 1) sech x tanh x

+
−2(2A + 1)

(−2iB sinh x+ 2A+ 1)
+

2[(2A+ 1)2 − B2]

(−2iB sinh x+ 2A+ 1)2
. (48)

The eigenfunctions in terms of X1 exceptional Jacobi polynomials associated with this
system are

ψ(A,B)
n (x) = Nn,extd

(sech x)A exp {−iB tan−1(sinh x)}

−2iB sinh x+ 2A+ 1
P̂

(α,β)
n+1 (i sinh x). (49)

Similar to the above two cases of real potentials, now we show that the parametric trans-
formation B ←→ A + 1

2
in the conventional PT symmetric complex Scarf II potential

leads to a new rationally extended PT symmetric Scarf II potential

V
(A,B)
1,extd (x) = −(B2 + A(A+ 1)) sech2 x+ iB(2A+ 1) sech x tanh x

+
−4B

(−2i(A + 1
2
) sinh x+ 2B)

+
8(B2 − (A+ 1

2
)2)

(−2i(A + 1
2
) sinh x+ 2B)2

, (50)

whose bound state energy eigenvalues are same as given in Eq. (44). The wave functions
in terms of X1 exceptional orthogonal Jacobi polynomials become

ψ
(B↔A+ 1

2
)

n (x) = N
(B↔A+ 1

2
)

n,extd

(sech x)B− 1
2 exp {−i(A + 1

2
) tan−1(sinh x)}

−2i(A+ 1
2
) sinh x+ 2B

P̂
(α,β)
n+1 (i sinh x).

(51)
The superpotential corresponding to this new potential is

W (x) = (B −
1

2
) tanhx+ i(A +

1

2
) sech x+ 2i(A+

1

2
) cosh x

×

(

1

−2i(A + 1
2
) sinh x+ 2B − 2

−
1

−2i(A + 1
2
) sinh x+ 2B

)

(52)

11



and the partner potential is

V
(A,B)
2,extd (x) = −((B − 1)2 + A(A+ 1)) sech2 x+ i(B − 1)(2A+ 1) sech x tanh x

+
−4(B − 1)

(−2i(A + 1
2
) sinh x+ 2B − 2))

+
8((B − 1)2 − (A + 1

2
)2)

(−2i(A + 1
2
) sinh x+ 2B − 2))2

.

(53)

Similar GPT and Scarf I, this new rationally extended potential also generalizes to
the potentials whose solutions are in terms of Xm exceptional Jacobi polynomials given
by

V (A,B)
m (x) = (−B2 −A(A + 1)) sech2 x+ iB(2A + 1) sech x tanh x

+ 2m(2A−m+ 2) + (2A−m+ 2)

× [(−2B) + (2A+ 2)i sinh x]
P

(−α,β)
m−1 (i sinh x)

P
(−α−1,β−1)
m (i sinh x)

−
(2A−m+ 2)2 cosh2 x

2

(

P
(−α,β)
m−1 (i sinh x)

P
(−α−1,β−1)
m (i sinh x)

)2

(54)

and

ψ
(B↔A+ 1

2
)

n,m (x) = N
(B↔A+ 1

2
)

n,m,extd ×
(sech x)A exp(−iB tan−1(sinh x))

P
(−α−1,β−1)
m (i sinh x)

P̂
(α,β)
n+m (i sinh x). (55)

This potential is also isospectral to the conventional one whose bound state energy eigen-
values are given by Eq. (44). The above new potential is still SI under the translation of
parameter B −→ B − 1.

3 The so(2, 1) algebra and its realizations

In Ref. [29], we have extended the works of Alhassid et al [33, 34, 35, 36, 37, 38, 39]
and obtained the modified generators J± and J3 corresponding to so(2, 1) algebra for the
rationally extended potentials whose solutions are in the form of EOPs. After observing
different parametric symmetries in the conventional potentials it is interesting to see that
the generators corresponding to these conventional potentials are different with different
Casimir operators. We have also shown that these parametric symmetries generate a new
set of rationally extended potentials whose solutions are in the forms of exceptional Jacobi
polynomials. In this section the generators of the above algebra corresponding to these
new rationally extended potentials are also obtained.

In this section, first we briefly review the so(2, 1) potential algebra and its unitary
representations. This algebra consists of three generators J± and J3 and satisfy the

12



commutation relations

[J+, J−] = −2J3; [J3, J±] = ±J± . (56)

The differential realization of these generators corresponding to the conventional poten-
tials [37] is given by

J± = e±iφ

[

±
∂

∂x
−

(

(−i
∂

∂φ
±

1

2
)F (x)−G(x)

)]

,

J3 = −i
∂

∂φ
. (57)

However, we find that these generators are not sufficient to explain the spectrum of the
rationally extended SI potentials. Hence, we have constructed the so(2, 1) algebra by
modifying J± with the inclusion of a new operator, U(x,−i ∂

∂φ
± 1

2
) [29] as,

J± = e±iφ

[

±
∂

∂x
−

(

(−i
∂

∂φ
±

1

2
)F (x)−G(x)

)

− U(x,−i
∂

∂φ
±

1

2
)

]

, (58)

and keeping the generator J3 unchanged.
Here F (x), G(x) and U(x,−i ∂

∂φ
± 1

2
) are two functions and a functional operator respec-

tively.

In order to satisfy the so(2, 1) algebra (56) by these new generators J± and J3, the
following restrictions on the functions F (x), G(x) and U(x, k ± 1

2
)

d

dx
F (x) + F 2(x) = 1;

d

dx
G(x) + F (x)G(x) = 0; (59)

and
[

U2(x, k −
1

2
)−

d

dx
U(x, k −

1

2
) + 2U(x, k −

1

2
)

(

F (x)(k −
1

2
)−G(x)

)]

−

[

U2(x, k +
1

2
) +

d

dx
U(x, k +

1

2
) + 2U(x, k +

1

2
)

(

F (x)(k +
1

2
)−G(x)

)]

= 0 (60)

are required.

Here we note that the Eq. (59) is the same as for the conventional potentials [37] while
an additional condition (60) appears due to the presence of the extra term U(x,−i ∂

∂φ
± 1

2
)

in J±.

The Casimir operator, for the so(2, 1) algebra, in terms of the above generators is
given by

J2 = J2
3 −

1

2
(J+J− + J−J+) = J2

3 ∓ J3 − J±J∓ . (61)

For the bound states, the basis for an irreducible representation of extended so(2, 1) is
characterized by

J2 |j, k〉 = j(j + 1) |j, k〉 ; J3 |j, k〉 = k |j, k〉 , (62)

13



and
J± |j, k〉 = [−(j ∓ k)(j ± k + 1)]

1
2 |j, k ± 1〉 . (63)

Using (58), the differential realization of the Casimir operator in terms of F (x), G(x) and
U(x, J3 −

1
2
) is given by

J2 =
d2

dx2
+

(

1− F 2(x)

)

(J2
3 −

1

4
)− 2

dG(x)

dx
(J3)−G

2 −
1

4

−

[

U2(x, J3 −
1

2
) +

(

(

J3 −
1

2

)

F (x)−G(x)

)

U(x, J3 −
1

2
)

+ U(x, J3 −
1

2
)

(

(

J3 −
1

2

)

F (x)−G(x)

)

−
d

dx
U(x, J3 −

1

2
)

]

, (64)

and the basis |j, k〉 in the form of function is given as

|j, k〉 = ψjk(x, φ) ≃ ψjk(x)e
ikφ . (65)

The functions (65) satisfy the Schroödinger equation

[

−
d2

dx2
+ Vk(x)

]

ψjk(x) = Eψjk(x) , (66)

where Vk(x) is one parameter family of k-dependent potentials given by

Vk(x) = (F 2(x)− 1)(k2 −
1

4
) + 2k

d

dx
G(x) +G2(x)

+

[

U2(x, k −
1

2
) + 2

(

(

k −
1

2

)

F (x)−G(x)

)

U(x, k −
1

2
)

−
d

dx
U(x, k −

1

2
)

]

, (67)

and the corresponding energy eigenvalues are given by

Ej = −
(

j +
1

2

)2
. (68)

By replacing U(x, k± 1
2
)⇒ U(x,m, k± 1

2
), the above realizations are also suitable for the

one parameter family of rationally extended SI potentials associated with Xm exceptional
orthogonal polynomials. For a check, if we put m = 0 i.e. U(x, 0, k− 1

2
) = 0 in the above

Eq. (67), we get the expressions for corresponding conventional potentials discussed in
Ref. [37].

Thus the Hamiltonian in terms of the Casimir operator of so(2, 1) algebra is given by

H = −
(

J2 +
1

4

)

. (69)
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It may be noted that the so(2, 1) algebra (58) with the modified generators satisfies the
same unitary representation as satisfied by the generators corresponding to the usual po-
tentials [37]. Here we discuss the unitary representation of so(2, 1) algebra corresponding
to the discrete principal series D+

j for which j < 0 i.e.,

k = −j + n; n = 0, 1, 2, ..., . (70)

Thus the energy eigenvalues (68) corresponding to this series will be

En = −
(

n− (k −
1

2
)
)2
. (71)

3.1 Generalized Pöschl Teller potential

For GPT potential, the spectrum under the change of parameters B ↔ A + 1
2
can be

obtained by choosing

F (x) = coth x; G(x) = (A+
1

2
)cosechx . (72)

For new extended GPT potential whose bound states are in terms of X1 EOPs as given
by (15), we also need to choose U(x, k ± 1

2
) as

U(x, k±
1

2
) =

(

(2A+ 1) sinh x

(2A+ 1) cosh x− 2(k ± 1
2
)− 1

−
(2A+ 1) sinh x

(2A+ 1) cosh x− 2(k ± 1
2
) + 1

)

; (73)

with A > k > 0. On substituting these functions in (67), we get the expression for
new rationally extended GPT potential given in equation (15) with the parameter B is
replaced by k. The energy eigenvalues of this extended potential are same as that of
conventional one (i.e they are isospectral) (71) and the associated wavefunctions ψjk(x)
(66) are given in terms of X1 exceptional Jacobi polynomials.

The new rationally extended potentials (19) corresponding to the Xm case can be
obtained by assuming

U(x, k ±
1

2
) ⇒ U(x,m, k ±

1

2
)

=
(m− 2A− 2) sinh x

2
×

[

P
((k± 1

2
)−A,−(k± 1

2
)−A−1)

m−1 (cosh x)

P
(k± 1

2
−A−1,−(k± 1

2
)A−2)

m (cosh x)

−
P

((k± 1
2
)−A−1,−(k± 1

2
)−A)

m−1 (cosh x)

P
(k± 1

2
−A−2,−(k± 1

2
)−A−1)

m (cosh x)

]

, (74)

where P
(α,β)
m (cosh x) is conventional Jacobi polynomials. The energy eigenvalues will be

same as given in (71).

For m = 0, the function i.e U(x,m, k± 1
2
) = U(x, 0, k− 1

2
) = 0, we get the conventional

GPT potential.

15



3.2 PT symmetric complex Scarf-II potential

In this section, we consider the new conventional and rationally extended PT symmetric
complex Scarf II potential obtained in section 2 after the transformation of parameters
B ←→ A+ 1

2
. For these complex potential we use extended sl(2,C) potential algebra. In

this algebra at least one of functions F (x), G(x) and U(x, k ± 1
2
) must be complex and

satisfy Eqs. (59) and (60).

For the conventional PT symmetric complex Scarf II potential which is invariant under
B ↔ A+ 1

2
, we consider the functions

F (x) = tanh x; G(x) = i(A +
1

2
) sech x. (75)

In addition to these functions new rationally extended complex Scarf II potential (50)
associated with X1 EOPs are obtained by defining

U(x, k −
1

2
) ⇒ U(x, 1, k −

1

2
)

=

[

2i(A + 1
2
) cosh x

(−2i(A + 1
2
) sinh x+ 2k − 2)

−
2i(A+ 1

2
) cosh x

(−2i(A + 1
2
) sinh x+ 2k)

]

. (76)

On putting all these functions F (x), G(x) and U(k− 1
2
) in (67), we get the expression for

new rationally extended PT symmetric potential (which is on the full-line −∞ ≤ x ≤ ∞)
(50) with the parameter B is being replaced by k.
The energy eigenvalues for this extended complex potential are real and are the same as
that of the conventional one given by

En = −(n− k +
1

2
)2; n = 0, 1, ..., nmax; nmax < (k −

1

2
) , (77)

and the associated wavefunctions ψjk(x) (66) are given in terms of X1 exceptional Jacobi
polynomials. The new rationally extended complex Scarf II potentials (54) having same
energy eigenvalues (77) and associated with the Xm EOPs are obtained by assuming

U(x, k ±
1

2
) ⇒ U(x,m, k ±

1

2
)

=
(m− 2B − 2)i cosh x

2
×

[

P
(k± 1

2
−A,−(k± 1

2
)−A−1)

m−1 (i sinh x)

P
(k± 1

2
−A−1,−(k± 1

2
)−A−2)

m (i sinh x)

−
P

(k± 1
2
)−A−1,−(k± 1

2
)−A)

m−1 (i sinh x)

P
(k± 1

2
−A−2,−(k± 1

2
)−A−1)

m (i sinh x)

]

. (78)

For m = 0, the function U(x,m, k ± 1
2
) becomes zero, hence we obtain the usual case

of sl(2,C) and the corresponding conventional complex Scarf II potential. On the other
hand for m = 1, we recover our results corresponding to the X1 case as discussed above.
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3.3 The iso(2, 1) algebra and trigonometric Scarf potential

In Ref. [29], we have discussed the potential algebra approach to the rationally extended
GPT and PT symmetric complex Scarf II potentials only. Following the works of Levai
[46], we are now able to obtain the bound state spectrums of rationally extended SI Scarf
I potential. In this section first we obtain the spectrums of rationally extended Scarf
I potentials (31) and then we consider the new rationally extended Scarf I potentials
obtained after the parametric transformation B ←→ A− 1

2
.

For these potentials, the above so(2, 1) algebra is not suitable. The algebra corre-
sponding to this potential is obtained by multiplying the generators J± of so(2, 1) algebra
with an imaginary number i, thus the resulting potential algebra for this potential is
iso(2, 1). The modified generators J± corresponding to this algebra are given as

J± = ie±iφ

[

±
∂

∂x
+

(

(−i
∂

∂φ
±

1

2
)F (x)−G(x)

)

+ U(x,−i
∂

∂φ
±

1

2
)

]

. (79)

Similar to the so(2, 1) case, to satisfy iso(2, 1) algebra by these generators J± and J3,
the commutation relations (56) have to be satisfied. This requirements provide following
restrictions on the functions F (x), G(x) and U(x, k ± 1

2
)

d

dx
F (x)− F 2(x) = 1;

d

dx
G(x)− F (x)G(x) = 0; (80)

and
[

U2(x, k +
1

2
)−

d

dx
U(x, k +

1

2
) + 2U(x, k +

1

2
)

(

F (x)(k +
1

2
)−G(x)

)]

−

[

U2(x, k −
1

2
) +

d

dx
U(x, k −

1

2
) + 2U(x, k −

1

2
)

(

F (x)(k +
1

2
)−G(x)

)]

= 0 . (81)

Here also we note that Eq. (80) is the same as for the usual potentials [46] while an extra
Eq. (81) appears due to the presence of the extra term U(x,−i ∂

∂φ
± 1

2
).

Using (79), the differential realization of the Casimir operator in terms of F (x), G(x) and
U(x, J3 +

1
2
) is given by

J2 = −
d2

dx2
+ (1 + F 2(x))

(

J2
3 −

1

4

)

− 2
dG(x)

dx
(J3) +G2 −

1

4

+ U2(x, J3 +
1

2
) +

(

(

J3 +
1

2

)

F (x)−G(x)

)

U(x, J3 +
1

2
)

+ U(x, J3 +
1

2
)

(

(

J3 +
1

2

)

F (x)−G(x)

)

−
d

dx
U(x, J3 +

1

2
) . (82)

Thus the Hamiltonian in terms of the Casimir operator of iSO(2, 1) algebra is given by

H =
(

J2 +
1

4

)

. (83)
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The unitary representation of iso(2, 1) algebra will be same as of so(2, 1).

The spectrums of the conventional Scarf I potential (22) are obtained by considering
[46]

F (x) = tan x; G(x) = B sec x; −
π

2
< x <

π

2
; 0 < B < k −

1

2
,

and for the rationally extended Scarf I potential (31) we also choose

U(x, k +
1

2
) =

[

−2B cosx

(−2B sin x+ 2(k + 1
2
)− 1)

+
2B cosx

(−2B sin x+ 2(k + 1
2
) + 1)

]

,

(84)

so that the above conditions (80) and (81) are satisfied. On substituting these functions
in (82), we get the rationally extended Scarf I potential (31) with the parameter A is
replaced k + 1

2
. The energy eigenvalues of this extended potential are isospectral to their

conventional counterpart and are given by Eq. (83) and (71) i.e.

En = (j +
1

2
)2. (85)

The associated wavefunctions of this potentials are given in terms ofX1 exceptional Jacobi
polynomial.
Similar to the rationally extended GPT and PT symmetric Scarf II potentials [29] the
extended Scarf I potential whose solutions are in terms of Xm EOPs can be obtained by
defining

U(x, k ±
1

2
) ⇒ U(x,m, k ±

1

2
)

=
(2B +m− 1) cosx

2
×

[

P
(−α,β)
m−1 (sin x)

P
(−α−1,β)
m (sin x)

−
P

(−α−1,β+1)
m−1 (sin x)

P
(−α−2,β)
m (sin x)

]

, (86)

with α = k± 1
2
−B− 1

2
and β = k± 1

2
+B− 1

2
. Form = 0, U(x, k± 1

2
)⇒ U(x, 0, k± 1

2
) = 0,

Eq. (82) produces the conventional Scarf I potential.

After transforming the parameters B ↔ A− 1
2
, the conventional Scarf I potential (22)

remain invariant which can be obtained by using

F (x) = tanx; G(x) = (A−
1

2
) sec x. (87)

For the new rationally extended Scarf I potential (33), in addition to F (x) and G(x) we
define

U(x, k +
1

2
) =

[

(2A− 1) cosx

2(k + 1
2
) + 1− (2A− 1) sin x

−
(2A− 1) cosx

2(k + 1
2
)− 1− (2A− 1) sin x

]

.

(88)
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The potentials corresponding to the Xm case (37) are obtained by constructing

U(x, k ±
1

2
) ⇒ U(x,m, k ±

1

2
)

=
(2A+m− 2) cosx

2
×

[

P
(−(k± 1

2
)−A,k± 1

2
+A−1)

m−1 (sin x)

P
(−(k± 1

2
)+A−1,k± 1

2
+A−1)

m (sin x)

−
P

(−(k± 1
2
)+A−1,k± 1

2
+A)

m−1 (sin x)

P
(−(k± 1

2
)+A−2,k± 1

2
+A−1)

m (sin x)

]

. (89)

Using these functions in Eq. (82), we get the expression for new rationally extended
Scarf I potentials Eq. (37) with the parameters B is replaced by k.

4 Summary and discussion

In this work we have discussed the different parametric symmetries in conventional real
as well as PT symmetric complex potential. It has been shown that the above sym-
metry provides a new set of bound states with new superpotentials. As examples we
consider three conventional potentials namely GPT, Scarf I and PT symmetries Scarf II
potentials and obtained corresponding new potentials which are invariant under the above
symmetries with completely different bound states. The rationally extended potentials
corresponding to these new potentials are obtained whose solutions are in terms of EOPs.
New ES potentials which are isospectral to the conventional potentials are obtained for
all three cases.

Further we have studied the effect of these parametric symmetries powerful technique
of group theoretic method in which the Hamiltonian for the new conventional as well
as rationally extended GPT, Scarf I and PT symmetric Scarf-II systems are expressed
purely in terms of the modified Casimir operator of so(2, 1), iso(2, 1) and sl(2,C) groups
respectively.

Acknowledgments

BPM acknowledges the financial support from the Department of Science and Tech-
nology (DST), Govt. of India under SERC project sanction grant No. SR/S2/HEP-
0009/2012. AK wishes to thank Indian National Science Academy (INSA) for the award
of INSA senior scientist position at Savitribai Phule Pune University. NK acknowledges
the financial support from BHU Varanasi in the form of CRET fellowship.

References
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