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Non-singular circulant graphs and digraphs

A. K. Lal∗ A Satyanarayana Reddy∗

Abstract We give necessary and sufficient conditions for a few classes of known circulant
graphs and/or digraphs to be singular. The above graph classes are generalized to (r, s, t)-

digraphs for non-negative integers r, s and t, and the digraph C
i,j,k,l
n , with certain restrictions.

We also obtain a necessary and sufficient condition for the digraphs Ci,j,k,l
n to be singular. Some

necessary conditions are given under which the (r, s, t)-digraphs are singular.
Keywords: Graphs, Digraphs, Circulant matrices, Primitive roots.

1 Introduction and preliminaries

Let Q denote the set of rational numbers. Then the set of all n× n matrices with entries from
Q is denoted by Mn(Q). A matrix A ∈ Mn(Q) is said to be symmetric if A = At, where At

denotes the transpose of the matrix A and is said to be circulant if aij = a1, j−i+1, whenever
2 ≤ i ≤ n and 1 ≤ j ≤ n, where the subscripts are read modulo n. From the definition, it
is clear that if A is circulant then for each i ≥ 2 the elements of the i-th row are obtained by
cyclically shifting the elements of the (i− 1)-th row one position to the right. So it is sufficient
to specify its first row. For example, the identity matrix, denoted I, and the matrix of all 1’s,
denoted J, are circulant matrices. Let Wn be a circulant matrix of order n with [0, 1, 0, . . . , 0]
as its first row . Then the following result of Davis [4] establishes that every circulant matrix
of order n is a polynomial in Wn.

Lemma 1.1. [4] Let A ∈ Mn(Q). Then A is circulant if and only if it is a polynomial over Q
in Wn.

Let A ∈ Mn(Q) be a circulant matrix. Then Lemma 1.1 ensures the existence of a poly-
nomial γA(x) ∈ Q[x] such that A = γA(Wn). We call γA(x), the representer polynomial of A.
For a fixed positive integer n, let ζn denote a primitive n-th root of unity. That is, ζnn = 1 and
ζkn 6= 1 for k = 1, 2, . . . , n−1. Then the following result about circulant matrices is well known.

Lemma 1.2. Let A ∈ Mn(Q) be a circulant matrix with [a0, a1, . . . , an−1] as its first row. Then

1. γA(x) = a0 + a1x+ · · · + an−1x
n−1 ∈ Q[x].

2. the eigenvalues of A are given by γA(ζ
k
n), for k = 0, 1, . . . , n− 1.

For definitions and results related to linear algebra, algebra and/or graph theory that have
been used in this paper but not have been cleared defined or stated, the readers are advised
to see any standard textbook on abstract algebra and/or graph theory(for example, see [6]
and/or [3]).
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Recall that a directed graph (in short, digraph) is an ordered pair X = (V,E) that consists
of two sets V , the vertex set, and E, the edge set, where V is a non-empty set and E ⊂ V ×V . If
e = (u, v) ∈ E with u 6= v then the edge e is said to be incident from u to v. A digraph is called
a graph if (u, v) ∈ E whenever (v, u) ∈ E, for any two elements u, v ∈ V . An edge between u

and v in the graph X is denoted by {u, v}. A graph/digraph is said to be finite, if |V | (called
the order of X) and |E| (called the size of X) are finite. All the graphs/digraphs in this paper
are finite. The adjacency matrix of a graph/digraph X = (V,E) is a |V | × |V | matrix, denoted
A(X) = [auv], with auv = 1 if (u, v) ∈ E and 0, otherwise. Observe that, whenever X is a graph
the matrix A(X) is symmetric. For example, if A denotes the adjacency matrix of the cycle
graph Cn on n vertices, then A is a circulant matrix and γA(x) = x + xn−1 is its representer
polynomial. Therefore, for r = 0, 1, . . . , n−1, the eigenvalues of Cn are given by λr = 2cos(2πrn ).
Throughout this paper, we assume that the greatest common divisor, in short gcd, of all the
non-zero coefficients of γA(x) is 1. It is well known that xn − 1 =

∏

d|n

Φd(x) (here a | b means a

‘divides’ b), where Φd(x) =
∏

gcd(k,d)=1
1≤k≤d

(x − ζkd ) ∈ Z[x] is called the d-th cyclotomic polynomial.

The polynomial Φn(x), for each positive integer n, is a monic irreducible polynomial over Q and
hence the minimal polynomial of ζn. Also, deg(Φn(x)) = ϕ(n), the well known Euler-totient
function. Therefore, using the property of minimal polynomials, it follows that if f(ζn) = 0
for some f(x) ∈ Z[x] then Φn(x) divides f(x) ∈ Z[x]. Or equivalently, f(ζn) = 0 for some
f(x) ∈ Z[x] if and only if there exists a polynomial g(x) ∈ Z[x] such that f(x) = Φn(x)g(x).
The next result appears on page 93 in [9].

Lemma 1.3. [9] Let p be a prime number and let n be a positive integer. Then

Φpn(x) =

{

Φn(x
p), if p | n,

Φn(xp)
Φn(x)

, if p ∤ n.

In particular, Φpk(x) = 1 + xp
k−1

+ x2p
k−1

+ · · ·+ x(p−1)pk−1

for every positive integer k.

The following result is an application of Lemma 1.2. This result also appears in the work
of Geller, Kra, Popescu & Simanca [7].

Lemma 1.4 (Geller, Kra, Popesu & Simanca [7]). Let A ∈ Mn(Q) be a circulant matrix with
γA(x) as its representer polynomial. Then the following statements are equivalent:

1. The matrix A is singular.

2. deg(gcd(γA(x), x
n − 1)) ≥ 1.

Fix a positive integer n, two distinct integers a and b and let s and t be positive integers with
s + t = n. Suppose [ a, a, . . . , a

︸ ︷︷ ︸

s times

, b, b, . . . , b
︸ ︷︷ ︸

t times

] is the first row of a circulant matrix A ∈ Mn(Z).

Then as a direct corollary of Lemma 1.4, one has the following result.

Corollary 1.5 (Davis [4]). Let [ a, a, . . . , a
︸ ︷︷ ︸

s times

, b, b, . . . , b
︸ ︷︷ ︸

t times

] be the first row of the circulant matrix

A ∈ Mn(Q). Then

det(A) =

{

(sa+ tb)(a− b)n−1, if gcd(s, n) = 1,

0, otherwise.
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We now state a couple of known results that directly follow from Corollary 1.5.

Lemma 1.6. The complete graph Kn, for n ≥ 2, is non-singular.

Proof. Let A be the adjacency matrix of complete graph Kn. Then [0, 1, 1, . . . , 1] is the first
row of A. Hence the result follows from Corollary 1.5.

As a second application, we consider a particular class of circulant matrices that appeared in
the work of Searle [11]. He considered the circulant matrices that have [h0, h1, . . . , hk−1, 0, . . . , 0

︸ ︷︷ ︸

n−k

]

as its first row, where h0 6= 0 and hk−1 6= 0. The above class of matrices was called a k-element
circulant matrix. Since we are looking at digraphs, we assume h0 = 1 = hk−1. With an abuse
of notation, the circulant matrix with [1, 1, . . . , 1

︸ ︷︷ ︸

k

, 0, 0, . . . , 0
︸ ︷︷ ︸

n−k

] as its first row will be called a

k-element circulant digraph. With this notation, the second application of Corollary 1.5 is
stated below.

Lemma 1.7. Let X be a k-element circulant digraph on n vertices. Then X is non-singular
if and only if gcd(n, k) = 1.

We now rephrase Lemma 1.4 in terms of cyclotomic polynomials. Let A ∈ Mn(Z) be a
circulant matrix with [a0, a1, . . . , an−1] as its first row. Then γA(x) = a0+a1x+ · · ·+an−1x

n−1

is the representer polynomial of A. Now, suppose that a0 = 0 and let k be the smallest positive
integer such that ak 6= 0. Then γA(x) = xkΓA(x), for some polynomial ΓA(x) ∈ Z[x]. In
this case, it follows that the matrix A is non-singular if and only if gcd(ΓA(x), x

n − 1) = 1 as
gcd(xk, xn − 1) = 1. This observation leads to the next remark.

Remark 1.8. Let A ∈ Mn(Z) be a circulant matrix and for each fixed positive integer k

consider the matrix W k
nA. Then A is singular (non-singular) if and only if W k

nA is singular
(non-singular). That is, if we want to study singularity/non-singularity of a matrix A then it
is enough to study ΓA(x).

Using Remark 1.8 and Lemma 1.4, the following result is immediate and hence the proof is
omitted.

Lemma 1.9. Let A be a circulant digraph of order n and let ΓA(x) be the polynomial defined
above. Then A is singular if and only if Φd(x) | ΓA(x), for some divisor d 6= 1 of n.

As an immediate corollary of Lemma 1.9, we have the following result.

Corollary 1.10. Let p be a prime and let k be a positive integer with p ∤ k. Also, let X

be a k-regular circulant graph/digraph on pℓ vertices, for some positive integer ℓ. Then X is
non-singular.

Proof. Using Lemma 1.9, we just need to show that Φd(x) ∤ ΓA(x) for every d | pℓ, d 6= 1. Let
if possible, ΓA(x) = Φd(x)g(x) for some g(x) ∈ Z[x]. Using Lemma 1.3, we have Φd(1) = p for
every d | pℓ, d 6= 1. As g(x) ∈ Z[x], g(1) ∈ Z. Thus, we get

k = ΓA(1) = Φd(1)g(1) = p g(1).

A contradiction to our assumption that p ∤ k. Thus the proof of the result is complete.
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The remaining part of this paper consists of two more sections that are mainly concerned
with applications of Lemma 1.9. Section 2 gives necessary and sufficient conditions for a few
classes of circulant graphs to be non-singular and Section 3 gives possible generalization of the
results studied in Section 2.

Before proceeding to Section 2, recall that for a graph X = (V,E1), the complement graph
of X, denoted Xc = (V,E2), is a graph in which (u, v) ∈ E2 whenever (u, v) 6∈ E1 and vice
versa, for every u 6= v ∈ V . Note that (u, u) is neither an element of E1 nor an element of E2.
Also, a graph X is circulant if and only if Xc is circulant and if A is the adjacency matrix of
X then the adjacency matrix of Xc is given by J−A− I.

2 Some Singular Circulant Graphs

This section is devoted to finding necessary and sufficient conditions for a few classes of circulant
graphs to be singular or not. Before proceeding to these results, we show that the adjacency
matrix A of a circulant graph on n vertices is a polynomial in Wn+W−1

n , the adjacency matrix
of Cn, the cycle graph on n vertices. To do so, we need the following definition.

Definition 2.11. Let v1, v2, . . . , vn be the vertices of a connected graph X. If d is the diameter
of X then, for 0 ≤ k ≤ d, the k-th distance matrix of X, denoted Ak(X), is defined as

(Ak(X))rs =

{
1, if d(vr, vs) = k,

0, otherwise,

where d(u, v) is the distance between the vertices u, v ∈ V .

For example, τ = ⌊n2 ⌋ and consider the cycle graph Cn. Also, let us write Ak to denote the
distance matrices Ak(Cn), for 0 ≤ k ≤ τ . Then, for 1 ≤ i < τ, Ai = W i

n +W n−i
n and

Aτ =

{

W τ
n , if n is even,

W τ
n +W n−τ

n , if n is odd.
(2.1)

The identity

(xk + x−k) = (x+ x−1)(xk−1 + x1−k)− (xk−2 + x2−k)

enables us to readily establish, by mathematical induction, that xk+x−k is a monic polynomial
in x + x−1 of degree k with integral coefficients. Also, for n even, 2τ = n and hence W τ

n =
W τ

n+W−τ
n

2 . Consequently, Ai’s, for 1 ≤ i ≤ τ , are polynomials of degree ≤ i, in A, the adjacency
matrix of Cn, over Q. Now, let B be a symmetric circulant matrix with representer polynomial

γB(x) =
n−1∑

i=0
bix

i. Then by definition, B = γB(Wn) =
n−1∑

i=0
biW

i
n and Bt =

n−1∑

i=0
biW

n−i
n . But B is

symmetric implies that B = Bt and therefore, bi = bn−i, for 1 ≤ i ≤ n− 1. Thus, B =
τ∑

i=0
biAi

and hence we see that the adjacency matrix of any circulant graph is a polynomial in A, the
adjacency matrix of Cn, over Q.

For 1 ≤ i ≤ τ , let us denote the graph with adjacency matrix Ai as Ci
n. Then observe

that C1
n = Cn is the cycle graph on n vertices. Also, note that the corresponding representer

polynomials, for 1 ≤ i < τ , are given by γAi
(x) = xi

(
1 + xn−2i

)
and γAτ (x) = xτ , if n is even,

and γAτ (x) = xτ (1+x), if n is odd. The next result uses the above notations and observations
to give a necessary and sufficient condition for the graphs Ci

n, for 1 ≤ i ≤ τ , to be singular.
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Lemma 2.12. Fix a positive integer n ≥ 3 and let 1 ≤ i ≤ τ = ⌊n2 ⌋. Then the graph Ci
n is

singular if and only if n is a multiple of 4 and gcd(i, n2 ) |
n
4 .

Proof. Using the discussion above, ΓAi
(x) = 1 + xn−2i, for 1 ≤ i < τ and ΓAτ (x) = 1 + x, if n

is odd, and ΓAτ (x) = 1, if n is even. If n is odd then ζkn 6= −1 for any k, 1 ≤ k ≤ n− 1. Hence,
Aτ is non-singular for all n. So, we need to consider ΓAi

(x) = 1 + xn−2i, for 1 ≤ i < τ .
In this case, Ai is singular if and only if ΓAi

(ζkn) = 0, for some k, 1 ≤ k ≤ n − 1. That is,

we need
(
ζkn
)n−2i

= −1. Or equivalently, we need 2ki ≡ n
2 (mod n). That is, ki ≡ n

4 (mod n
2 ).

Therefore, it follows that 4 divides n and gcd(i, n2 ) |
n
4 .

Remark 2.13. We can rewrite the condition in Lemma 2.12 as follows:
The graph Ci

n is singular if and only if the following conditions are satisfied:

1. n is a multiple of 4, and

2. if s is the largest positive integer such that 2s divides n then i is an odd multiple of 2t for
some t, 0 ≤ t ≤ s− 2.

As an immediate consequence of Lemma 2.12, we have the following corollary.

Corollary 2.14. Let Cn be the cycle graph on n vertices. Then Cn is singular if and only if
4 | n.

The next result gives a necessary and sufficient condition for the complement graph (Ci
n)

c

of Ci
n to be singular.

Lemma 2.15. Fix a positive integer n ≥ 4. Then the graph

1. (Cτ
n)

c is singular if and only if n is even or n ≡ 3 (mod 6).

2. (Ci
n)

c, for 1 ≤ i < τ , is singular if and only if 3 | n and gcd(i, n) | n
3 .

Proof. Let n be even. Then, using definition of complement of a graph, the adjacency matrix
of (Cτ

n)
c, say A, is given by J−Aτ − I. Hence, γA(x) = 1 + x+ · · ·+ xn−1 − 1− γAτ (x) is the

representer polynomial of (Cτ
n)

c. Thus,

γA(x) =
xn − 1

x− 1
− (1 + xτ )

and hence γA(ζn) = 0 (n is even). Thus, the graph (Cτ
n)

c is singular, whenever n is even. For
n odd, it can be checked that

γA(x) =
xn − 1

x− 1
− (1 + xτ + xτ+1).

Consequently, (Cτ
n)

c is singular if and only if γA(ζ
k
n) = 0, for some k, 1 ≤ k ≤ n − 1. Or

equivalently, 1 + (ζkn)
τ + (ζkn)

τ+1 = 0, for some k, 1 ≤ k ≤ n − 1. This is equivalent to the
statement that ζkτn is a primitive 3-rd root of unity. Thus, kτ ≡ n

3 (mod n), or equivalently,
gcd(τ, n) | n

3 . Thus, n ≡ 3 (mod 6) and in this case, gcd(τ, n) indeed divides n
3 .

Now assume that 1 ≤ i < τ. In this case, if A is the adjacency matrix of (Ci
n)

c, then
A = J − Ai − I. Consequently, its representer polynomial is γA(x) =

xn−1
x−1 − (1 + xi + xn−i).

Thus, (Ci
n)

c is singular if and only if γA(ζ
k
n) = 0, for some k, 1 ≤ k ≤ n − 1. Or equivalently,

1 + ζkin + ζ−ki
n = 0, for some k, 1 ≤ k ≤ n − 1. That is, ζkin is a primitive 3-rd root of unity.

Thus, using the argument similar to one in the first part, one has (Ci
n)

c is singular if and only
if 3 | n and gcd(i, n) | n

3 .
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As an immediate consequence of Lemma 2.15, we have the following corollary.

Corollary 2.16. Fix a positive integer n and let Cc
n be the complement graph of the cycle graph

Cn. Then the complement graph Cc
n is singular if and only if 3 | n.

We now obtain necessary and sufficient conditions for non-singularity of circulant graphs
that were studied by Ruivivar [10]. In [10], the author studied two classes of graphs. For the
sake of notational clarity, his notations have been slightly modified. Fix a positive integer n ≥ 3

and let 1 ≤ r < τ = ⌊n2 ⌋. The first class of circulant graphs, denoted C
(r)
n , has the same vertex

set as the vertex set of the cycle Cn and {x, y} is an edge whenever the length of the smallest
path from x to y in Cn is at most r. He called these graphs the r-th power graph of the cycle

graph Cn. Note that C
(τ)
n is the complete graph. The second class of graphs, denoted C(2n, r)

is a graph on 2n vertices and its adjacency matrix is the sum of the adjacency matrices of C
(r)
2n

and Cn
2n, where 1 ≤ r < n. The next result appears as Theorem 2.2 of [10]. We give a separate

proof for the sake of completeness.

Theorem 2.17 (Ruivivar [10]). Let n ≥ 3 and let 1 ≤ r < ⌊n2 ⌋. Then the graph C
(r)
n is singular

if and only if one of the following conditions hold:

1. gcd(n, r) > 1

2. gcd(n, r) = 1, n is even and gcd(r + 1, n) divides n
2 .

Proof. Let A be the adjacency matrix of the graph C
(r)
n . Then, by definition, the first row of

A equals [0, 1, 1, . . . , 1
︸ ︷︷ ︸

r

0, 0, . . . , 0
︸ ︷︷ ︸

n−2r−1

1, 1, . . . , 1
︸ ︷︷ ︸

r

] and γA(x) = xΓA(x), where

ΓA(x) = [1 + x+ · · ·+ xr−1] + xn−r−1[1 + x+ · · ·+ xr−1] =
xr − 1

x− 1
(1 + xn−r−1).

Therefore, C
(r)
n is singular if and only if ΓA(ζ

d
n) = 0, for some d, 1 ≤ d ≤ n− 1. Or equivalently

either (ζdn)
r − 1 = 0 or 1 + (ζdn)

n−r−1 = 0.
If (ζdn)

r−1 = 0 then gcd(r, n) > 1 is the required condition as 1 ≤ d ≤ n−1. If gcd(r, n) = 1
then we need 1+ (ζdn)

n−r−1 = 0. This implies that d(r+1) ≡ n
2 (mod n). Which in turn gives

the required result.
Thus, the proof of the theorem is complete.

The following result can be seen as a corollary to Lemma 1.7. But an idea of the proof is
given for completeness.

Corollary 2.18. Let n ≥ 3 and let 1 ≤ r < ⌊n2 ⌋. Then the graph (C
(r)
n )c is non-singular if and

only if gcd(n, 2r + 1) = 1.

Proof. Let A be the adjacency matrix of (C
(r)
n )c. Then [0, 0, . . . , 0

︸ ︷︷ ︸

r+1

1, . . . , 1
︸ ︷︷ ︸

n−2r−1

0, 0, . . . , 0
︸ ︷︷ ︸

r

] is the

first row of A. Thus, using Remark 1.8, A is singular if and only if the circulant matrix with
[1, 1, . . . , 1
︸ ︷︷ ︸

n−2r−1

0, 0, . . . , 0
︸ ︷︷ ︸

2r+1

] as its first row is singular. Thus, using Lemma 1.7, A is singular if and

only if gcd(2r + 1, n) > 1. Hence, the required result follows.
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Before proceeding with the next result that gives a necessary and sufficient condition for
the graph C(2n, r) to be singular, we state a result that appears as Proposition 1 in Kurshan
& Odlyzko [8]

Lemma 2.19 (Kurshan & Odlyzko [8]). Let m and n be positive integers with m 6= n and let
ζn be a primitive n-root of unity. Then there exists a unit u ∈ Z[ζn] dependent on m,n and ζn
such that

Φm(ζn) =







pu, if m
n = pα, p a prime, α > 0;

(1− ζpα)u, if m
n = p−α, p a prime, α > 0; p ∤ m;

(1− ζpα+1)
p−1u, if m

n = p−α, p a prime, α > 0; p | m;
u, otherwise.

Theorem 2.20. Let n and r be positive integers such that the circulant graph C(2n, r) is well
defined. Then the circulant graph C(2n, r) is singular if and only if gcd(n, 2r + 1) ≥ 3.

Proof. Let A be the adjacency matrix of the graph C(2n, r). Then observe that the first row
of A equals [0, 1, 1, . . . , 1

︸ ︷︷ ︸

r

, 0, 0, . . . , 0
︸ ︷︷ ︸

n−r−1

, 1, 0, 0, . . . , 0
︸ ︷︷ ︸

n−r−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

r

]. Consequently,

γA(x) = x+ x2 + · · ·+ xr + xn + x2n−r + · · · + x2n−1 = xΓA(x)

and

(x− 1)ΓA(x) = xr − 1 + xn−1(x− 1) + x2n−r−1(xr − 1)

= xr(1− x2n−2r−1) + (xn − 1)− (xn−1 − x2n−1)

= (xn − 1)(xn−1 + 1)− xr(x2n−2r−1 − 1).

Now, let us assume that gcd(n, 2r + 1) = d ≥ 3. Then (ζ
2n/d
2n − 1)ΓA(ζ

2n/d
2n ) = 0 as

(

ζ
2n/d
2n

)n
=
(
ζ2n2n
)n/d

= 1 =
(
ζ2n2n
)(2r+1)/d

=
(

ζ
2n/d
2n

)2r+1
=
(

ζ
2n/d
2n

)2n−2r−1
.

Hence, the circulant graph C(2n, r) is singular.
Conversely, let us assume that the graph C(2n, r) is singular. This implies that there exists

an eigenvalue of C(2n, r) that equals zero. That is, there exists a k, 1 ≤ k ≤ 2n− 1, such that
γA(ζ

k
2n) = 0. We will now show that if gcd(n, 2r + 1) = 1 then the expression (x − 1)ΓA(x)

evaluated at x = ζk2n can never equal zero, for any k, 1 ≤ k ≤ 2n − 1, and this will complete
the proof of the result.

We need to consider two cases depending on whether k is odd or k is even. Let k be even,
say k = 2m, for some m, 1 ≤ m < n. Then evaluating (x − 1)ΓA(x) at x = ζ2m2n and using
gcd(n, 2r + 1) = 1 leads to

[(
ζ2m2n

)n
− 1
] [(

ζ2m2n
)(n−1)

+ 1
]

−
(
ζ2m2n

)r
[(
ζ2m2n

)2n−2r−1
− 1
]

= −
(
ζ2m2n

)r
[(
ζ2m2n

)−(2r+1)
− 1
]

6= 0.
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Now, let k be odd, say k = 2m+1, for some m, 0 ≤ m ≤ n− 1. Then evaluating (x− 1)ΓA(x)
at x = ζ2m+1

2n leads to

[(
ζ2m+1
2n

)n
− 1
] [(

ζ2m+1
2n

)(n−1)
+ 1
]

−
(
ζ2m+1
2n

)r
[(
ζ2m+1
2n

)2n−2r−1
− 1
]

= −2
[

−ζ
−(2m+1)
2n + 1

]

− ζ
−(2m+1)(r+1)
2n

[

1− ζ
(2m+1)(2r+1)
2n

]

= −
ζ2m+1
2n − 1

ζ
(2m+1)(r+1)
2n

[

−2ζ
(2m+1)r
2n +

ζ
(2m+1)(2r+1)
2n − 1

ζ
(2m+1)
2n − 1

]

= −
ζ2m+1
2n − 1

ζ
(2m+1)(r+1)
2n



−2ζ
(2m+1)r
2n +

∏

ℓ|(2r+1),ℓ 6=1

Φℓ(ζ
2m+1
2n )



 (2.2)

Note that, ζ2m+1
2n is a d-th primitive root of unity, for some d dividing 2n. As gcd(2r+1, 2n) = 1,

gcd(2r + 1, d) = 1. Thus, using Lemma 2.19, we get
∏

ℓ|(2r+1),ℓ 6=1

Φℓ(ζ
2m+1
2n ) is a unit in Z[ζd].

That is,

∣
∣
∣
∣
∣

∏

ℓ|(2r+1),ℓ 6=1

Φℓ(ζ
2m+1
2n )

∣
∣
∣
∣
∣
= 1. Hence, in Equation (2.2), the term in the parenthesis

cannot be zero. Thus, we have proved the result for the odd case as well.
Thus, the proof of the result is complete.

Remark 2.21. We would like to mention here that the necessary part of Theorem 2.20 was
stated and proved by Ruivivar (see Theorem 2.1 in [10]).

We will now try to understand the complement graph C(2n, r)c of C(2n, r).

Lemma 2.22. Let n and r be positive integers such that the circulant graph C(2n, r) is well
defined. Then C(2n, r)c is non-singular if and only if the following conditions hold:

1. n and r have the same parity,

2. gcd(n, r + 1) = 1, and

3. the highest power of 2 dividing n is strictly smaller than the highest power of 2 dividing
n− r.

Proof. Let A be the adjacency matrix of C(2n, r)c. Then [0, 0, . . . , 0
︸ ︷︷ ︸

r+1

1, 1, . . . , 1
︸ ︷︷ ︸

n−r−1

0 1, 1, . . . , 1
︸ ︷︷ ︸

n−r−1

0, 0, . . . , 0
︸ ︷︷ ︸

r

]

is the first row of A. Note that

ΓA(x) = (1 + xn−r)
xn−r−1 − 1

x− 1
.

Now, let us assume that the graph C(2n, r)c is non-singular. This means that ΓA(ζ
k
2n) 6= 0,

for any k = 1, 2, . . . , 2n − 1.
Note that if n and r have opposite parity then gcd(2n, n − r − 1) = d ≥ 2 and hence

ΓA(ζ
2n/d
2n ) = 0. Also, if n and r have the same parity and gcd(n, r + 1) = d > 2 then n− r − 1

is odd and gcd(2n, n− r− 1) = gcd(n, n− r− 1) = gcd(n, r+1) = d. Hence, in this case again,

ΓA(ζ
2n/d
2n ) = 0.
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Now, the only case that we need to check is the following:
n and r have the same parity, gcd(n, r+1) = 1 and the highest power of 2 dividing n is greater
than or equal to the highest power of 2 dividing n− r.

As n and r have the same parity and gcd(n, r + 1) = 1, we get gcd(2n, n − r − 1) = 1 and
thus

(ζk2n)
n−r−1 − 1 6= 0, for any k = 1, 2, . . . , 2n − 1.

Thus, we need to check for the condition on k so that 1+ (ζk2n)
n−r = 0. This is true if and only

if gcd(2n, n− r) | n, or equivalently, the highest power of 2 dividing n is greater than or equal
to the highest power of 2 dividing n− r.

Thus, we have the required result.

Remark 2.23. Observe that using Lemma 2.22, the graph C(2n, r)c is non-singular, whenever
n and r are both odd and gcd(n, r+1) = 1. Such numbers can be easily computed. For example,
a class of such graphs can be obtained by choosing two positive integers s and t with s > t and
defining n = 2s − 2t + 1 and r = 2t − 1.

3 Generalizations

In this section, we look at a few classes of graphs/digraphs, which are generalizations of the
graphs that appear in Section 2. We first start with a class of circulant digraphs.

Consider a circulant matrix A whose first row contains r and s consecutive 1’s separated
by t consecutive 0’s, where each of r, s and t are non-negative integers. That is, the vector
[1, 1, . . . , 1
︸ ︷︷ ︸

r

, 0, 0, . . . , 0
︸ ︷︷ ︸

t

, 1, 1, . . . , 1
︸ ︷︷ ︸

s

, 0, 0, . . . , 0
︸ ︷︷ ︸

n−(r+t+s)

] is the first row of A. If s = 0, then it is an

r-element circulant digraph studied in Lemma 1.7. These circulant digraphs will be called
an (r, s, t)-element circulant digraph. The next result gives a few conditions under which the
(r, s, t)-element circulant digraph is singular.

Lemma 3.24. Let X be an (r, s, t)-element circulant digraph on n vertices. Then the graph X

is singular if

1. gcd(n, s, r) > 1, or

2. gcd(n, s) = 1 and one of the following condition holds:

(a) there exists d ≥ 2 such that d | t and s = ℓr, for some positive integer ℓ ≡ −1
(mod d).

(b) n is even, there exists an even integer d such that (r+ t) is an odd multiple of d
2 and

s = ℓr, for some positive integer ℓ ≡ 1 (mod d).

Proof. Proof of Part 1: Observe that the representer polynomial of the (r, s, t)-element
circulant digraph is given by

γA(x) = 1 + x+ · · ·+ xr−1 + xr+t + · · ·+ xr+s+t−1

=
xr − 1

x− 1
+ xr+tx

s − 1

x− 1
.

Or equivalently,
(x− 1)γA(x) = (xr − 1) + xr+t(xs − 1). (3.3)

9



Let gcd(n, r, s) = k > 1. Then it can be easily checked that ζ
n/k
n is a root of Equation (3.3).

Thus, X is singular. This completes the proof of the first part.
Proof of Part 2.2a: Let us assume that gcd(n, s) = 1. Also, let us assume that there

exists a positive integer d ≥ 2 such that d | t and s = ℓr, for some positive integer ℓ ≡ −1
(mod d). So, there exists β ∈ Z such that ℓ = βd − 1. In this case, using Equation (3.3), we
get

(ζ(n/d)n − 1)γA(ζ
(n/d)
n ) = (ζ(rn/d)n − 1)

(

1 + ζ(r+t)n/d
n

ζ
ℓ(rn/d)
n − 1

ζ
(rn/d)
n − 1

)

= (ζrn/dn − 1)

(

1 + ζ(r+t)n/d
n

ζ
−(rn/d)
n − 1

ζ
(rn/d)
n − 1

)

= (ζrn/dn − 1)
(

1− ζ(tn/d)n

)

.

As d | t, γA(ζ
n/d
n ) = 0. That is, we get the required result in this case as well.

Proof of Part 2.2b: Let us assume that gcd(n, s) = 1, n = 2m. Also, let us assume that
there exists an even positive integer d such that r + t is an odd multiple of d

2 and s = ℓr, for
some positive integer ℓ ≡ 1 (mod d). Then there exists β ∈ Z such that ℓ = βd + 1. In this
case, using Equation (3.3), we get

(ζ(n/d)n − 1)γA(ζ
(n/d)
n ) = (ζ(rn/d)n − 1)

(

1 + ζ(r+t)n/d
n

ζ
ℓ(rn/d)
n − 1

ζ
(rn/d)
n − 1

)

= (ζrn/dn − 1)

(

1 + ζ(r+t)n/d
n

ζ
(rn/d)
n − 1

ζ
(rn/d)
n − 1

)

= (ζrn/dn − 1)
(

1 + ζ(r+t)n/d)
n

)

.

Thus, under the given conditions, the corresponding digraph X is singular.
Hence, the proof of the lemma is complete.

Thus, the above result gives conditions under which the generalized (r, s, t)- digraphs, for
non-negative values of r, s and t, are singular. We will now define another class of circulant
digraphs and obtain conditions under which the circulant digraphs are singular. These graphs
are also a generalization of the graphs studied in Lemma 1.7.

Let i, j, k and ℓ be non-negative integers such that j > ℓ and kj+ i+ℓ < n. Consider a class

of circulant digraphs, denoted C
i,j,k,ℓ
n , that has γ

A(Ci,j,k,ℓ
n )

(x) =
k∑

t=0

i+ℓ∑

s=i
xs+tj as its representer

polynomial. Then

γ
A(Ci,j,k,ℓ

n )
(x) = xi(1 + x+ · · ·+ xℓ)(1 + xj + x2j + · · · + xkj)

= xi
xℓ+1 − 1

x− 1
·
x(k+1)j − 1

xj − 1

= xi
∏

s|ℓ+1,s 6=1

Φs(x) ·
∏

t|(k+1)j,t∤j

Φt(x). (3.4)

Hence, we have the following theorem which we state without proof.
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Theorem 3.25. Let i, j, k and ℓ be non-negative integers with j > ℓ and kj + i+ ℓ < n. Then
the circulant digraph C

i,j,k,ℓ
n , defined above, is singular if and only if either gcd(ℓ+1, n) ≥ 2 or

gcd(k + 1, n
gcd(n,j)) ≥ 2.

Remark 3.26. Note that we can vary the non-negative integers i, j, k and ℓ to define quite
a few class of circulant digraphs. For example, it can be seen that the graphs G(r, t) that are
given by Doob [5] are a particular case of the above class. Also, it can be easily verified that
Theorem 3.25 is a generalization of Lemma 1.7.

Conclusion

In the first section, we have obtained necessary and sufficient conditions for a few known
classes of circulant graphs/digraphs to be singular. We found these necessary and sufficient
conditions by using Lemma 1.9. The graphs/digraphs that were studied in Section 2 have been
generalized to (r, s, t)-circulant digraphs for non-negative integers r, s and t, and the circulant

digraph C
i,j,k,l
n , under certain restrictions. A necessary and sufficient condition for the digraphs

C
i,j,k,l
n to be singular is also obtained. Some necessary conditions are given under which the

(r, s, t)-circulant digraphs are singular.
It will be nice to obtain necessary and sufficient conditions for the generalized (r, s, t)-

digraphs to be singular.
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