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Abstract. We consider a generalized Jaynes-Cummings model of a two-level atom

interacting with a multimode nondegenerate coherent field. The sum of the mode

frequencies is equal to the two-level transition frequency, creating the resonance

condition. The intermediate levels associated with the multi-photon process are

adiabatically eliminated using the non-resonant conditions for these transitions. Under

such general conditions, the infinite atom-multiphoton interaction is effectively mapped

onto an equivalent reduced 2×2 bipartite qubit system that facilitates the study of the

nonclassical features of the interaction using known information-theoretic measures.

We observe that the bipartite pure system is highly entangled as quantified by its

entanglement of formation. Further, it is shown that the dynamics of the mapped

system can be generated using optically truncated, quantum scissored states that

reduce the infinite atom-multiphoton interaction to a finite 2×k system, where k is a

suitable truncation number. This allows us to introduce atomic dephasing and study

the mixed state dynamics, characterized by the decay of quantum correlations such

as quantum discord, which is observed to be more robust than entanglement. The

quantum correlation dynamics of the dissipative system qualitatively complements

the behavior of collapse and revival of the Rabi oscillations in the system. The

effective mapping of the composite system proves to be an efficient tool for measuring

information-theoretic properties.
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1. Introduction

The archetypal work horse representing the simplest quantum interaction, that of a

single atom and a single cavity mode, is the Jaynes-Cummings (JC) model [1]. The

model was first proposed to study spontaneous emission and examine the underlying

semiclassical behavior of quantum radiation [2]. The periodic collapse and subsequent

revival of Rabi oscillations [3] in the temporal dynamics of the JC model later proved the

discrete and quantum nature of photons. In the following years, the JC interaction has

been generalized to dissipative and perturbative models [4] to study various fundamental

aspects of the manifested quantum atom-photon interaction [5]. Experimentally, the

advances in cavity quantum electrodynamics involving Rydberg atoms in single-mode

cavities [6, 7] have allowed investigation of quantum features and possible extension of

the properties of atom-field interaction for the implementation of quantum tasks [8].

The JC model is an extremely purposeful model from the perspective of quantum

information theory (QIT) and quantum computation. The nonclassical interaction

between the atomic levels and the cavity modes gives rise to entanglement [9], which is

the primary resource for performing various QIT tasks such as superdense coding [10],

quantum teleportation [11], and quantum key distribution [12]. Coupled arrays of JC

systems have been considered to generate and study correlated many-body entangled

states [13], which can be applied in quantum computing and networks [14]. Further, the

manipulation and control of entanglement in different generalized versions of JC model

have received a lot of attention (for a review, see [15]). However, the quest for suitable

quantum systems to operationalize various aspects of QIT for practical purposes is still

far from over. The main obstacles are the difficulty in the manipulation of quantum

states and the irreversible decoherence present in most interacting quantum systems

[16]. With the advent of innovative experiments with ultracold atoms [17] and optical

lattices [18], it has been possible to increase interaction and manipulability of many-

body quantum systems.

The most pervasive feature of the JC interaction is the nonclassical nature of

the field and its correlation with the atomic levels. The dynamics of these atom-

cavity correlations is the key to the interesting properties of all generalized JC

models. For QIT applications, the quantum correlations need to be studied from the

relevant perspective. From information-theoretic arguments, the concept of nonclassical

correlations is neither limited to nor described fully by entanglement. The concept

of measurement-based, information-theoretic quantum correlation measures, such as

quantum discord (QD) [19] and quantum information deficit (QID) [20] use the fact

that physical measurements disturb the noncommutative nature of quantum systems and

thus erase quantum correlation [21], and are, in general, non-monotonic with measures

of entanglement such as entanglement of formation [22] and logarithmic negativity [23].

These information-theoretic measures are known to be non-zero for separable mixed

states. There exist non-trivial operational relations between entanglement and other

quantum correlation measures such as QD and QID [24, 25], however, in general there
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is no established hierarchy between these measures [26]. The information-theoretic

measures assume importance when one considers the fact that efficient quantum tasks

have been performed with states that have no entanglement [27] (for a review, see [28]).

Further, it has been shown that QD is an optimal resource [29] – it is more robust [30]

than entanglement and does not exhibit sudden death [31], though contrary results have

also been reported [32]. Hence, these quantum correlations should be critically explored

in systems that are designed to perform computation and other QIT tasks.

In this article, we seek to understand and characterize the behavior of two

conceptually different quantum correlation measures, viz. entanglement and quantum

discord, arising in the dynamics of a two-level atom interacting with a multimode

coherent field in a generalized JC model [1]. In this interaction of a two-dimensional

atomic system with an infinite-dimensional multimode radiation field, we take the sum of

the mode frequencies to be equal to the effective two-level transition frequency, creating

the resonance condition. The intermediate levels associated with the multi-photon

process can then be adiabatically eliminated using the non-resonant condition for these

transitions. The nature of the interaction allows us to map the pure composite system

onto an equivalent reduced 2×2 system. Such a mapping is known for single-mode

input fields [33]. Thus the infinite-dimensional problem gets mapped into a bipartite

qubit system that simplifies the correlation dynamics and allows the investigation of

important characteristics of the quantum system in a reduced Hilbert space. Further,

for dissipative, nonunitary evolution of the model under the influence of environment,

the dynamics of the system can be studied using optically truncated, quantum scissored

states [34]. For unitary dynamics, we show that an optically truncated, reduced 2×k

quantum system can simulate the pure state dynamics of the mapped two-qubit system.

Under dissipative interactions in the atom-photon interaction, the optically truncated,

finite-size system can be used to study the behavior of quantum correlation emerging

from the mixed state dynamics of the composite open system.

Our general mapping scheme leading to the reduced dynamical structure of the

problem can be used for studying important correlation properties or photon statistics

in similar model systems with multimode fields. Using single- and two-mode fields,

we observe that the reduced bipartite system is highly entangled, as quantified by its

entanglement of formation. Hence, the interaction can be used to generate maximally

entangled bipartite systems for information processing and communication. Under

dissipative atomic dephasing, we study the temporal decay of the correlations, and

QD turns out to be more robust than entanglement. Additionally, we observe that

the quantum correlation dynamics complements the collapse and revival of the Rabi

oscillations and its subsequent decay in the damped atom-field interaction. For the

features in our investigation, the use of a multimode field gives qualitatively similar

results.

This paper is organized as follows. We begin by defining the various quantum

correlation measures in section 2. We describe our generalized JC model of an effective

two-level atom interacting with a nondegenerate N -mode coherent field in section 3.
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In section 4, we present the mapping of our composite system onto an equivalent

2×2 system, and provide an alternate description using optically truncated, quantum

scissored 2×k state. Section 5 gives the dynamics of entanglement for the pure

composite atom-field system with single- and two-mode fields. In section 6, we discuss

the effect of nonunitary atomic dephasing on quantum correlations. Section 7 contains

discussions of our main results.

2. Quantum correlation measures

For pure states, most entropic quantum correlation measures such as entanglement of

formation and quantum discord reduce to the entropy of entanglement [35] whereas log-

arithmic negativity gives an upper bound. For mixed states, the operational relation

between these measures is non-trivial [24, 25], and there is no unique characterization

or hierarchy [26]. In this section, we briefly define two entanglement measures, viz.

entanglement of formation and logarithmic negativity, and the information-theoretic

quantum correlation measure of quantum discord.

Entanglement : The entanglement of formation (EOF) of a bipartite quantum state

[22] is defined as the average entropy of entanglement of its pure state decomposition,

optimized over all such possible decompositions. For a bipartite quantum state,

ρ =
∑

i pi|ψi〉〈ψi|, the entanglement of formation is defined as

E(ρ) = min{φ}

∑

i

piE
′(|ψi〉), (1)

where E ′(|ψ〉) is the entropy of entanglement, defined as the von Neumann entropy of

the subsystem of any bipartite pure state, |ψ〉. The minimization is over all possible

pure state decompositions (pi, |ψi〉) of the bipartite state, ρ. For pure states, the EOF

reduces to the entropy of entanglement. The optimization or convex-roof construction

to obtain the mixed state EOF is not easily tractable. For a two-qubit system, the

EOF has a closed analytical form defined in terms of its concurrence [36]. For arbitrary

dimensions, the convex-roof construction for mixed state EOF is not very well defined,

though non-trivial generalizations of concurrence have been explored [37].

A computable measure of entanglement for mixed systems is the logarithmic

negativity (LN) [23]. The definition of LN stems from the fact that the negativity of the

partial transpose of a bipartite quantum system is a sufficient condition for entanglement

[38]. For two-qubit and 2 × 3 systems, this is also a necessary condition [39]. The LN

of an arbitrary bipartite state, ρ, is defined as

L(ρ) = log2[2N(ρ) + 1], (2)

where N(ρ) is called the negativity. It is defined as N(ρ) = 1
2
(
∥

∥ρTA

∥

∥− 1), where
∥

∥ρTA

∥

∥

is the trace norm of the partially transposed state, ρTA , of ρ. For pure states, the LN

does not reduce to the entropy of entanglement and can be zero for bound entangled

states in bipartite systems with dimensions higher than 2×3. However, non-zero values
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of LN is a known upper bound on distillable entanglement (for mixed states) or entropy

of entanglement (for pure states). Due to its computational simplicity, LN is often

used as a measure of distillable entanglement in higher dimensions. The significance of

LN is also highlighted in establishing possible relation of distillable entanglement with

information-theoretic measures such as quantum discord [24].

Quantum discord : The definition of quantum discord [19] is borne from the

intricate nature of measurement in quantum mechanics and its role in disturbing the

noncommutative nature of quantum operators [21]. In classical information theory, the

total correlation between two random variables is contained in the mutual information

between these variables. The mutual information can be arrived at using the classical

Shannon entropy via two distinct methods: first, using the idea of joint probability

distribution, and secondly, using the idea of conditional entropy. Extending the concept

to the quantum regime and replacing Shannon entropy with the von Neumann entropy,

we obtain two distinct, inequivalent but classically equal definitions of mutual entropy:

I(ρ(t)) ≡ S(ρa) + S(ρf )− S(ρ(t)), and (3)

Ĩ(ρ(t)) ≡ S(ρf)− S(ρf |a), (4)

where S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy of the quantum state ρ. ρa(t)

and ρf(t) are the reduced density operators of the atomic and the field subsystems,

respectively. I(ρ(t)) is the quantum mutual information [40] and S(ρf |a) is the quantum

conditional entropy [41]. Quantum discord is defined as the difference, Q(ρ(t)) =

I(ρ(t))− Ĩ(ρ(t)). In the classical regime, I(ρ(t)) ≡ Ĩ(ρ(t)).

The inequivalence of the two expressions in the quantum regime is due to the

quantum conditional entropy, S(ρf |a), which is defined as the lack of information about

one subsystem (say, ρf ) when that of the other (ρa) is known. The complete knowledge

of a subsystem invokes a measurement on the subsystem. Let {F i
a} (i = 1, 2) be

a basis set of one-dimensional projectors (with F i
aF j

a = δijF i
a,
∑

iF i
a = Ia) acting

on the two-dimensional atomic subsystem (ρa). Ia(If) is the identity operator acting

on the Hilbert space on which that atomic (field) subsystem, ρa(ρf ), is defined. If

one makes a projective measurement on the atomic subsystem, the post-measurement

density matrix can be written as ρiaf (t) = 1
pi(t)

(F i
a ⊗ If ρ(t)F i

a ⊗ If), where pi(t) =

traf (F i
a ⊗ If ρ(t)F i

a ⊗ If). The quantum conditional entropy is then given by

S(ρf |a) = min
{F i

a}

∑

i

pi(t)S(ρ
i
af (t)), (5)

where the minimization is over all possible sets of rank-1 projective measurements, {F i
a}.

Ĩ(ρ(t)) and QD can then be defined as

Ĩ(ρ(t)) = S(ρf)−min
{F i

a}

∑

i

pi(t)S(ρ
i
af (t)), (6)

Q(ρ(t)) = I(ρ(t))− Ĩ(ρ(t)). (7)

The measurement involved in Ĩ(ρ(t)) ensures that I(ρ(t)) ≥ Ĩ(ρ(t)). Hence, Q(ρ(t)) ≥0

and is also known to be non-zero for separable states. As mentioned, in our calculations
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we always apply the projective measurement on the two-dimensional atomic subsystem.

3. Generalized interaction of a two-level atom with a multimode field

We consider the interaction between an effective two-level atom and a nondegenerate

N -mode coherent field. The excited state and the ground state of the two-level atom

are denoted by |e〉 and |g〉, respectively. The transition frequency between the levels

|e〉 and |g〉 is denoted by ω0. ω1, ω2, ..., and ωN are the frequencies of the N modes of

the field, where ω1 + ω2 + ... + ωN = ω0. The intermediate states associated with any

multi-photon process can be adiabatically removed for the considered frequencies with

the additional assumption that the intermediate transition frequencies are not resonant

with the chosen field modes [42]. In the rotating-wave approximation, the effective

Hamiltonian is described by [43] (~ = 1)

H = H0 +Hint

= ω0σz + ΣN
j=1ωja

†
jaj + g̃(Aασ

+ +A†
ασ

−), (8)

where Aα =
∏N

j=1 aj , A†
α =

∏N
j=1 a

†
j. Further, σz = |e〉〈e| − |g〉〈g| , σ+ = |e〉〈g| , σ− =

|g〉〈e|, a†j and aj are the creation and annihilation operators, respectively, of the field

modes j = 1, 2, ..., N , and g̃ is the electric dipole coupling constant. The unitary time-

evolution operator derived from the above Hamiltonian [43] is

U(t) = exp(−iHintt)

= cos(N̂1g̃t)|e〉〈e| − iAα
sin(N̂2g̃t)

N̂2

|e〉〈g|

+ cos(N̂2g̃t)|g〉〈g| − iA†
α

sin(N̂1g̃t)

N̂1

|g〉〈e|, (9)

where N̂1 =
√

∏N
j=1 aja

†
j , and N̂2 =

√

∏N
j=1 a

†
jaj .

The initial (t = 0) nondegenerate multimode infinite-dimensional coherent field can

be written as [44]

|ψf(0)〉 =
N
∏

j=1

|αj〉 =
∞
∑

n1,n2,...,nN=0

Cα
nj

N
∏

j=1

|nj〉,

Cα
nj

= exp

(

−∑N
j=1 |αj |2
2

)

N
∏

j=1

α
nj

j
√

nj!
, (10)

where |αj〉 is a single-mode coherent state with complex amplitude αj [44, 45].

The initial state of the two-level atom is a generalized superposition of the excited

state (|e〉) and the ground state (|g〉), |ψa(0)〉 = cos θ
2
|e〉 + sin θ

2
|g〉, where 0 ≤ θ ≤ π.

θ = π/2 corresponds to an initial coherent superposition of the two levels whereas θ = 0
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corresponds to the initial state being the excited state, |e〉. The initial state of the

two-level atom interacting with the coherent field can be written in the following way,

|ψ(0)〉 = |ψa(0)〉 ⊗ |ψf(0)〉 = cos
θ

2
|e, αN〉+ sin

θ

2
|g, αN〉, (11)

where |αN〉 =
∏N

j=1 |αj〉.
At any time t, the state vector of the total atom-field system evolves from the

initial state according to (9). If we consider the initial atomic state to be |e〉 (θ = 0),

the unitary time evolved state is

|ψ(t)〉 = U(t)|ψ(0)〉

=
∑

Cα
nj
{cos (g̃t

N
∏

j=1

√

nj + 1)|e,N〉

= |e, ǫ+(t)〉+ |g, ǫ−(t)〉, (12)

where |N 〉 =∏N
j=1 |nj〉, |N + 1〉 =∏N

j=1 |nj + 1〉, and

|ǫ+(t)〉 =
∑

Cα
nj
cos (g̃t

N
∏

j=1

√

nj + 1)|N 〉,

|ǫ−(t)〉 = − i
∑

Cα
nj
sin (g̃t

N
∏

j=1

√

nj + 1)|N + 1〉. (13)

4. Reduced density operator for the atom and the field

The time-evolved state of the two-level atom–multimode field interaction considered in

section 3 is a dynamical quantum state (12) in a 2×∞ Hilbert space. However, the

atom-field interaction is such that the dynamics of the composite pure system can be

reduced onto an effective 2×2 mapped state. This is due to the fact that the atomic

transitions in the two-level system reduces the interacting field states to superpositions

of the Fock states |N 〉 and |N + 1〉. We introduce two orthonormal basis states,

|ξ1〉 = (1/δ1)|ǫ+(t)〉, (14)

and

|ξ2〉 =
1

√

1− |A|2

[ |ǫ−(t)〉
δ2

− A
|ǫ+(t)〉
δ1

]

, (15)

where δ1 =
√

〈ǫ+(t)|ǫ+(t)〉, δ2 =
√

〈ǫ−(t)|ǫ−(t)〉, and A = 〈ǫ+(t)|ǫ−(t)〉/δ1δ2.

The time-evolved state in the orthonormal 2×2 Hilbert space is given by

|ψ(t)〉 = δ1|e〉|ξ1〉+ δ2
√

1− |A|2|g〉|ξ2〉+ δ2A|g〉|ξ1〉. (16)

The density operator corresponding to the state (12) using (16) is

ρ(t) = |ψ(t)〉〈ψ(t)|
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=











δ21 0 δ1δ2A δ1δ2β

0 0 0 0

δ1δ2A
∗ 0 δ22 |A|2 δ22Aβ

δ1δ2β 0 δ22A
∗β δ22β

2











, (17)

where β =
√

1− |A|2, δi = δ∗i (i = 1, 2), and A = −A∗. The density matrix can be

numerically calculated by evaluating δi (i=1,2) and A, provided the properties of the

interacting coherent field are known. The 4×4 mapped density matrix has rank 3.

Similar rank-3 density matrices are also seen in other forms of atom-photon interaction

where there is a mapping of states from the atomic to the photonic subsystem [46]. The

atomic and the field subsystems at time t can be obtained as reduced density matrices

by tracing the correlated density matrix, ρ(t) over the field and the atomic variables,

respectively.

The mapping of the (2×∞) infinite level system onto an effective 2×2 system is

possible for closed pure state dynamics of the atom-photon system, where the effective

Schmidt rank of the composite system is governed by the lower dimension of the two

subsystems. For dissipating open systems, the mixed state dynamics can be reduced by

optical truncation of the infinite dimensional field using quantum engineered operations

called quantum scissors [34]. Let us consider a dissipative nonunitary evolution of the

density matrix under phase damping of the atomic system. The environment-induced

decohering open system can be written in its Lindblad form [47] as

ρ̇(t) = − i

~
[H, ρ(t)] +

γ

2
(σzρ(t)σz − ρ(t)) , (18)

where γ is the phase decoherence parameter, and σz = |e〉〈e| − |g〉〈g|. The nonunitary,

mixed state evolution represented by equation (18) does not allow solutions that can be

mapped from the infinite level atom-photon interaction to an equivalent 2×2 state. The

infinite-level problem for mixed states can be reduced using suitable optical truncation

of the interacting field. Using quantum scissors, the N -mode input coherent state can

be written as

|ψ′
f(0)〉 =

1

N
N
∏

j=1

|α′
j〉 =

1

N
k
∑

n1,n2,...,nN=0

Cα
nj

N
∏

j=1

|nj〉, (19)

where the infinite summation over all number states has been truncated to summation

over k states. N is the new normalization constant. This reduces the infinite dimensional

atom-photon interaction to a reduced 2×k composite state problem. For non-dissipative

pure state dynamics, it can be shown that, for a suitable choice of k, the dynamics of

the truncated 2× k state is equivalent to that of the mapped 2× 2 system, derived in

(16). For a single-mode field, truncated to k states, the following simplifications can be

made:

[Hint, ρ(t)] =
k−1
∑

i=0

√
i+ 1 (g̃ |e, i〉〈g, i+ 1|+H.c.) , (20)
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γ

2
(σzρ(t)σz − ρ(t)) =

k
∑

m=k/2+1

k/2
∑

l=0

− γ (|e, l〉〈g, k|+H.c.) . (21)

In the composite atom–number state basis, the density matrix ρ(t) can be written as

ρ(t) =

k/2
∑

i=0

k/2
∑

j=0

cij(t)|e, i〉〈e, j|+
k
∑

i=k/2+1

k
∑

j=k/2+1

cij(t)|g, i〉〈g, j|

+

k/2
∑

i=0

k
∑

j=k/2+1

cij(t)|e, i〉〈g, j|+H.c. (22)

Using the form of the density matrix (22) in the atom–number state representation, the

Lindblad equation (18) can be written in the form

ρ̇(t) = Lρ(t), (23)

where L is the superoperator of the dynamic nonunitary mapping. Solving equation (23)

for a known initial state ρ(0), and a suitable truncation number k, we can obtain the

final dephased state of the atom-photon interaction (with dissipation). This final state,

ρ(t), can then be used to calculate the quantum correlation properties of the composite

system.

5. Correlation dynamics of the atom-field system

The quantum correlation properties of the reduced 2×2 atom-field system (16),

obtained by mapping the infinite-dimensional pure state interaction, can be seen by

studying the dynamics of the entanglement of formation. All entropic measures such as

quantum discord reduce to EOF for pure quantum states. For consistency in comparing

with mixed state dynamics, we also consider the evolution of the logarithmic negativity,

which is an upper bound for the EOF for pure states. Using single- and two-mode fields,

we check and compare the dynamics of EOF [E(ρ)] and LN [L(ρ)], defined in section 2.

Figure 1 shows the evolution of the EOF and LN as a function of the scaled evolution

time (τ ≡ g̃t), for a single-mode initial coherent field, with average photon number, n̄

= 10. We observe that reduced atom-photon composite system is highly correlated. At

times, τ ≈ 2.0, the system is maximally entangled. The bipartite correlation properties

of the infinite-dimensional atom-photon interaction is captured by the reduced dynamics

of the mapped system. Since the mapping retains the unitary evolution or pure state

dynamics of the composite system, all entropic correlations of the bipartite system can

be captured using the EOF.

In figure 2, we plot the time evolutions of the EOF and LN, for a two-mode

initial field with average photon numbers, n̄1 = n̄2 = 10, as a function of the scaled

evolution time (τ). The EOF, as expected, is bounded above by LN, similar to the

correlation bound observed for the case of initial single-mode field. The oscillatory and

discontinuous nature of the quantum correlations in the two-mode case is due to the fact

that the collapse and revival of Rabi oscillations occur rapidly in short intervals [48]. QD
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0 2 4 6 8 10τ
0

0.2

0.4

0.6

0.8

1
E(ρ)
L(ρ)

Figure 1. Time evolution of quantum correlations, EOF [E(ρ)] and LN [L(ρ)], in

the two-level atom interacting with a single-mode field, with average photon number,

n̄ = 10. τ ≡ g̃t is the scaled dimensionless time. The dynamics of EOF (black

continuous line) and LN (red dashed line) show that the system is highly correlated

and is maximally entangled around τ ≈ 2.0. LN forms a tight upper bound on EOF,

which for pure states is equal to the entropy of entanglement. Measures such as

quantum discord are equal to EOF for the pure state dynamics.

0 2 4 6 8 10τ
0

0.2

0.4

0.6

0.8

1

E(ρ)
L(ρ)

Figure 2. Time evolution of EOF [E(ρ)] and LN [L(ρ)] in the two-level atom

interacting with a two-mode field, with average photon numbers, n̄1 = 10, and n̄2 = 10.

LN (red dashed line) forms an upper bound on EOF (black continuous line), which is

equal at all times to QD.

is equal to EOF at all times since the dynamics is unitary (pure). Hence, the increase

in the number of modes does not qualitatively affect the dynamics of entanglement in

the atom-photon system.

We next consider the pure state dynamics of the optically truncated, quantum

scissored state given by relation (22), with γ = 0. We probe different values of k for

which the pure, optically truncated 2×k states attempt to simulate the dynamics of the

mapped 2×2 system given by relation (16). Figure 3 shows the evolution of the EOF for

the infinite optical field (k = ∞) mapped to the reduced 2×2 state (16) in comparison

to the optically truncated 2×k systems (22), corresponding to k = 12, 16, and 20, for

a single-mode field with average photon number, n̄ = 10. We observe that at k = 20,

the optically truncated, quantum scissored state effectively simulates the correlation

dynamics of the reduced infinite system. For calculations involving dissipative mixed

state dynamics in the following section, we have used k = 30.
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0.4
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0.8
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E(ρ)

k = ∞
k = 12
k = 16
k = 20

Figure 3. Dynamics of EOF in the two-level atom interacting with a single-mode

field, with average photon number n̄ = 10, for different values of optical truncation

number k. The nontruncated mapped system corresponds to k = ∞ (red continuous

line). The truncated states are shown by blue dotted (k = 12), black dashed (k = 16),

and green dot-dashed (k = 20) lines. We observe that the evolution of EOF for k = 20

truncated state overlaps with that for the nontruncated mapped system.

6. Quantum correlation dynamics under atomic phase damping

The atomic phase damping in the atom-photon interaction can be suitably studied by

the dissipative nonunitary transformation of the composite density matrix governed by

the Lindblad equation (18). Such phase damping of the atomic subsystem may arise due

to elastic collisions in atomic vapor in trapped systems [49]. The evolution of the damped

system under nonunitary transformation is mixed, and the infinite-dimensional atom-

photon interaction is reduced to a 2×k state using optical truncation (22). For 2×k -

dimensional mixed states, logarithmic negativity is a computable measure of distillable

entanglement. In this regime, information-theoretic measures such as quantum discord

are no longer equal to bipartite entanglement. In this section, we study the effect of

atomic phase damping on the evolution of LN and QD, in the optically truncated,

finite-dimensional states. The robustness and sudden death of distillable entanglement

in arbitrary dimensional mixed states have been partly investigated in [50].

Figure 4 shows the dynamics of the quantum correlation measures, LN and QD,

under the effect of atomic dephasing. QD is numerically evaluated using relation (7) with

projective measurement done on the atomic subsystem. We observe that the quantum

correlations steadily decay with increase in the scaled dephasing parameter γ̃ (= γ/g̃) as

it evolves in time τ . Further, we observe that as time is increased, the LN in the system

decreases to values close to zero (around τ ≈ 10) for values of dephasing parameter γ̃

= 0.5 and 1.0. This implies that the distillable entanglement in the system vanishes at

times (τ ≥ 10) for high values of γ̃. However, the information-theoretic measure, QD,

does not vanish with increasing time, converging at a low value. Further, for zero or low

damping, there is distinct oscillatory characteristic for all the measures. This property

is reminiscent of the Rabi oscillations in the system.

To study the robustness of the correlation measures, we study the decay of quantum
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Figure 4. Dynamics of (a) LN [L(ρ)] and (b) QD [Q(ρ)], for a two-level atom

interacting with a single-mode field, with average photon number n̄ = 10, for different

values of the atomic phase damping: γ̃ = 1.0 (green down triangles), γ̃ = 0.5 (blue up

triangles), γ̃ = 0.2 (red circles), and γ̃ = 0.0 (black squares). γ̃ = γ/g̃, and τ = g̃t

are the scaled, dimensionless dephasing parameter and time, respectively. We observe

that with increase in the scaled dephasing parameter γ̃, the quantum correlations decay

faster with increase in the scaled time (τ).

correlations for highly correlated initial states. From figures 1 and 3, we see that

the composite atom-photon system is close to maximal entanglement at τ ≈ 2.0 for

undamped, pure unitary evolutions (γ̃ = 0.0). We apply a protocol whereby the decay

term leading to nonunitary evolution is activated at τ = 2.0. Hence, the system evolves

unitarily to a near maximally entangled state till τ = 2.0, when the atomic phase

damping is applied ,and the system nonunitarily decays to lower correlated states. The

decay of the different measures reflects the robustness of the quantum correlations under

atomic phase damping.
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γ∼  = 0.0

(b)

Figure 5. The same as figure 4, but now with atomic dephasing applied at time, τ =

2.0 (maroon dotted vertical line) onwards.

From figure 5, we observe that even for highly entangled initial states, the decay

of quantum correlation possesses certain characteristic features. For high values of

scaled atomic dephasing (γ̃ = 1.0), the LN reduces to values close to zero. Hence, the

system possesses no distillable entanglement. However, the decay of QD ensures that

some residual amount of quantum correlations always remains between the atomic and
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photonic subsystems.

Figure 6 shows a neat comparison between the different quantum correlation

measures for an undamped (γ̃ = 0.0) and a damped (γ̃ = 1.0) two-level atom interacting

with a single-mode coherent input with average photon number, n̄ = 10. The atomic

dephasing is applied at time, τ = 2.0. Hence, the effective initial field at the onset of

damping is almost maximally entangled. For the undamped system, the evolution is

unitary and the system is always pure during the dynamics. Hence, QD is equal to the

entanglement of formation and LN is an upper bound on these entropic measures. In case

of the damped system, the system evolution is nonunitary, dissipative and mixed due to

atomic dephasing induced by the environment. Hence, there is imminent decay of the

quantum correlations. Since QD is no longer entropically equivalent to entanglement,

the tight bound of LN over QD vanishes. Figure 6 shows that QD is more robust to

dephasing than LN. We observe that LN decreases at a greater rate and is quenched

with increase in time. QD decreases at a relatively slower late and is never completely

quenched in the dynamics. This shows that QD is robust even at dissipation rates that

lead to sudden death of distillable entanglement.

In figure 7, we show the effect of atomic phase damping on the collapse and

revival of Rabi oscillations in the system. It is known that the undamped JC model

exhibits distinct revival after the collapse of the initial system, which is the hallmark

of the nonclassical nature of photons. We observe that the dynamics of the quantum

correlations in the damped atom-photon system complement the collapse and revival of

the Rabi oscillations for a single-mode initial coherent field with photon number, n̄ =

10. From figure 4, it is evident that the oscillation in the correlation of the undamped

(γ̃ = 0.0) system, with increasing scaled time (τ), fades for higher dephasing parameter,

γ̃ > 0.0. This is evident in the gradual decay of the revival of Rabi oscillations with

increasing γ̃. For γ̃ = 1.0, the revival of Rabi oscillations is almost absent, and this is

manifested in the close to zero values of LN and QD for increasing time τ . This is an

0 2 4 6 8 10τ
0

0.2

0.4

0.6

0.8

1
L(ρ)
Q(ρ)

γ∼  = 1.0 γ∼  = 0.0

Figure 6. Comparison of LN (black squares) and QD (red circles) for the undamped

(γ̃ = 0.0) and the damped (γ̃ = 1.0) two-level atom interacting with a single-mode

field, with average photon number n̄ = 10. The atomic dephasing is applied for times,

τ > 2.0 (maroon dotted vertical line). We observe that LN decays more rapidly and

is less robust compared to QD for increasing τ in the presence of atomic dephasing.
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Figure 7. The collapse and revival of Rabi oscillations in a two-level atom interacting

with a single-mode field, with average photon number n̄ = 10, for different values of

atomic dephasing (γ̃). We observe that for greater damping, there is no revival, which

is reminiscent of the behavior of the quantum correlations.

interesting qualitative relation as the Rabi oscillations correspond to the difference in

atomic level populations whereas the quantum correlations correspond to the coherence

elements of the density matrix. The nonclassical feature of the interaction contained in

the density matrix elements is highlighted in the qualitatively similar oscillations of the

quantum correlations and population inversion. Hence, the nonclassical revival of Rabi

oscillations is ingrained in the atom-field quantum correlations.

7. Discussions

A generalized characterization and study of atom-field interaction is of great importance

for the practical implementation of the field of quantum information and computation.

A simple generalized JC model interacting with multimode coherent state input is able

to generate highly correlated quantum systems that may be put to use for performing

basic quantum protocols. The important qualification for such a model is the fact that

an interaction between a discrete two-level atomic system and a continuous variable

multimode quantum field can be mapped into an effective finite-dimensional bipartite

system interaction that contains the dynamics of the highly correlated atom-field system.

Such systems can also be suitably engineered using optical truncation to simulate

low-dimensional dynamics. This enables one to study dissipation induced by atomic
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dephasing in the atom-photon interaction. We observe that during the course of

the temporal evolution, the atom-field correlated system is maximally entangled at

certain scaled times. For dissipative mixed state dynamics, we observe that certain

information-theoretic quantum correlation measures are more robust than mixed state

entanglement. The oscillations of the atom-field correlations are closely related to the

observed phenomena of the collapse and revival of Rabi oscillations in such systems.

An important aspect of studying these models is the distinct possibility of

generating such bipartite interactions in the laboratory for investigating and applying

these correlated systems in future quantum tasks. Harnessing the power of quantum

correlations with respect to quantum tasks and protocols of the future depends strongly

on the ability to control, manipulate and address quantum systems with high precision

and coherence. Understanding the basic dynamics of quantum correlations in simple

atom-field interactions is of utmost importance in the realization of such controlled

quantum systems.
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