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Abstract

We obtain necessary and sufficient conditions for a matrix A to be
Birkhoff-James orthogonal to another matrix B in the Ky Fan k-norms.
A characterization for A to be Birkhoff-James orthogonal to any subspace
W of M(n) is also obtained.
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1 Introduction

Let M(n) be the space of n × n complex matrices. Let ‖ · ‖ be any norm on
M(n). Let A, B ∈ M(n). Then A is said to be (Birkhoff-James) orthogonal to
B in ‖ · ‖ if

‖A + λB‖ ≥ ‖A‖ for all λ ∈ C. (1.1)

In [5], Bhatia and Šemrl obtained a characterization for A to be orthogonal to
B in the operator norm (also known as the spectral norm) ‖ · ‖∞. They showed
that A is orthogonal to B in ‖ · ‖∞ if and only if there exists a unit vector
x ∈ C

n such that ‖Ax‖ = ‖A‖∞ and 〈Ax, Bx〉 = 0. (All inner products in
this note are conjugate linear in the first component and linear in the second
component.) Different proofs for this result have been studied in [7, 11, 12].
This result can be restated as follows. If A = U |A| is a polar decomposition
of A, then A is orthogonal to B in ‖ · ‖∞ if and only if there exists a unit
vector x ∈ Cn such that |A|x = ‖A‖∞x and 〈x, U∗Bx〉 = 0. In [5], it was
also showed that if tr U∗B = 0 then A is orthogonal to B in the trace norm
‖ · ‖1. And the converse is true if A is taken to be invertible. Later, Li and
Schneider [12] gave a characterization for orthogonality in ‖ · ‖1 when A need
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not be necessarily invertible. They showed the following. Let the number of
zero singular values of A be ℓ. Let A = USV ∗ be a singular value decomposition

of A. Let B = U

[

B11 B12

B21 B22

]

V ∗, where B11 ∈ M(n − ℓ), B22 ∈ M(ℓ). Then

‖A + λB‖1 ≥ ‖A‖1 for all λ ∈ C if and only if | tr B11| ≤ ‖B22‖1.
The trace norm and the operator norm are special cases of two classes of

norms, namely the Schatten p-norms ‖ · ‖p and the Ky Fan k-norms ‖ · ‖(k).
In [5] and [12], the authors have investigated the problem of finding necessary
and sufficient conditions for orthogonality of matrices in ‖ · ‖p, 1 ≤ p ≤ ∞. In
this note, we obtain characterizations for orthogonality of matrices in ‖ · ‖(k),
1 ≤ k ≤ n. Let s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) ≥ 0 be the singular values of A.
Then ‖A‖(k) is defined as

‖A‖(k) = s1(A) + s2(A) + · · · + sk(A). (1.2)

The cases k = 1 and k = n correspond to the operator norm ‖ · ‖∞ and the
trace norm ‖ · ‖1, respectively. We show the following.

Theorem 1.1. Let A = U |A| be a polar decomposition of A. If there exist k
orthonormal vectors u1, u2, . . . , uk such that

|A| ui = si(A)ui for all 1 ≤ i ≤ k (1.3)

and
k
∑

i=1

〈ui, U∗Bui〉 = 0, (1.4)

then A is orthogonal to B in ‖ · ‖(k). If sk(A) > 0, then the converse is also
true.

The next theorem gives a more general characterization.

Theorem 1.2. Let A = USV ∗ be a singular value decomposition of A. Let the
multiplicity of sk(A) be r + q, where r ≥ 0 and q ≥ 1, such that

sk−q+1(A) = · · · = sk+r(A).

Let B = U





B11 B12 B13

B21 B22 B23

B31 B32 B33



V ∗, where B11 ∈ M(k − q), B22 ∈ M(r +

q), B33 ∈ M(n − k − r).

(a) Let sk(A) > 0. Then A is orthogonal to B in ‖ · ‖(k) if and only if there
exists a positive semidefinite matrix T ∈ M(r + q) with λ1(T ) ≤ 1 and
∑r+q

j=1 λj(T ) = q such that tr B11 + tr(T ∗B22) = 0.

(b) Let sk(A) = 0. Then A is orthogonal to B in ‖ · ‖(k) if and only if there

exists T ∈ M(n − k + q, r + q) with s1(T ) ≤ 1, and
∑r+q

j=1 sj(T ) ≤ q such

that tr B11 + tr

(

T ∗

[

B22

B32

])

= 0.
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Let W be any subspace of M(n). Then A is said to be orthogonal to W (in
the Birkhoff-James sense) in a given norm ‖ · ‖ on M(n) if

‖A + W ‖ ≥ ‖A‖ for all W ∈ W . (1.5)

In [10], we obtained a necessary and sufficient condition for A to be orthogonal
to W in the operator norm. Our next theorem gives a characterization for A to
be orthogonal to W in ‖ · ‖(k).

Theorem 1.3. Let A = U |A| be a polar decomposition of A. Let W be
any subspace of M(n). If there exist density matrices P1, P2, . . . , Pk such that

‖
∑k

i=1 Pi‖∞ ≤ 1, |A|Pi = si(A)Pi (1 ≤ i ≤ k) and U
∑k

i=1 Pi ∈ W ⊥, then A is
orthogonal to W in ‖ · ‖(k). If sk(A) > 0, then the converse is also true.

If mi(A) is the multiplicity of si(A), then the condition |A|Pi = si(A)Pi

implies that the range of Pi is a subspace of the eigenspace of |A| corresponding
to si(A). So rank Pi is at most mi(A).

The problem of finding characterizations of orthogonality of a matrix to a
subspace W of M(n) is closely related to the best approximation problems [18].
A specific question is when is the zero matrix a best approximation to A from
W ? This is the same as asking when is A orthogonal to W ?

In [12], the authors studied a characterization for orthogonality in the in-
duced matrix norms. Beńıtez, Fernández and Soriano [6] showed that a neces-
sary and sufficient condition for the norm of a real finite dimensional normed
space X to be induced by an inner product is that for any bounded linear op-
erators A, B from X into itself, A is orthogonal to B if and only if there exists
a unit vector x ∈ X such that ‖Ax‖ = ‖A‖ and 〈Ax, Bx〉 = 0. More results
in this direction have been obtained recently in [15, 16]. Characterizations of
orthogonality on Hilbert C∗-modules have been studied in [1, 2, 3, 7].

To obtain the proofs of the above theorems, we use methods that we had
introduced in [7] and [10]. We first obtain some new expressions for the subdif-
ferential of the map taking a matrix A to its Ky Fan k-norm ‖A‖(k) in Section
2. The proofs of the above theorems are given in Section 3 followed by some
remarks in Section 4.

2 Subdifferentials of the Ky Fan k-norm

Let X be a Banach space and let f : X → R be a convex function.

Definition 2.1. A subgradient of f at a ∈ X is an element ϕ of the dual space
X ∗ such that

f(y) − f(a) ≥ Re ϕ(y − a) for all y ∈ X . (2.1)

The subdifferential of f at a is the set of bounded linear functionals ϕ ∈ X ∗

satisfying (2.1) and is denoted by ∂f(a). It is a non-empty weak* compact
convex subset of X ∗. For more details, see [9, Chapter D] and [21, Chapter
2]. The following proposition is a direct consequence of the definition of the
subdifferential. It is one of the most useful tools that we require in Section 3.
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Proposition 2.2. A continuous convex function f : X → R attains its mini-
mum value at a if and only if 0 ∈ ∂f(a).

An equivalent definition of the subdifferential of a continuous convex function
can be given in terms of f ′

+(a, x), the right directional derivative of f at a in
the direction x:

∂f(a) = {ϕ ∈ X
∗ : Re ϕ(x) ≤ f ′

+(a, x) for all x ∈ X }. (2.2)

Moreover, for each x ∈ X ,

f ′
+(a, x) = max{Re ϕ(x) : ϕ ∈ ∂f(a)}. (2.3)

The following rule of subdifferential calculus will be helpful in our analysis
later.

Proposition 2.3. Let X and Y be Banach spaces. Let S : X → Y be a
bounded linear map and let L : X → Y be the continuous affine map defined
by L(x) = S(x) + y0, for some y0 ∈ Y . Let g : Y → R be a continuous convex
function. Then

∂(g ◦ L)(a) = S∗∂g(L(a)) for all a ∈ X , (2.4)

where S∗ denotes the real or complex adjoint of S (depending on whether X

and Y are both real or both complex Banach spaces.)

For any norm ‖ · ‖ on the space M(n), it is well known that

∂‖A‖ = {G ∈ M(n) : ‖A‖ = Re tr(G∗A), ‖G‖∗ ≤ 1}, (2.5)

where ‖ · ‖∗ is the dual norm of ‖ · ‖, and

‖T ‖ = sup
‖X‖∗=1

| tr(T ∗X)| = sup
‖X‖∗=1

Re tr(T ∗X). (2.6)

The subdifferentials of some classes of matrix norms, namely unitarily invariant
norms and induced norms, have been computed by Watson [19]. The following
expression for the subdifferential of the Ky Fan k-norms was also given by him
in [20]. Let 1 ≤ k ≤ n. Let the multiplicity of sk(A) be r + q, where r ≥ 0 and
q ≥ 1, such that

sk−q+1(A) = · · · = sk+r(A).

Let g : M(n) → R be the function defined as g(A) = ‖A‖(k).

Theorem 2.4 ([20]). Let A = USV ∗ be a singular value decomposition of A
and let the matrices U, V be partitioned as U = [U1 : U2 : U3] and V = [V1 :
V2 : V3] where U1, V1 ∈ M(n, k − q); U2, V2 ∈ M(n, r + q); U3, V3 ∈ M(n, n −
k − r). If sk(A) > 0, then G ∈ ∂g(A) if and only if there exists a positive
semidefinite matrix T ∈ M(r + q) with λ1(T ) ≤ 1 and

∑r+q
j=1 λj(T ) = q such

that G = U1V ∗
1 + U2T V ∗

2 . If sk(A) = 0, then G ∈ ∂g(A) if and only if there
exists T ∈ M(n − k + q, r + q) with s1(T ) ≤ 1 and

∑r+q

j=1 sj(T ) ≤ q such that
G = U1V ∗

1 + [U2 : U3]T V ∗
2 .
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We obtain new formulas for ∂g(A) that can be used more easily in our
problem. The computations are similar to the ones in [19]. To do so, we first
calculate g′

+(A, ·). For this, an important thing to observe is that the Ky Fan
k-norm of a matrix A is also given by

‖A‖(k) = max
U,V ∈M(n,k)

U∗U=V ∗V =Ik

Re tr U∗AV = max
U,V ∈M(n,k)

U∗U=V ∗V =Ik

| tr U∗AV |. (2.7)

(See [13, p. 791].) If A is positive semidefinite, then

‖A‖(k) = max
U∈M(n,k)
U∗U=Ik

tr U∗AU. (2.8)

Theorem 2.5. For X ∈ M(n),

g′
+(A, X) = max

u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k
∑

i=1

Re〈ui, Xvi〉. (2.9)

Proof. From (2.7), we have

‖A‖(k) = max
u1,...,uk o.n.
v1,...,vk o.n.

k
∑

i=1

Re〈ui, Avi〉. (2.10)

For any sets of k orthonormal vectors u1, . . . , uk and v1, . . . , vk satisfying Avi =
si(A)ui, 1 ≤ i ≤ k, we have

‖A + tX‖(k) ≥
k
∑

i=1

Re〈ui, (A + tX)vi〉

=
k
∑

i=1

si(A) + t
k
∑

i=1

Re〈ui, Xvi〉

= ‖A‖(k) + t
k
∑

i=1

Re〈ui, Xvi〉.

This gives for t > 0,

‖A + tX‖(k) − ‖A‖(k)

t
≥ max

u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k
∑

i=1

Re〈ui, Xvi〉. (2.11)

Now for any sets of k orthonormal vectors u1(t), . . . , uk(t) and v1(t), . . . , vk(t)
satisfying

(A + tX)vi(t) = si(A + tX)ui(t), 1 ≤ i ≤ k, (2.12)

5



we have

‖A‖(k) ≥

k
∑

i=1

Re〈ui(t), Avi(t)〉

=

k
∑

i=1

si(A + tX) − t

k
∑

i=1

Re〈ui(t), Xvi(t)〉

= ‖A + tX‖(k) − t

k
∑

i=1

Re〈ui(t), Xvi(t)〉.

So for each t > 0, we obtain

‖A + tX‖(k) − ‖A‖(k)

t
≤

k
∑

i=1

Re〈ui(t), Xvi(t)〉. (2.13)

Consider a sequence {tn} of positive real numbers converging to zero as n → ∞.
Since the unit ball in Cn is compact, there exists a subsequence {tnm

} of {tn}
such that for each 1 ≤ i ≤ k, there exist u′

i and v′
i such that {ui(tnm

)} and
{vi(tnm

)} converge to u′
i and v′

i, respectively, as m → ∞. Then the sets of
vectors u′

1, . . . , u′
k and v′

1, . . . , v′
k are orthonormal. By continuity of singular

values, we also know that

si(A + tnm
B) → si(A) as m → ∞. (2.14)

Hence we obtain Av′
i = si(A)u′

i for all 1 ≤ i ≤ k. By (2.13), we get that

g′
+(A, X) = lim

m→∞

‖A + tnm
X‖(k) − ‖A‖(k)

tnm

≤ max
u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k
∑

i=1

Re〈ui, Xvi〉.

(2.15)
Combining this with (2.11), we obtain the required result.

The above proof works equally well if the maximum in (2.9) is taken over
the sets of orthonormal vectors u1, . . . , uk and v1, . . . , vk such that for each
1 ≤ i ≤ k, ui and vi are left and right singular vectors of A, respectively,
corresponding to the ith singular value si(A) of A. We note here that for each
t > 0, if along with (2.12), we also have

(A + tX)∗ui(t) = si(A + tX)vi(t),

then by passing onto a subsequence {tnm
} as in the above proof, and taking the

limit as m → ∞, we obtain

A∗u′
i = si(A)v′

i.

6



So for each X ∈ M(n), we get

g′
+(A, X) = max

u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

A∗ui=si(A)vi

k
∑

i=1

Re〈ui, Xvi〉. (2.16)

Corollary 2.6. Let A be positive semidefinite. Let λ1(A) ≥ · · · ≥ λn(A) ≥ 0
be the eigenvalues of A, with λk(A) > 0. Then

g′
+(A, X) = max

u1,...,uk o.n.
Aui=λi(A)ui

k
∑

i=1

Re〈ui, Xui〉. (2.17)

Proof. We know that if Av = λu and Au = λv, where λ > 0, then u = v. Using
this, the required result follows from (2.16).

Theorem 2.7. Let A ∈ M(n). Then

∂g(A) = conv

{

k
∑

i=1

uiv
∗
i : u1, . . . , uk, v1, . . . , vk ∈ C

n, u1, . . . , uk o.n., v1, . . . , vk o.n.,

Avi = si(A)ui for all 1 ≤ i ≤ k

}

(2.18)

= conv

{

k
∑

i=1

uiv
∗
i : u1, . . . , uk, v1, . . . , vk ∈ C

n, u1, . . . , uk o.n., v1, . . . , vk o.n.,

Avi = si(A)ui, A∗ui = si(A)vi for all 1 ≤ i ≤ k

}

. (2.19)

Proof. Denote the set on the right hand side of (2.18) by H(A). Let G ∈ H(A).
Then

G =

k
∑

i=1

uiv
∗
i ,

where u1, . . . , uk and v1, . . . , vk are orthonormal sets of vectors such that Avi =
si(A)ui for all 1 ≤ i ≤ k . So

Re tr(G∗A) =

k
∑

i=1

Re〈ui, Avi〉

=

k
∑

i=1

si(A)

= ‖A‖(k),

7



and

Re tr(G∗X) =

k
∑

i=1

Re〈ui, Xvi〉

≤ ‖X‖(k).

Thus
‖G‖∗ ≤ 1.

So we get by (2.5) that H(A) ⊆ ∂g(A), and therefore convH(A) ⊆ ∂g(A).
Now let G ∈ ∂g(A). Suppose G /∈ convH(A). The set H(A) is compact, and

so is its convex hull. By the Separating Hyperplane Theorem, there exists X ∈
M(n) such that for all sets of k orthonormal vectors u1, . . . , uk and v1, . . . , vk

satisfying Avi = si(A)ui for 1 ≤ i ≤ k, we have

Re tr

(

X∗

(

k
∑

i=1

uiv
∗
i − G

))

< 0.

This implies

max
u1,...,uk o.n.
v1,...,vk o.n.
Avi=si(A)ui

k
∑

i=1

Re〈ui, Xvi〉 < max
G∈∂g(A)

Re tr(X∗G).

By (2.3), the right hand side is g′
+(A, X). By (2.9), this should be equal to the

left hand side. This gives a contradiction. Thus we obtain (2.18).
The expression (2.19) can be proved similarly by using (2.16), instead of

(2.9).

Corollary 2.8. Let A be a positive semidefinite matrix, with eigenvalues λ1(A) ≥
· · · ≥ λn(A) ≥ 0 such that λk(A) > 0. Then

∂g(A) = conv

{

k
∑

i=1

uiu
∗
i : u1, . . . , uk ∈ C

n, u1, . . . , uk o.n., Aui = λi(A)ui for all 1 ≤ i ≤ k

}

.

(2.20)

3 Proofs

To prove Theorem 1.1, we require the following lemma.

Lemma 3.1. Let X, Y ∈ M(n) and let Y be positive semidefinite. Let λ1(Y ) ≥
· · · ≥ λn(Y ) ≥ 0 be the eigenvalues of Y . For 1 ≤ r ≤ n, let

W(X, Y ) =

{

r
∑

i=1

〈ui, Xui〉 : u1, . . . , ur ∈ C
n, u1, . . . , ur o.n., Y ui = λi(Y )ui for all 1 ≤ i ≤ r

}

.

Then W(X, Y ) is a convex set.

8



Proof. Let the number of distinct eigenvalues of Y be ℓ and let H1, . . . , Hℓ be
the respective eigenspaces. Let m1, . . . , mℓ be the dimensions of H1, . . . , Hℓ,
respectively. Let 1 ≤ ℓ′ ≤ ℓ be such that m1 + · · · + mℓ′−1 < r ≤ m1 + · · ·+ mℓ′ .
Let m = r − (m1 + · · · + mℓ′−1). Set

Wj(X) =

{

mj
∑

i=1

〈ui, Xui〉 : u1, . . . , umj
∈ Hj , u1, . . . , umj

o.n.

}

for 1 ≤ j ≤ ℓ′−1,

and

Wℓ′(X) =

{

m
∑

i=1

〈ui, Xui〉 : u1, . . . , um ∈ Hℓ′ , u1, . . . , um o.n.

}

.

Since H1, . . . , Hℓ are mutually orthogonal, we have

W(X, Y ) =

ℓ′

∑

j=1

Wj(X). (3.1)

Note that Wj(X) is a singleton set for 1 ≤ j ≤ ℓ′ − 1. Hence it is sufficient
to show that Wℓ′(X) is convex. Let Pℓ′ be the orthogonal projection from Cn

onto Hℓ′ , and let ιℓ′ denote its adjoint (which is the inclusion map of Hℓ′ into
Cn). Then Wℓ′(X) is the m-numerical range of Pℓ′Xιℓ′ , which is convex (see
[8, p. 315]).

We now state and prove a real version of Theorem 1.1.

Theorem 3.2. Let A = U |A| be a polar decomposition of A. If there exist k
orthonormal vectors u1, u2, . . . , uk such that

|A| ui = si(A)ui for all 1 ≤ i ≤ k (3.2)

and
k
∑

i=1

Re〈ui, U∗Bui〉 = 0, (3.3)

then
‖A + tB‖(k) ≥ ‖A‖(k) for all t ∈ R. (3.4)

If sk(A) > 0, then the converse is also true.

Proof. First suppose that there exist k orthonormal vectors u1, u2, . . . , uk such
that |A| ui = si(A) ui for all 1 ≤ i ≤ k and

∑k

i=1 Re〈ui, U∗Bui〉 = 0. We have

‖A + tB‖(k) = ‖|A| + tU∗B‖(k)

and by (2.7),

‖|A| + tU∗B‖(k) ≥
k
∑

i=1

Re〈ui, (|A| + tU∗B)ui〉.

9



So we get

‖A + tB‖(k) ≥

k
∑

i=1

〈ui, |A|ui〉 + t

k
∑

i=1

Re〈ui, U∗Bui〉

=

k
∑

i=1

si(A)

= ‖A‖(k).

Now suppose that sk(A) > 0 and

‖A + tB‖(k) ≥ ‖A‖(k) for all t ∈ R.

This can also be written as

‖|A| + tU∗B‖(k) ≥ ‖|A|‖(k) for all t ∈ R. (3.5)

Let S : R → M(n) be the map given by S(t) = tU∗B, L : R → M(n) be the
map defined as L(t) = |A| + tU∗B and g : M(n) → R+ be the map defined
by g(X) = ‖X‖(k). Then we have that g ◦ L attains its minimum at zero. By
Proposition 2.2, we obtain that 0 ∈ ∂(g◦L)(0). Using Proposition 2.3, we obtain

0 ∈ S∗∂g(|A|). (3.6)

By Corollary 2.8, this is equivalent to saying that

0 ∈ conv

{

Re

k
∑

i=1

〈ui, U∗Bui〉 : u1, . . . , uk ∈ C
n, u1, . . . , uk o.n., |A|ui = λi(|A|)ui for all 1 ≤ i ≤ k

}

.

The set in the above equation is conv(Re W(U∗B, |A|)). By Lemma 3.1, Re W(U∗B, |A|)
is a convex set. So there exist k orthonormal vectors u1, . . . , uk such that

|A|ui = si(A)ui

and

Re
k
∑

i=1

〈ui, U∗Bui〉 = 0.

Proof of Theorem 1.1 Suppose that there exist k orthonormal vectors
u1, u2, . . . , uk satisfying (1.3) and (1.4). Let λ ∈ C. Then similar to the ar-
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gument in the proof of Theorem 3.2, we get

‖A + λB‖(k) = ‖|A| + λU∗B‖(k)

≥

∣

∣

∣

∣

∣

k
∑

i=1

〈ui, (|A| + λU∗B)ui〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

〈ui, |A|ui〉 + λ

k
∑

i=1

〈ui, U∗Bui〉

∣

∣

∣

∣

∣

=

k
∑

i=1

si(A)

= ‖A‖(k).

So A is orthogonal to B in ‖ · ‖(k).
Conversely, let sk(A) > 0 and A is orthogonal to B in ‖ · ‖(k). So

‖|A| + reiθU∗B‖(k) ≥ ‖A‖(k) for all r, θ ∈ R.

For θ ∈ R, let B(θ) = eiθB. Then we get

‖|A| + rU∗B(θ)‖(k) ≥ ‖A‖(k) for all r ∈ R.

By Theorem 3.2, there exist k orthonormal vectors u
(θ)
1 , . . . , u

(θ)
k such that

|A|u
(θ)
j = sj(A)u

(θ)
j for all 1 ≤ j ≤ k

and

Re

k
∑

j=1

〈u
(θ)
j , U∗B(θ)u

(θ)
j 〉 = 0, that is, Re eiθ

k
∑

j=1

〈u
(θ)
j , U∗Bu

(θ)
j 〉 = 0. (3.7)

Now by Lemma 3.1, the set W(U∗B, |A|) is convex in C. It is also compact
in C. If 0 /∈ W(U∗B, |A|), then by the Separating Hyperplane Theorem, there
exists a θ0 such that

Re eiθ0

k
∑

j=1

〈uj, U∗Buj〉 > 0 for all u1, . . . , uk o.n., |A|uj = sj(A)uj for 1 ≤ j ≤ k.

This is a contradiction to (3.7). Thus 0 ∈ W(U∗B, |A|), and so there exist k
orthonormal vectors u1, . . . , uk such that

|A|ui = si(A)ui for all 1 ≤ i ≤ k

and
k
∑

i=1

〈ui, U∗Bui〉 = 0.

11



Proof of Theorem 1.2 Let S, L : C → M(n) and g : M(n) → R+ be the
maps defined as S(λ) = λB, L(λ) = A + λB and g(X) = ‖X‖(k). Then we get
‖A + λB‖(k) ≥ ‖A‖(k) for all λ ∈ C if and only if g ◦ L attains its minimum at
0. By Proposition 2.2 and Proposition 2.3, a necessary and sufficient condition
for this is that 0 ∈ S∗∂g(A). Let the matrices U, V be partitioned as U =
[U1 : U2 : U3] and V = [V1 : V2 : V3], where U1, V1 ∈ M(n, k − q); U2, V2 ∈
M(n, r + q); U3, V3 ∈ M(n, n − k − r). If sk(A) > 0, then by Theorem 2.4, we
get that 0 ∈ S∗∂g(A) if and only if there exists a positive semidefinite matrix
T ∈ M(r + q) with λ1(T ) ≤ 1 and

∑r+q

j=1 λj(T ) = q such that tr B∗(U1V ∗
1 +

U2T V ∗
2 ) = 0. Similarly, when sk(A) = 0, we get that 0 ∈ S∗∂g(A) if and only

if there exists T ∈ M(n − k + q, r + q) with s1(T ) ≤ 1 and
∑r+q

j=1 sj(T ) ≤ q such
that tr B∗(U1V ∗

1 + [U2 : U3]T V ∗
2 ) = 0. A calculation shows that

tr B∗(U1V ∗
1 + U2T V ∗

2 ) = tr B∗
11 + tr (B∗

22T )

and
tr B∗(U1V ∗

1 + [U2 : U3]T V ∗
2 ) = tr B∗

11 + tr ([B∗
22 : B∗

32] T ) .

This gives the required result.

Proof of Theorem 1.3 First suppose that there exist density matrices
P1, . . . , Pk such that ‖

∑k
i=1 Pi‖∞ ≤ 1,

|A|Pi = si(A)Pi for all 1 ≤ i ≤ k (3.8)

and U
∑k

i=1 Pi ∈ W ⊥. Let Q =
∑k

i=1 Pi. Then Q is a positive semidefinite

matrix such that ‖Q‖∞ ≤ 1, 1
k
‖Q‖1 = 1

k

∑k
i=1 tr Pi = 1 and

tr(W ∗UQ) = 0 for all W ∈ W . (3.9)

So by using (2.6) and the fact that ‖X‖∗
(k) = max{‖X‖∞, 1

k
‖X‖1} [4, Ex.

IV.2.12]., we get that for any W ∈ W ,

‖A + W ‖(k) = ‖|A| + U∗W ‖(k)

≥ tr(|A|Q + U∗WQ)

= tr(|A|Q) (by (3.9))

=

k
∑

i=1

tr |A|Pi

= ‖A‖(k) (by (3.8)).

Conversely, suppose A is orthogonal to W in ‖ · ‖(k) and sk(A) > 0. Define
S : W → M(n) as S(W ) = U∗W . Then S∗ : M(n) → W is given by S∗(T ) =
PW (UT ), where PW is the orthogonal projection onto the subspace W . Let
L : W → M(n) be the map defined as L(W ) = |A|+U∗W and let g : M(n) → R+

be the map defined as g(X) = ‖X‖(k). Then by Proposition 2.2 and Proposition
2.3, we have that ‖A + W ‖(k) ≥ ‖A‖(k) for all W ∈ W if and only if 0 ∈
S∗∂g(|A|). By Corollary 2.8, there exist numbers t1, . . . , tm such that 0 ≤ tj ≤

12



1,
∑m

j=1 tj = 1 and for each 1 ≤ j ≤ m, there exist k orthonormal vectors

u
(j)
1 , . . . , u

(j)
k such that

|A|u
(j)
i = si(A)u

(j)
i for all 1 ≤ i ≤ k (3.10)

and

S∗





k
∑

i=1

m
∑

j=1

tju
(j)
i u

(j)∗
i



 = 0. (3.11)

Let Pi =
∑m

j=1 tju
(j)
i u

(j)∗
i . Then each Pi is a density matrix. Also, by (3.10),

we get |A|Pi = si(A)Pi. Equation (3.11) says that S∗(
∑k

i=1 Pi) = 0, which is

equivalent to saying that U
∑k

i=1 Pi ∈ W ⊥. For each 1 ≤ j ≤ m, the matrix
∑k

i=1 u
(j)
i u

(j)∗
i is an orthogonal projection of rank k onto the linear span of

{u
(j)
i : 1 ≤ i ≤ k}. In particular ‖

∑k

i=1 u
(j)
i u

(j)∗
i ‖∞ ≤ 1. Thus

‖

k
∑

i=1

Pi‖∞ = ‖

m
∑

j=1

tj

k
∑

i=1

u
(j)
i u

(j)∗
i ‖∞

≤
m
∑

j=1

tj‖
k
∑

i=1

u
(j)
i u

(j)∗
i ‖∞

≤ 1.

4 Remarks

1. Another necessary and sufficient condition for A to be orthogonal to B in
‖·‖1 given in [12] is that there exists a matrix G ∈ M(n) such that ‖G‖∞ ≤
1, tr(G∗A) = ‖A‖1 and tr(G∗B) = 0. One can derive an analogous
characterization for orthogonality in ‖ ·‖(k) using (2.5). We can show that
A is orthogonal to B in ‖·‖(k) if and only if there exists a matrix G ∈ M(n)
such that ‖G‖∞ ≤ 1, ‖G‖1 ≤ k, tr(G∗A) = ‖A‖(k) and tr(G∗B) = 0. Let
S, L, g be the maps as defined above in the proof of Theorem 1.2. Then
Proposition 2.2, Proposition 2.3 and (2.5) gives that A is orthogonal to B
in ‖·‖(k) if and only if there exists a matrix G ∈ M(n) such that ‖G‖∞ ≤ 1,
‖G‖1 ≤ k, Re tr(G∗A) = ‖A‖(k) and tr(G∗B) = 0. We observe that if
‖G‖∗

(k) ≤ 1 then Re tr(G∗A) = ‖A‖(k) if and only if tr(G∗A) = ‖A‖(k).

This is because if Re tr(G∗A) = ‖A‖(k), then

‖A‖(k) ≤ | tr(G∗A)| ≤ ‖G‖∗
(k)‖A‖(k) ≤ ‖A‖(k).

So Im tr(G∗A) = 0 and hence tr(G∗A) = Re tr(G∗A) = ‖A‖(k). Thus we
obtain the required result.

2. The characterizations for Birkhoff-James orthogonality are closely related
to the recent work in norm parallelism [17, 22, 14]. In a normed lin-
ear space, an element x is said to be norm-parallel to another element

13



y (denoted as x||y) if ‖x + λy‖ = ‖x‖ + ‖y‖ for some λ ∈ C, |λ| = 1.
Let A = U |A| be a polar decomposition of A and sk(A) > 0. Then
by Theorem 2.4 in [14] and Theorem 1.1, we get that A||B in ‖ · ‖(k)

if and only if there exists λ ∈ C with |λ| = 1 and k orthonormal vec-
tors u1, u2, . . . , uk such that |A| ui = si(A)ui for all 1 ≤ i ≤ k and
∑k

i=1〈ui, U∗(‖B‖(k)A + λ‖A‖(k)B)ui〉 = 0. Simplifying the expressions
and using the fact that |λ| = 1, we obtain that A||B in ‖ · ‖(k) if and
only if there exist k orthonormal vectors u1, u2, . . . , uk such that |A| ui =

si(A)ui for all 1 ≤ i ≤ k and |
∑k

i=1〈ui, U∗Bui〉| = ‖B‖(k). For k = 1,
this is just Corollary 2.15 of [14].

Acknowledgement I would like to thank the referee for several valuable
comments and suggestions.
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