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Abstract

We obtain necessary and sufficient conditions for a matrix A to be
Birkhoff-James orthogonal to another matrix B in the Ky Fan k-norms.
A characterization for A to be Birkhoff-James orthogonal to any subspace
# of M(n) is also obtained.
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1 Introduction

Let M(n) be the space of n x n complex matrices. Let || - || be any norm on
M(n). Let A, B € M(n). Then A is said to be (Birkhoff-James) orthogonal to
Bin | - if

[lA+ ABJ|| > || A| for all X € C. (1.1)

In [5], Bhatia and Semrl obtained a characterization for A to be orthogonal to
B in the operator norm (also known as the spectral norm) || - ||oo. They showed
that A is orthogonal to B in || - ||o if and only if there exists a unit vector
xz € C" such that ||Az| = ||A||s and (Az, Bz) = 0. (All inner products in
this note are conjugate linear in the first component and linear in the second
component.) Different proofs for this result have been studied in [7, 11 12].
This result can be restated as follows. If A = UJA| is a polar decomposition
of A, then A is orthogonal to B in | - ||« if and only if there exists a unit
vector x € C™ such that |Alx = ||A]leoz and (x,U*Bz) = 0. In [5], it was
also showed that if trU*B = 0 then A is orthogonal to B in the trace norm
Il - 1. And the converse is true if A is taken to be invertible. Later, Li and
Schneider [12] gave a characterization for orthogonality in || - |[; when A need
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not be necessarily invertible. They showed the following. Let the number of
zero singular values of A be £. Let A = USV™ be a singular value decomposition
of A. Let B=U g” g” V*, where By € M(n — (), Bos € M({). Then

21 D22
|A+ ABJ||1 > ||Allx for all A € C if and only if | tr B11| < || Baz||1-

The trace norm and the operator norm are special cases of two classes of
norms, namely the Schatten p-norms || - ||, and the Ky Fan k-norms || - ||
In [5] and [I2], the authors have investigated the problem of finding necessary
and sufficient conditions for orthogonality of matrices in || - ||, 1 <p < co. In
this note, we obtain characterizations for orthogonality of matrices in || - || ),
1<k <n. Let s1(4) > s2(A) > -+ > s,(A) > 0 be the singular values of A.
Then || Al|(x) is defined as

|All (k) = 51(A) + 52(A) + - - - + sp(A). (1.2)
The cases k = 1 and k = n correspond to the operator norm || - || and the
trace norm || - ||1, respectively. We show the following.

Theorem 1.1. Let A = U|A| be a polar decomposition of A. If there exist k

orthonormal vectors wi,us, ..., ur such that
|A] w; = si(A)u; for all1 <i <k (1.3)
and
k
> (i, U*Bu;) =0, (1.4)
i=1

then A is orthogonal to B in || - ||x). If sk(A) > 0, then the converse is also
true.

The next theorem gives a more general characterization.

Theorem 1.2. Let A =USV* be a singular value decomposition of A. Let the
multiplicity of si(A) be r+ q, where r > 0 and g > 1, such that

Sk—g+1(A4) = = sp1r(4).
By B2 Bis
Let B = U | By1 Boy Bag V*, where By; € M(k — q),BQQ S M(T +
B31 Bss Bss

q),Bss € M(n — k —r).

(a) Let si.(A) > 0. Then A is orthogonal to B in || - || if and only if there
exists a positive semidefinite matriz T € M(r + q) with \(T) < 1 and
Z;:l] A (T) = g such that tr B1y + tr(T* Bag) = 0.

(b) Let sp(A) = 0. Then A is orthogonal to B in || - ||(xy if and only if there
exists T € M(n — k + g, + q) with s1(T) <1, and E;i‘l] s;(T) < q such

that tr By + tr (T* [ B2 D =0.
B3



Let # be any subspace of M(n). Then A is said to be orthogonal to # (in
the Birkhoff-James sense) in a given norm || - || on M(n) if

|A+W| > |A| for al W € #'. (1.5)

In [10], we obtained a necessary and sufficient condition for A to be orthogonal
to # in the operator norm. Our next theorem gives a characterization for A to
be orthogonal to # in || - [|(x).

Theorem 1.3. Let A = UJ|A| be a polar decomposition of A. Let # be
any subspace of M(n). If there exist density matrices Py, Pa,..., Py such that
IS Pille <1, |AIP, = si(A)P (1 <i<k)and USF_ | P, e WL, then A is

orthogonal to W in || - ||(x). If si(A) > 0, then the converse is also true.

If m;(A) is the multiplicity of s;(A), then the condition |A|P; = s;(A)P;
implies that the range of P; is a subspace of the eigenspace of |A| corresponding
to s;(A). So rank P; is at most m;(A).

The problem of finding characterizations of orthogonality of a matrix to a
subspace # of M(n) is closely related to the best approximation problems [I8].
A specific question is when is the zero matrix a best approximation to A from
#7? This is the same as asking when is A orthogonal to #7

In [12], the authors studied a characterization for orthogonality in the in-
duced matrix norms. Benitez, Ferndndez and Soriano [6] showed that a neces-
sary and sufficient condition for the norm of a real finite dimensional normed
space Z  to be induced by an inner product is that for any bounded linear op-
erators A, B from 2 into itself, A is orthogonal to B if and only if there exists
a unit vector z € X such that |Az|| = ||4|| and (Az, Bx) = 0. More results
in this direction have been obtained recently in [I5, [16]. Characterizations of
orthogonality on Hilbert C*-modules have been studied in [I1 2] 3] [7].

To obtain the proofs of the above theorems, we use methods that we had
introduced in [7] and [10]. We first obtain some new expressions for the subdif-
ferential of the map taking a matrix A to its Ky Fan k-norm [|A[|(;) in Section
The proofs of the above theorems are given in Section [3] followed by some
remarks in Section Ml

2 Subdifferentials of the Ky Fan k-norm

Let 2" be a Banach space and let f : 2 — R be a convex function.

Definition 2.1. A subgradient of f at a € 2 is an element ¢ of the dual space
Z* such that

fly)—f(a) >Rep(y—a) forallye 2. (2.1)

The subdifferential of f at a is the set of bounded linear functionals ¢ € Z™*
satisfying ([2I)) and is denoted by 9f(a). It is a non-empty weak* compact
convex subset of Z2™*. For more details, see [9, Chapter D] and [2I, Chapter
2]. The following proposition is a direct consequence of the definition of the
subdifferential. It is one of the most useful tools that we require in Section 3l



Proposition 2.2. A continuous convex function f : 2 — R attains its mini-
mum value at @ if and only if 0 € 9f(a).

An equivalent definition of the subdifferential of a continuous convex function
can be given in terms of f’ (a,x), the right directional derivative of f at a in
the direction x:

Of(a) ={p e Z":Re ¢(z) < f (a,z) for all z € 27}. (2.2)
Moreover, for each z € 2,

fi(a,z) = max{Rep(z) : ¢ € df (a)}. (2.3)

The following rule of subdifferential calculus will be helpful in our analysis
later.

Proposition 2.3. Let 2 and % be Banach spaces. Let S : & — % be a
bounded linear map and let L : 2~ — % be the continuous affine map defined
by L(z) = S(x) + yo, for some yo € #. Let g : % — R be a continuous convex
function. Then

d(go L)(a) = S*0g(L(a)) for all a € 27, (2.4)

where S* denotes the real or complex adjoint of S (depending on whether 2
and % are both real or both complex Banach spaces.)

For any norm || - || on the space M(n), it is well known that
|| All = {G e M(n) : Al = Retr(G"A), [|G||* <1}, (2.5)
where || - ||* is the dual norm of || - ||, and
IT]|= sup |tr(T*X)] = sup Retr(T"X). (2.6)
[1X==1 1x|*=1

The subdifferentials of some classes of matrix norms, namely unitarily invariant
norms and induced norms, have been computed by Watson [19]. The following
expression for the subdifferential of the Ky Fan k-norms was also given by him
in [20]. Let 1 < k < n. Let the multiplicity of s;(A) be r + ¢, where r > 0 and
q > 1, such that

Sk—g+1(A) =+ = sp4r(A).

Let g : M(n) — R be the function defined as g(A) = || Al|x)-

Theorem 2.4 ([20]). Let A = USV™* be a singular value decomposition of A
and let the matrices U,V be partitioned as U = [Uy : Ug : U] and V = [V; :
Vo @ V3] where Uy, Vi € M(n,k — q); Uz, Vo € M(n,r + q);Us, V5 € M(n,n —
E—r). If sg(A) > 0, then G € 9g(A) if and only if there exists a positive
semidefinite matriz T € M(r + q) with \(T) < 1 and Z;:{ \i(T) = q such
that G = U1V + UsTVy . If si(A) = 0, then G € 9g(A) if and only if there
exists T € M(n — k + ¢, + q) with s1(T) < 1 and Z;:f s;(T) < q such that
G = UlVl* + [UQ : Ug]TV;



We obtain new formulas for dg(A) that can be used more easily in our
problem. The computations are similar to the ones in [I9]. To do so, we first
calculate ¢, (A,-). For this, an important thing to observe is that the Ky Fan
k-norm of a matrix A is also given by

Ay = max RetrU*AV = max [tr U*AV|.  (2.7)
U,VeM(n,k) U,VEM(n,k)
UrU=V*V=I, UrU=V*V=I,

(See [13, p. 791].) If A is positive semidefinite, then
A = tr U™ AU. 2.8
4y =, max e 28)
UtU=I
Theorem 2.5. For X € M(n),
g (A X)= max Y Re(u; Xuv). (2.9)

UL,..., Uk O.N. 7
VL yeeny vV 0.n. =1

A’Ui:S»; (A)’U,Z

Proof. From ([27), we have

k
1Al =, max > Re(us, Av;). (2.10)
V1 yenny VE 0., =1

For any sets of k orthonormal vectors uq, ..., u; and v1,...,vg satisfying Av; =
si(Au;, 1 < i < k, we have

1A+ X [x)

Y

i[]- ]~
= =

Re(u;, (A +tX)v;)
k
si(A)+tY_ Re(u, Xv;)

=1

k
= [|Allw) + tZRe<ui,Xvi>.

=1
This gives for ¢t > 0,
A+tX | — A b
| loy = Aoy & 3" Re(ui, Xv;). (2.11)
t UL ,y.en, U 0N =1

V1y..+,VE O.11.
AU»L:SZ(A)U»L

Now for any sets of k orthonormal vectors uy(t),...,ux(t) and v1(t),...,vk(t)
satisfying
(A+tX)vi(t) = ss(A+tX)u(t), 1<i<k, (2.12)



we have

k
Ay = > Re(ui(t), Avi(t))
=1
k k
= Y si(A+tX)—t> Re(ui(t), Xvi(t))
=1 i=1
k
= JA+tX]|g —t > Refus(t), Xvi(t)).
=1
So for each t > 0, we obtain
14+ X[l — [ Ally _ =
; < ;Rewi(t),Xvi(t)). (2.13)

Consider a sequence {t,,} of positive real numbers converging to zero as n — oo.
Since the unit ball in C™ is compact, there exists a subsequence {¢,, } of {t,}
such that for each 1 < ¢ < k, there exist u; and v, such that {u;(¢,,, )} and
{vi(tn,,)} converge to u; and v}, respectively, as m — oo. Then the sets of
vectors uj,...,u;, and vf,..., v, are orthonormal. By continuity of singular
values, we also know that

$i(A+tn,, B) = s;(A) as m — oo. (2.14)

Hence we obtain Av] = s;(A)u} for all 1 < i < k. By ([ZI3), we get that

Adt, Xl — A K
A+ tn, Xl — | H(’“’g max 3 Re(us, Xuy)

tnm UL,..- Uk 0.1 =1
V1y..+,VE O.N. -

A’Ui:S»; (A)’U,Z

¢ (A, X)= lim

m— o0

(2.15)
Combining this with (21II]), we obtain the required result. O

The above proof works equally well if the maximum in (Z9) is taken over
the sets of orthonormal vectors uy,...,u; and vi,...,vx such that for each
1 < i <k, u; and v; are left and right singular vectors of A, respectively,
corresponding to the ith singular value s;(A) of A. We note here that for each
t > 0, if along with ([2.12), we also have

(A+tX) ui(t) = si(A + tX)vi(t),

then by passing onto a subsequence {t,, } as in the above proof, and taking the
limit as m — co, we obtain

Aul = s;(A)v;.

K2



So for each X € M(n), we get

k
¢ (A, X)=  max g Re{u;, Xv;). (2.16)
UL yeeeyUR O.11. i=1
Vlyenny Vg O0.1.

A’Ui:S»; (A)’U,Z
A*ui =S; (A)’U,L

Corollary 2.6. Let A be positive semidefinite. Let A;(A) > -+ > A\, (A) >0
be the eigenvalues of A, with A;(A4) > 0. Then

k
g (A, X) = max > Re(u;, Xus). (2.17)

Proof. We know that if Av = Au and Au = Av, where A > 0, then v = v. Using
this, the required result follows from (2I6)). O

Theorem 2.7. Let A € M(n). Then

k
dg(A) = conv{ E UV] T ULy ey Uy VT, -, U € C™ug, ..o ug 00,01, .., U O,
=1
Av; = 8;(A)u; for all1 <i < k} (2.18)
k
= conv E UV] T UL, ey Uy VT, -, U € CPug, ..o ug 00, 01, ..., U O,
i=1

Av; = s;(A)ug, Au; = s;(A)v; for all 1 <i < k} (2.19)
Proof. Denote the set on the right hand side of [2.I8) by H(A). Let G € H(A).
Then
k
G= Z Uy,
i=1

where uq,...,ur and vy,...,v; are orthonormal sets of vectors such that Av;, =
$i(A)u; forall 1 <i<k. So

k
Retr(G*4) = Z Re(u;, Av;)
i=1

= ) si(4)

i=1
= 1Al



and

k
Retr(G*X) = Y Re(u;, Xv;)
=1
< X w)-
Thus
IGII* <1.

So we get by (ZH) that H(A) C dg(A), and therefore convH(A) C dg(A).

Now let G € 9g(A). Suppose G ¢ convH(A). The set H(A) is compact, and
so is its convex hull. By the Separating Hyperplane Theorem, there exists X €
M(n) such that for all sets of k orthonormal vectors wui,...,ur and vi,..., v
satisfying Av; = s;(A)u; for 1 < i <k, we have

k
Retr <X* (Zuzvr - G)) < 0.
i=1

k
. . *
Wy max Z Re(u;, Xv;) < Ggg;a) Retr(X*G).
V1,...,Vf 0. g=1

A’UIZS,L(A)’U.I
By (Z3), the right hand side is ¢/, (A, X). By (Z.9), this should be equal to the
left hand side. This gives a contradiction. Thus we obtain (ZI8]).
The expression ([ZI9) can be proved similarly by using (216, instead of

This implies

O

Corollary 2.8. Let A be a positive semidefinite matrix, with eigenvalues A\; (A) >
«++ > Ap(A) > 0 such that A\g(A) > 0. Then

k
dg(A) = conV{Zuiuf tuUp, .. ug € CMug, . ug oy Auy = (A for all 1 < < k} )
i=1

(2.20)

3 Proofs

To prove Theorem [IT] we require the following lemma.

Lemma 3.1. Let X,Y € M(n) and let Y be positive semidefinite. Let A;(Y") >
<+ > A (Y) > 0 be the eigenvalues of Y. For 1 < r <mn, let

WX,Y) = {Z(ui,Xui> cuty U € CMug, e ue 0 Yuy = (Y, forall 1 <4 < r}.
i=1

Then W(X,Y) is a convex set.



Proof. Let the number of distinct eigenvalues of Y be ¢ and let Hi,...,H, be
the respective eigenspaces. Let mgi,...,my be the dimensions of Hi,..., Hy,
respectively. Let 1 < ¢ < /¢ besuchthat mi+---+mp_1 <r<mqj+---+myp.
Let m=7—(m1+ -+ mpg_1). Set

m;
W;(X) = {Z<U17XU1> SUL, s Uy € Hy U, U, o.n.} for 1 <j</0—1,

i=1
and
W (X) = {Z(ul,XuJ SULy ey Uy € Hpry Uty ey Uiy o.n.} .
i=1
Since Hi, ..., H, are mutually orthogonal, we have

p
WX,Y)=> WiX). (3.1)
j=1

Note that W;(X) is a singleton set for 1 < j < ¢/ — 1. Hence it is sufficient
to show that Wy (X) is convex. Let &y be the orthogonal projection from C™
onto Hy, and let ¢y denote its adjoint (which is the inclusion map of H, into
C™). Then Wy (X) is the m-numerical range of &2y Xy, which is convex (see
8, p. 315)). O

We now state and prove a real version of Theorem [L.11

Theorem 3.2. Let A = U|A| be a polar decomposition of A. If there exist k

orthonormal vectors uy, us, ..., ux such that
|A] wi = si(A)u; for all1 <i <k (3.2)
and
k
ZRe(ui, U*Bu;) =0, (3.3)
i=1
then
|A+tBllgx) = [|Allx) for all t € R. (3.4)

If si(A) > 0, then the converse is also true.

Proof. First suppose that there exist k orthonormal vectors uy, us, ..., ug such
that |A| u; = s;(A) w; for all 1 <4 <k and Zle Re(u;, U* Bu;) = 0. We have

A+ tBllx) = lI|A] + tU" Bl (1)

and by (1),

k
I[A] + tU* Bll(ry = > Re{us, (|A] + tU* B)u).
=1



So we get

k k
JA+tBllgy > > (ui|Ajus) +t Y Re(u;, U Bu;)
=1 i=1
k
= ) si(4)
=1
= [|All@w)-

Now suppose that s;(A) > 0 and
|A+tBl[x) > [|Allx) for all t € R.
This can also be written as
1141+ 0" Bll gy > 1Al ey for all £ € R. (3.5)
Let S : R — M(n) be the map given by S(t) = tU*B, L : R — M(n) be the
map defined as L(t) = |A| + tU*B and g : M(n) — R4 be the map defined

by g(X) = || X||(x)- Then we have that g o L attains its minimum at zero. By
Proposition[2.2], we obtain that 0 € d(goL)(0). Using Proposition[2.3] we obtain

0 € S*ag(|Al). (3.6)

By Corollary 2-8], this is equivalent to saying that

k
0 € conv {Re Z(uz, U*Bu;) :ut,...,ux € C" ug, ..., up o, [Alu; = A\ (|A])u; for all 1 <i <k

i=1

The set in the above equation is conv(Re W(U* B, |4|)). By LemmaBd] Re W(U* B, |A|)

is a convex set. So there exist k orthonormal vectors u1, ..., u; such that

and
k

Re Z(ui, U*Bu;) = 0.
i=1

O

Proof of Theorem [IJ] Suppose that there exist k£ orthonormal vectors
U1, Uz, . .., uy satisfying (L3) and (L4). Let A € C. Then similar to the ar-

10

}.



gument in the proof of Theorem [3:2] we get

[A+ABllxy = [[A[+AU"Bl|x)
k
=1
k k
> iy [Alui) + XY {u;, U* Bug)

=1 i=1

Y%

= [ Allw-

So A is orthogonal to B in || - || (x)
Conversely, let sx(A) > 0 and A is orthogonal to B in || - ||(). So

[|A| + 7e®U* B (x) > |Al|(x) for all 7,0 € R.
For § € R, let B(Y) = ¢’ B. Then we get
|||A| + TU*B(H)H(k) > ||A||(k) for all r € R.

By Theorem [B.2] there exist k orthonormal vectors uge), .. (0) such that

(A = 5 (Au” for all 1 < j < k

and

k

Rez D U BOu) =0, that is,Ree” Y (u", U*Bu{") = 0. (3.7)
j=1

Now by Lemma B] the set W(U* B, |A|) is convex in C. It is also compact

in C. If 0 ¢ W(U*B,|A|), then by the Separating Hyperplane Theorem, there
exists a 0y such that

k
Re e Z(uj, U*Buj) > 0 for all uq,...,ux on., |Alu; = s;(A)u; for 1 < j <k.
j=1
This is a contradiction to (B1). Thus 0 € W(U*B, |A]), and so there exist k
orthonormal vectors uq, ..., ux such that

|[Alu; = s;(A)u; for all 1 < i < k

and
k

Z(ui, U*Bul> =0

i=1

11



Proof of Theorem A Let S,L : C — M(n) and g : M(n) — R be the
maps defined as S(\) = AB, L(\) = A+ AB and g(X) = || X||(x). Then we get
| A+ ABl| k) > ||Al|() for all A € C if and only if g o L attains its minimum at
0. By Proposition and Proposition 2.3] a necessary and sufficient condition
for this is that 0 € S*0g(A). Let the matrices U,V be partitioned as U =
[Ul :Us Ug] and V = [Vl Vo ‘/3], where Uy, V7 € M(n,k —q);Ug,Vé S
M(n,r + q);Us, V3 € M(n,n —k — ). If s;,(A) > 0, then by Theorem [Z4, we
get that 0 € S*0g(A) if and only if there exists a positive semidefinite matrix
T € M(r 4+ ¢q) with A\ (T) < 1 and E;:{ A\;(T) = g such that tr B*(U; V" +
UsTVS) = 0. Similarly, when sx(A) = 0, we get that 0 € S*9g(A) if and only
if there exists T' € M(n — k + ¢,r + ¢q) with s1(7) < 1 and Z;:f s;(T) < g such
that tr B*(U1Vi* + [Us : U3]TV5) = 0. A calculation shows that

tr B (U1 V" 4+ U TVSY) = tr By + tr (B3,T)
and
tr B (U1 Vi + [Us : Us|TVy) = tr By, +tr([Bss : B3] T).
This gives the required result.
Proof of Theorem [[L3  First suppose that there exist density matrices
Py,..., Py, such that | Y0 Pl <1,
|A|P;, = s;(A)P;, foralll1<i<k (3.8)

and szzl Pe Wt Let Q = Ele P;. Then @ is a positive semidefinite
matrix such that [|Q]lec < 1, £[Q|1 = %Zle tr P, =1 and

tr(W*UQ) =0 foral W e #'. (3.9)

So by using (Z8) and the fact that [ X7, = max{|| X ||, £[| X1} [ Ex.
IV.2.12]., we get that for any W € #/,

IA+Wlw = A+ UW|
tr(|A|Q + U*WQ)
tr(]A|Q) (by B3))

k
Ztr |A|P;
i=1
= Allw  (by B3)).

Conversely, suppose A is orthogonal to # in || - [|(x) and sx(A) > 0. Define
S: W — M(n) as S(W) = U*W. Then S* : M(n) — # is given by S*(T) =
Py (UT), where Py is the orthogonal projection onto the subspace #. Let
L: % — M(n) be the map defined as L(W) = |A|+U*W and let g : M(n) — R
be the map defined as g(X) = || X||(x). Then by Proposition2Z2and Proposition
23, we have that ||A + W{[4) > ||Allx) for all W € # if and only if 0 €
S*0g(|Al]). By Corollary 2.8, there exist numbers t1, .. .,t,, such that 0 <t; <

Y

12



1, 27:1 t; = 1 and for each 1 < j < m, there exist k orthonormal vectors

ugj) - ,u,(cj) such that
|A|u§j) = si(A)ugj) foralll1 <i<k (3.10)

and

k. m
SN tuu ) =o. (3.11)
i=1 j=1
Let P; = Z;nzl tjul(j)ul(j)*. Then each P; is a density matrix. Also, by (BI10),
we get |A|P; = s;(A)P;. Equation [B.I1]) says that S* (Zle P;) = 0, which is
equivalent to saying that U Zle P, € #*. For each 1 < j < m, the matrix
Ele uz(-J )uz(-J )* is an orthogonal projection of rank k onto the linear span of
{u 11 <i <k} In particular | PO uPu9D*|| . < 1. Thus

k m k
I Plle = 16> u?uf"|
i=1 j=1 =1
m k ) )
< S HI1D " o
j=1 i=1
< 1.

4 Remarks

1. Another necessary and sufficient condition for A to be orthogonal to B in
[I-]l1 given in [12] is that there exists a matrix G € M(n) such that |G|l <
1, tr(G*A) = ||A|l1 and tr(G*B) = 0. One can derive an analogous
characterization for orthogonality in || - ||(x) using (Z3). We can show that
Ais orthogonal to B in [|-|| () if and only if there exists a matrix G € M(n)
such that |Gl <1, [|G|l1 <k, tr(G*A) = ||Al|(x) and tr(G*B) = 0. Let
S, L, g be the maps as defined above in the proof of Theorem Then
Proposition 222, Proposition 23 and (23] gives that A is orthogonal to B
in ||-||(x) if and only if there exists a matrix G € Mi(n) such that |G|l <1,
IGll1 <k, Retr(G*A) = [|A|x) and tr(G*B) = 0. We observe that if
G[() < 1 then Retr(G*A) = [[Al|x) if and only if tr(G*A) = [|A[ (k).
This is because if Retr(G*A) = || A1), then

[Allry < [tr(GA) < (G [ All ) < 1Al 1)

So Imtr(G*A) = 0 and hence tr(G*A) = Retr(G*A) = [|Al[x). Thus we
obtain the required result.

2. The characterizations for Birkhoff-James orthogonality are closely related
to the recent work in norm parallelism [I7, 22 14]. In a normed lin-
ear space, an element x is said to be norm-parallel to another element
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y (denoted as z||y) if ||z + Ayl = ||z]| + ||y|| for some X € C, |\ = 1.
Let A = U|A| be a polar decomposition of A and sx(A) > 0. Then
by Theorem 2.4 in [I4] and Theorem [T, we get that A[|B in [ - ||z
if and only if there exists A € C with |A\|] = 1 and k orthonormal vec-
tors ui,usg,...,ur such that |A] u; = s;(A)u; foralll < ¢ < k and
Zfﬂ(ui,U*(HBH(k)A + M| Al|(gyB)ui) = 0. Simplifying the expressions
and using the fact that [A\| = 1, we obtain that A[|B in || - || if and
only if there exist k orthonormal vectors uy, ug, ..., ux such that |A| u; =
$i(A)u; for all 1 < ¢ < k and |Zf:1<ui,U*Bui>| = [|Bl|(k). For k =1,
this is just Corollary 2.15 of [14].

Acknowledgement I would like to thank the referee for several valuable
comments and suggestions.
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