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HOW MANY EIGENVALUES OF A PRODUCT

OF TRUNCATED ORTHOGONAL MATRICES ARE REAL?

P. J. FORRESTER, J. R. IPSEN, AND S. KUMAR

Abstract. A truncation of a Haar distributed orthogonal random matrix gives rise to a ma-

trix whose eigenvalues are either real or complex conjugate pairs, and are supported within

the closed unit disk. This is also true for a product Pm of m independent truncated orthogonal

random matrices. One of most basic questions for such asymmetric matrices is to ask for the

number of real eigenvalues. In this paper, we will exploit the fact that the eigenvalues of Pm

form a Pfaffian point process to obtain an explicit determinant expression for the probability

of finding any given number of real eigenvalues. We will see that if the truncation removes

an even number of rows and columns from the original Haar distributed orthogonal matrix,

then these probabilities will be rational numbers. Finally, based on exact finite formulae, we

will provide conjectural expressions for the asymptotic form of the spectral density and the

average number of real eigenvalues as the matrix dimension tends to infinity.

1. Introduction

In the study of random real symmetric matrices, the notion of an orthogonally invariant

probability density function (PDF) is of primary importance. Let X be an N-by-N sym-

metric random matrix and let the PDF (with respect to the flat measure) be denoted P(X).

Orthogonal invariance means that

P(QTXQ) = P(X) (1.1)

for all real orthogonal matrices Q ∈ O(N). Since real symmetric matrices are diagonalised

by real orthogonal matrices, a corollary is that P depends only on the eigenvalues. The lat-

ter feature is to be combined with the fact that the volume element (dX) = ∏1≤i≤j≤N dXij,

when written in terms of the eigenvalues {λi} and eigenvectors {qi}, factorises according

to

(dX) = ∏
1≤i<j≤N

|λj − λi|(QTdQ), (1.2)
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where (QTdQ) is the invariant measure for the matrix of eigenvectors Q = [q1, . . . , qN ], see

e.g. [11, Eq. (1.11)]. One then has for the eigenvalue PDF the functional form

CNP (diag(λ1, . . . , λN)) ∏
1≤i<j≤N

|λj − λi|, (1.3)

where CN is a normalisation constant given by integration over the eigenvectors.

Now, suppose that when restricted to diagonal matrices, P(X) exhibits the further struc-

ture

P (diag(λ1, . . . , λN)) =
N

∏
l=1

w(λl). (1.4)

Important examples in random matrix theory include the classical Hermite, Laguerre, Ja-

cobi, and Cauchy matrix weights given by

e−TrX2
, detXαe−TrX

1X>0, det Xα det(1− X)β
10<X<1, and det(1+ X2)−γ,

respectively. Here 1J is the indicator function (i.e. 1J = 1 if J is true and 1J = 0 otherwise),

and the matrix inequality A > B for symmetric matrices A and B should be read as: ‘A− B

is positive definite’. Another example satisfying (1.4) is the family of PDFs

e− Tr V(X) with V(X) =
∞

∑
l=1

tlX
l

indexed by the infinite sequence {tl}∞
l=1, constrained only by suitable decay at infinity. We

remark that it is fundamental to random matrix theory that if the separation property (1.4)

holds, then the eigenvalue PDF (1.3) corresponds to a Pfaffian point process (see e.g. [11,

Ch. 6] and Section 4.1 below).

Rather than symmetric matrices, consider instead an N-by-N asymmetric random real

matrix, X. Now, real orthogonal matrices Q can no longer be used to transform X into

diagonal matrix form. However, a transformation to a block upper triangular form can still

be obtained according to the real Schur decomposition

X = Q(D(k) + T)QT. (1.5)

Here the superscript k labels the number of real eigenvalues (k must then have the same

parity as N, i.e. k ≡ N mod 2); the remaining N − k eigenvalues appear as complex

conjugate pairs. The matrix D(k) is block diagonal with the first k diagonal entries the real

eigenvalues of X, {λ1, . . . , λk}, and the next (N − k)/2 block entries the 2 × 2 real matrices

{Gs}s with complex eigenvalues {xs ± iys}s coinciding with the complex eigenvalues of X.

The matrix T is a strictly upper triangular matrix.
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Analogous to (1.2), in terms of these variables the volume element (dX) = ∏
N
i,j=1 dXij

transforms according to

(dX) = ∏
j<p

|λ(D
(k)
pp )− λ(D

(k)
jj )| (dT)(QTdQ)

k

∏
j=1

dλj

(N−k)/2

∏
s=1

dGs, (1.6)

where λ(D
(k)
pp ) refers to the eigenvalues of the (pp)th block entry of D(k). In particular, the

measure again factorises. Substituting (1.5) into (1.1) shows

P(QXQT) = P(D(k) + T),

so in the case that P is orthogonally invariant, the dependence on Q contributes only to

the normalisation of the eigenvalue PDF just as for symmetric matrices. On the other

hand, in distinction to the circumstance for real symmetric matrices, the calculation of the

eigenvalue PDF still requires that P be integrated over the triangular matrix T, giving in

place of (1.3) the expression

CN ∑
k

1

k! ((N − k)/2)!

∫

P(D(k) + T)(dT)
(N−k)/2

∏
s=1

δ (Gs − diag(xs ± iys)) (dGs)

× ∏
j<p

|λ(Dpp)− λ(Djj)|. (1.7)

Here, CN is a constant coming from integration over Q and the binomial type factor arises

from relaxing the ordering needed for (1.5) to be one-to-one (the sum over k includes only

terms with the same parity as N). It has been known since the work of Sinclair [35] that in

the circumstance that

∫

P(D(k) + T)(dT)
∫ (N−k)/2

∏
s=1

δ (Gs − diag(xs ± iys)) (dGs) =
k

∏
l=1

wr(λl)
(N−k)/2

∏
j=1

wc(xj, yj)

(1.8)

for some weights wr(λ) and wc(x, y), then (1.7) corresponds to a two-component — the

real and complex eigenvalues — Pfaffian point process. However, the choices of P which

give rise to (1.8) are far more restrictive than those for symmetric matrices permitting the

factorisation (1.4).

The first identified case of (1.8) was that of standard real Gaussian matrices, corre-

sponding to P(X) proportional to e−TrXT X [28, 8]. Some years later, the product matrices

X = X−1
1 X2 and X = X1X2 with each Xi a standard real Gaussian matrix, were shown to be

further examples [3, 16], as was X defined as an N × N sub-block of a (N + L)× (N + L)

real orthogonal matrix [24]. Ipsen and Kieburg [22] extended these results to an arbitrary
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sized matrix product

Pm = X1X2 · · · Xm (1.9)

with each Xi either a standard real Gaussian matrix or a truncation of a real orthogonal

matrix. For a product of real Gaussian matrices, probabilistic and statistical quantities

of the Pfaffian point process formed by the eigenvalues were calculated and analysed in

the recent work [14]; see also [33]. It is our purpose in the present work to undertake an

analogous study of the Pfaffian point process for the eigenvalues of the matrix product (1.9)

with each Xi the truncation of a real orthogonal matrix. A first step in this direction has

been made in another recent work [15], in which determinantal formulae were given for the

probability that all eigenvalues are real, and their arithmetic properties were analysed. It

was also seen the probability that all eigenvalues are real tends to unity when the number

of factors tends to infinity; this is part of much general result expected to hold for products

of random matrices [27, 12, 20, 19, 2, 21, 31, 32].

To undertake this study requires first revisiting the work of [22] on the eigenvalue PDF

for products of truncations of real orthogonal matrices. It turns out that the form given

therein does not explicitly isolate the functional forms wr and wc in (1.8). Rather it treats the

real and complex eigenvalues on an equal footing, which is not optimal for our purposes.

In Section 2 we provide the functional form for the eigenvalue PDF of a product of m

matrices given as N × N sub-blocks of (N + L)× (N + L) real orthogonal Haar distributed

random matrices. This generalises the m = 1 result found by Khoruzheko, Sommers and

Zyczkowski [24]. Under the constraint that there are exactly k real eigenvalues (k of the

same parity as N), this PDF with λl ∈ (−1, 1) and (xj, yj) ∈ D+, where D+ denotes the

open half unit disk |z| < 1 and y > 0, is equal to

KN,L

k! ((N − k)/2)!

∣

∣

∣
∆
(

{λl}k
l=1 ∪ {xj ± iyj}(N−k)/2

j=1

)
∣

∣

∣

k

∏
j=1

w(λj; L)
(N−k)/2

∏
j=1

2
(

w
(

(xj, yj); L
))2

,

(1.10)

where

∆
(

{zl}p
k=1

)

= ∏
1≤i<j≤p

(zi − zj) (1.11)

denotes the Vandermonde determinant. With

vol (O(p)) =
2pπp(p+1)/4

∏
p
j=1 Γ(j/2)

(1.12)
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being the volume of the orthogonal group, we have ([24, Below eq. (6)] contains a typo,

which was corrected in [30])

KN,L =
vol (O(L)) vol (O(N))

vol (O(L + N))

(

(2π)L

L!

)N/2

=

(

2L

L!

)N/2 N

∏
j=1

Γ( L+j
2 )

Γ( j
2)

. (1.13)

Furthermore, the weight function is given by

w(z; L) =







(

L(L−1)
2π |1 − z2|L−2

∫ 1
2|Im z|/|1−z2|(1 − t2)(L−3)/2dt

)1/2
, L > 1

(

1
2π

)1/2 |1 − z2|−1/2, L = 1
. (1.14)

Our main result, stated in Theorem 2.1, identifies both wr and wc in (1.7). However,

as already present in the study of the eigenvalues of the product (1.8) for each Xi a real

standard Gaussian [14], the expression for wc is too complicated for further analysis (unless

m = 1) so we restrict attention to the computation of statistical and probabilistic properties

of the real eigenvalues. In Section 3 we give a determinantal formula (with entries given

by certain Meijer G-functions) for the probabilities pPm

N,k that the product matrix (1.9) has

exactly k real eigenvalues. In the case k = N, recent work [15] has demonstrated special

arithmetic properties of these probabilities. We further consider this theme, as well as some

questions relating to the large N asymptotics. In Section 4 the explicit form of the k-point

correlation function for the real eigenvalues is presented, with the case k = 1 corresponding

to the density of the real eigenvalues. This allows various scaling limits to be analysed, and

a formula for the expected number of real eigenvalues to be presented.

2. The eigenvalue PDF

Consider an (Li + N) × (Li + N) real orthogonal matrix chosen with Haar measure.

Denoting by Xi an N × N sub-block, it is straightforward to show (see e.g. [11, §3.8.2])

that XT
i Xi will have N − Li eigenvalues equal to unity for N > Li. This implies that the

distribution of Xi is then singular. On the other hand, for N ≤ Li the distribution is

absolutely continuous with density [10, 24]

P(X) = CN,Li
det(1− XT

i Xi)
(Li−N−1)/2. (2.1)

with

CN,Li
=

(vol O(Li))
2

vol O(Li + N)vol O(Li − N)
=

1

πN2/2

N

∏
j=1

Γ( Li+j
2 )

Γ( Li−N+j
2 )

(2.2)

Not surprisingly, the calculation of the eigenvalue PDF of Xi is much simpler in this setting

(compare the derivation of (1.10) given in [30] to that given in [9], with the latter provid-

ing the derivation of (1.10) that was sketched in [24]). Since the final functional form is
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insensitive to this detail, we will proceed with our derivation of the eigenvalue PDF for the

product (1.9) assuming that each Xi has a density (2.1).

Theorem 2.1. Consider the matrix product (1.9) with each Xi the N × N sub-block of an (Li +

N) × (Li + N) real orthogonal matrix. Given that there are k real eigenvalues, where k is of the

same parity as N, the eigenvalue PDF, supported on the same domain as (1.10), is

∏
m
i=1 KN,Li

k! ((N − k)/2)!

∣

∣

∣
∆
(

{λl}k
l=1 ∪ {xj ± iyj}(N−k)/2

j=1

)∣

∣

∣

k

∏
j=1

w
(m)
r (λj)

(N−k)/2

∏
j=1

w
(m)
c ((xj, yj)) (2.3)

where KN,Li
is given by (1.13),

w
(m)
r (λ) =

∫

(0,1)m
dλ(1) · · · dλ(m)δ(λ − λ(1) · · · λ(m))

m

∏
l=1

w(λ(l); Ll) (2.4)

with

w(λ; L) =
(1 − λ2)L/2−1

√
2π

(

L
Γ(1/2)Γ ((L + 1)/2)

Γ(L/2)

)1/2

, (2.5)

and

w
(m)
c ((x, y)) =

∫ 1−x2−y2

0
dδ

δ
√

δ2 + 4y2
W

([

µ+ 0

0 µ−

])

(2.6)

with

µ± = 1
2

(

±|δ|+ (δ2 + 4(x2 + y2))2
)

(2.7)

and

W(G) =
m

∏
i=1

Li(Li − 1)

π

∫

|G(i)|<1
(dG(i))det

(

I2 − G(i)G(i)T
)(Li−3)/2

δ(G − G(1) · · · G(m)).

(2.8)

Proof. According to (2.1), and with CN,Li
given by (2.2) (under the assumption that N ≤ Li)

the joint probability measure for {X, X1, . . . , Xm} is

δ(X − X1 · · · Xm)
m

∏
i=1

CN,Li
det

(

I − XT
i Xi

)(Li−N−1)/2
(dXi)(dX). (2.9)

For the matrices Xi we follow the strategy used in [15, 14] and use a generalised real Schur

decomposition

Xi = Qi(D
(k)
i + Ti)Q

−1
i+1, (i = 1, . . . , m), (2.10)

where Qm+1 := Q1. With O∗(N) deformed to be the set of matrices in O(N) with the first

entry in each column positive, each Qi in (2.10) is a real orthogonal matrix in O∗(N)/O∗(2)(N−k)/2.

Each matrix D
(k)
i is a block diagonal matrix with the first k diagonal entries scalars {λ

(i)
1 , . . . , λ

(i)
k }
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and the next (N − k)/2 block diagonal entries 2 × 2 matrices {G
(i)
s }(N−k)/2

s=1 . The matrices

Ti are each strictly upper triangular.

Introduce the block diagonal product D = D1 · · · Dm and denote the first k diagonal

entries {λt := λ
(1)
t · · · λ

(m)
t }k

t=1, and the latter (N − k)/2 block 2 × 2 matrices {Gs :=

G
(1)
s · · · G

(m)
s }(N−k)/2

s=1 . We know that the Jacobian for the change of variables is then [21,

Prop. A.26]

m

∏
l=1

(dXl) = ∏
j<p

|λ(Dpp) − λ(Djj)|
m

∏
l=1

(dTl)(Q
T
l dQl)

m

∏
l=1

(

k

∏
j=1

dλ
(l)
j

(N−k)/2

∏
s=1

dG
(l)
s

)

, (2.11)

which generalises (1.6). It follows that the PDF for {λt}k
t=1 ∪ {Gs}(N−k)/2

s=1 is equal to

∏
m
i=1 CN,Li

k! ((N − k)/2)! ∏
j<p

|λ(Dpp)− λ(Djj)|
k

∏
j=1

∫

dλ
(1)
j · · · dλ

(m)
j δ(λj − λ

(1)
j · · · λ

(m)
j )

×
(N−k)/2

∏
s=1

∫

(dG
(1)
s ) · · · (dG

(m)
s )δ(Gs − G

(1)
s · · · G

(m)
s )

×
m

∏
i=1

∫

(dTi)(Q
T
i dQi)det(I − XT

i Xi)
(Li−N−1)/2, (2.12)

where as in (1.7) and (1.10), the combinatorial prefactor results from relaxing the ordering

on the eigenvalues required to make (1.5) one-to-one.

From the definitions, we see that

∏
j<p

|λ(Dpp)− λ(Djj)| =
∣

∣

∣
∆
(

{λl}k
l=1 ∪ {xj ± iyj}(N−k)/2

j=1

)∣

∣

∣

(N−k)/2

∏
j=1

1

2yj
(2.13)

and we know too [8] that an orthogonal similarity transformation can be used to bring each

Gµ into the form
[

xµ bµ

−cµ xµ

]

,

with bµ, cµ > 0, showing that the eigenvalues are xµ ± iyµ with y2
µ = bµcµ. From this

latter point, we may change variables from the elements of Gµ to {xµ, yµ, δµ, θµ}, where

δµ = bµ − cµ and θµ parametrises the orthogonal similarity transformation. Integrating out

the latter, the Jacobian of the transformation is

4πyµ|δµ|
√

δ2
µ + 4y2

µ
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(see e.g. [11, Proof of Prop. 15.10.1 and Prop. 15.10.2]). Also, due to the left and right

orthogonal invariance each matrix Gs in (2.12) may be replaced by its singular values as

given in (2.7).

Taking into consideration the theory of the above paragraph, and noting in particular

the structure of (2.12), we see that (2.3) is true for general m ≥ 1 provided it is true for

m = 1. For m = 1, comparison of (2.3) and (2.6) with (1.10) and (1.14) shows that the task

is to verify that

∫ 1−x2−y2

0

δ((1 − µ2
+)(1 − µ2

−))
(L−3)/2

√

δ2 + 4y2
dδ = |1 − z2|L−2

∫ 1

2|Im z|/|1−z2|
(1 − t2)(L−3)/2dt, (2.14)

where µ± is given by (2.7). From the latter we can check

(1 − µ2
+)(1 − µ2

−) = (1 − x2 − y2)− δ2.

Also, changing variables s = (δ2 + 4y2)1/2 the integral on the LHS reads

∫ ((1−x2−y2)2+4y2)
1/2

2y

(

(1 − x2 − y2)2 + 4y2 − s2
)(L−3)/2

ds.

Setting s =
(

(1 − x2 − y2)2 + 4y2
)1/2

t = |1 − z2|t, this is seen to equal the RHS. �

Remark 2.2. The equation (2.9) is not valid for parameters Li < N since the density function

for Xi is then singular. To proceed, following [24, 9], let Yi be the Li × N rectangular matrix,

which when appended to the bottom of Xi gives the first N columns of the (Li + N)× (Li +

N) real orthogonal matrix. One then has that the joint distribution of {Xi, Yi} is given by

the distribution

c̃δ(XT
i Xi +YT

i Yi − IN) (2.15)

where the normalisation c̃ is given by [9, Eq. (2.0.15)]. The calculation is thus more compli-

cated due to the involvement of the auxiliary variables implied by Yi. For the case m = 1, all

the required working is given in [9, §4.2.2]. But as in our proof above for the cases Li ≥ N,

the structure of the analogue of (2.12), obtained by replacing det(I − XT
i Xi)

(Li−N−1)/2

therein by (2.15), and further integrating over Yi, we see that again (2.4) is true for m ≥ 1

conditional only on it being true for m = 1.

3. Probability of k real eigenvalues

3.1. The generating function as a Pfaffian. Use QN,k({λl}k
l=1, {xj ± iyj}(N−k)/2

j=1 ) to denote

the PDF (2.3). The probability pPm

N,k of there being precisely k real eigenvalues (k the same
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parity as N) is then

pPm

N,k =
k

∏
l=1

∫ +1

−1
dλl

(N−k)/2

∏
j=1

∫

D+

dxjdyjQN,k

(

{λl}k
l=1, {xj ± iyj}(N−k)/2

j=1

)

, (3.1)

where D+ = {(x, y) : x2 + y2 < 1 and y > 0} denotes the half unit disk. A fundamen-

tal feature of (3.1), which follows from the structure of (2.3), is that the corresponding

generating function

ZN(ζ) =
N

∑
k=0

k≡N mod 2

ζk pPm

N,k, (3.2)

can be written as a Pfaffian. This was observed by Sinclair in the case ζ = 1, and the details

of the necessary working can be found in [11, Prop. 15.10.3, N even] and [30, §4.3.1 N even

and §4.3.2 N odd]. The final result is reported in [14, Prop. 5]. We repeat it here, allowing

for minor changes in notation.

Proposition 3.1. Let {pl−1(x)}l=1,...,N be a set of monic polynomials, with pl−1(x) of degree l − 1.

Let

αj,k =
∫ 1

−1
dx w

(m)
r (x)

∫ 1

−1
dy w

(m)
r (y)pj−1(x)pk−1(y)sgn(y − x),

β j,k = 2i
∫

D+

dxdy w
(m)
c (x, y)

(

pj−1(x + iy)pk−1(x − iy)− pk−1(x + iy)pj−1(x − iy)
)

, (3.3)

and

µk =
∫ 1

−1
w
(m)
r (x)pk−1(x)dx. (3.4)

For N even

ZN(ζ) =

(

m

∏
i=1

KN,Li

)

Pf
[

ζ2αj,l + β j,l

]

j,l=1,...,N
(3.5)

while for N odd

ZN(ζ) = ζ

(

m

∏
i=1

KN,Li

)

Pf

[

[ζ2αj,l + β j,l ] [µj]

[− µl ] 0

]

j,l=1,...,N

. (3.6)

3.2. Skew orthogonal polynomials. With w
(m)
r given by (2.4), the double integral defin-

ing αj,k can be computed in terms of a particular Meijer G-function [15]; see (3.14) below.

On the other hand, a direct computation of β j,k does not appear possible; recall the def-

inition (2.6) of w
(m)
c therein. Fortunately, an indirect evaluation is possible, provided the
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monic polynomials {pl−1(x)} are appropriately chosen. This follows from the fact that by

choosing [14, Remark 7]

p2n(z) = z2n, p2n+1(z) = z2n+1 −
〈

Tr P2
m

〉

2n×2n
z2n−1 (3.7)

the matrix [ζ2αj,l + β j,l ] in (3.5) and (3.6) in that case ζ = 1 becomes block diagonal, with

blocks
[

0 hj−1

−hj−1 0

]

, hj−1 = α2j−1,2j + β2j−1,2j, (3.8)

(j = 1, . . . , [N/2]) and the last diagonal entry 0 for N odd. The choice (3.7) specifies

{pl−1(x)} as skew orthogonal polynomials. This structure is the key in progressing from

the Pfaffian expressions to the computation of the probabilities pPm

N,k, and as we will see

later, the correlation functions.

Lemma 3.2. Consider the product (1.9). Let each Xi be a 2n × 2n sub-block of an (Li + 2n) ×
(Li + 2n) real orthogonal matrix chosen with Haar measure. We have

〈

Tr P2
m

〉

2n×2n
=

m

∏
i=1

2n

Li + 2n
(3.9)

and consequently the skew orthogonal polynomials (3.7) read

p2n(z) = z2n, p2n+1(z) = z2n+1 −
(

m

∏
i=1

2n

Li + 2n

)

z2n−1. (3.10)

Furthermore, the normalisation in (3.8) is given by

hl =
m

∏
i=1

Li!(2l)!

(Li + 2l)!
. (3.11)

Proof. Averaging over individual elements (Xi)jk of each Xi gives zero, while

〈

(

(Xi)jk

)2
〉

=
1

Li + 2n
. (3.12)

This latter fact follows from each element of Xi being an element of a (Li + 2n)× (Li + 2n)

Haar distributed real orthogonal matrix, and knowledge of the distribution of the moments

of the latter; see e.g. [7, Eq. (5.2) with p = 1]. The only time no individual terms (Xi)jk

appear in P2
m is on the diagonal, so we have

〈

Tr P2
m

〉

=
2n

∑
l=1

〈

((Pm)ll)
2
〉

X1,...,Xm

.
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Now (Pm)ll consists of a sum of a total of (2n)m−1 terms, each of which is a product of m

elements, one from each of X1, . . . , Xm. Only the square of each of these terms is non-zero

in the averaging. Using (3.12) shows

〈

Tr P2
m

〉

= (2n)m−1
2n

∑
l=1

m

∏
i=1

1

Li + 2n
,

which is (3.9). Substituting in (3.7) gives (3.10).

In relation to the normalisation, from the definition (3.2) we must have ZN(1) = 1.

We know that use of the skew orthogonal polynomials reduces [αj,l + β j,l ]j,l=1,...,N to block

diagonal form with blocks (3.8). Use of (3.5) then gives that for N even

1 =

(

m

∏
i=1

KN,Li

)

N/2

∏
l=1

hl−1.

Recalling (1.13), this implies (3.11). �

3.3. Determinant formula. The skew orthogonal polynomials (3.10) are even and odd

when their degrees are even and odd respectively. We can check from (3.3) that this im-

plies αj,l + β j,l = 0 unless the parity of j and l is opposite. The elements in the Pfaffian are

thus vanishing in a chequerboard pattern, which allows for a reduction to a determinantal

formula of a matrix with half the size as familiar from earlier studies [17, 18, 14]. For N

even, we have

ZN(ζ) =

(

m

∏
i=1

KN,Li

)

det
[

ζ2α2j−1,2l + β2j−1,2l

]

j,l=1,...,N/2
(3.13)

and for N odd

ZN(ζ) = ζ

(

m

∏
i=1

KN,Li

)

det
[[

ζ2α2j−1,2l + β2j−1,2l

] [

µ2j−1

]]

j=1,...,(N+1)/2,
l=1,...,(N−1)/2

. (3.14)

Let us denote by aj,k the corresponding integral in (3.3) with pl(x) = xl. Then with

Gm+1,m
2m+1,2m+1 denoting a particular Meijer G-function (see e.g. [29]) we know from [15, Eq.

(2.14)] that

a2j−1,2k = α2j−1,2k

∣

∣

∣

pl(x)=xl
=

( m

∏
ℓ=1

LℓΓ(
Lℓ

2 )Γ(
Lℓ+1

2 )

2
√

π

)

× Gm+1,m
2m+1,2m+1

( 3
2 − j, . . . , 3

2 − j; L1
2 + k, . . . , Lm

2 + k, 1

0, k, . . . , k; 3−L1
2 − j, . . . , 3−Lm

2 − j

∣

∣

∣

∣

1

)

. (3.15)

It follows that α2j−1,2l in (3.13) and (3.14) evaluated using the skew orthogonal polyno-

mials (3.10) is given as a simple linear combination of a2j−1,2k and a2j−1,2k−2, and thus is
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known explicitly in terms of Meijer G-functions. Moreover, use of the formula for hj−1 in

(3.8) together with (3.11) and the skew orthogonality

α2j−1,2j + β2j−1,2l = 0 (j 6= l)

allows β2j−1,2l to be eliminated, and we know too from [15, Eq. (2.15)] that with p2j−2(x) =

x2j−2,

µ2j−1 =
m

∏
ℓ=1

(

LℓΓ(
Lℓ

2 )Γ(
Lℓ+1

2 )

2
√

π

)1/2
Γ(j − 1

2)

Γ( Lℓ

2 + j − 1
2)

. (3.16)

As a consequence all entries in the determinant formulas (3.13) and (3.14) can be made

explicit.

Theorem 3.3. Let KN,Li
be given by (1.13), a2j−1,2k by (3.15), µ2j−1 by (3.16) and hj−1 by (3.11).

Setting

bj,k(ζ) := (ζ2 − 1)

(

a2j−1,2k −
(

m

∏
i=1

2k − 2

Li + 2k − 2

)

a2j−1,2k−2

)

+ hj−1δj,k, (3.17)

where a•,−2 = 0, we have for N even that

ZN(ζ) =

(

m

∏
i=1

KN,Li

)

det[bj,k(ζ)]j,k=1,...,N/2 (3.18)

while for N odd

ZN(ζ) =

(

m

∏
i=1

KN,Li

)

det

[

[bj,k(ζ)] j=1,...,(N+1)/2
k=1,...,(N−1)/2

[µ2j−1]j=1,...,(N+1)/2

]

. (3.19)

The importance of the explicit formulae for the generating functions (3.18) and (3.19)

provided by Theorem 3.3 is evident from (3.2); we can find the probability of finding ex-

actly k real eigenvalues by expanding the generating function (3.18) if N even and (3.19)

otherwise. This approach is remarkably general as it is valid for any number of matrices

m ≥ 1, any matrix dimension N ≥ 1, and any truncations L1, . . . , Lm ≥ 0. Numerical

computations of these probabilities (using mathematical software such as Mathematica

or Maple) is relatively fast for moderate m. Nonetheless, it is interesting to look for evalu-

ations of the Meijer G-function in (3.15) in terms of more elementary functions. Let us first

consider the simplest case, that is the Meijer G-function in (3.15) with m = 1. Computer
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algebra yields

G2,1
3,3

( 3
2 − j; L1

2 + k, 1

0, k; 3−L1
2 − j

∣

∣

∣

∣

1

)

=
Γ(k)

Γ(k + L1
2 )

Γ(j − 1
2)

Γ(j − 1
2 +

L1
2 )

− 1

k Γ( L1
2 )

Γ(j + k − 1
2)

Γ(j + k − 1
2 +

L1
2 )

3F2

(

k, j + k − 1
2 , 1 − L1

2

k + 1, j + k − 1
2 +

L1
2

∣

∣

∣

∣

1

)

, (3.20)

where

3F2

(

a1, a2, a3

b1, b2

∣

∣

∣

∣

x

)

:=
∞

∑
ℓ=0

(a1)ℓ(a2)ℓ(a3)ℓ
(b1)ℓ(b2)ℓ

xℓ

ℓ!
(3.21)

is a hypergeometric sum. The important observation is that 1 − L1
2 appears as an upper-

index in the hypergeometric function in (3.20). Thus, if L1 is a positive even integer then the

upper-index 1 − L1
2 is a negative integer which implies that that hypergeometric sum (3.21)

terminates. Consequently, the Meijer G-function (3.20) becomes a finite sum over ratios of

gamma functions. More precisely, we have [15, eq. (3.2)]

G2,1
3,3

( 3
2 − j; L1

2 + k, 1

0, k; 3−L1
2 − j

∣

∣

∣

∣

1

)

=
Γ(j − 1

2)

Γ( L1
2 )Γ(L1 + j + k − 3

2)

L1/2

∑
ℓ=1

Γ(j + k + ℓ− 3
2)Γ(L1 − ℓ)

Γ(j + ℓ− 1
2 )Γ(

L1
2 − ℓ+ 1)

(3.22)

for L1 even. Furthermore, we see that the right-hand in (3.22) is a rational number for any

j, k, L1
2 ∈ Z+. Using this result in Theorem 3.3 leads to the conclusion that all probabilities

pP1

N,k are rational numbers as long as L1 is an even integer. In fact, it turns out that this

property is even more general: the probabilities pPm

N,k for any m is a rational number as long

as L1, . . . , Lm are even integers. This can be seen using the method presented in [15, §3]

inspired by a related technique used for Gaussian matrices [26]. The main idea behind this

method is to use the general three-term recurrence relation for Meijer G-functions [29]

Gm,n
p,q

(a1, . . . , ap

b1, . . . , bq

∣

∣

∣
z
)

=

Gm,n
p,q

(a1, . . . , ap−1, ap − 1

b1, . . . , bq

∣

∣

∣
z
)

+ Gm,n
p,q

( a1, . . . , ap

b1, . . . , bq−1, bq + 1

∣

∣

∣
z
)

ap − bq − 1
(3.23)

for n < p and m < q; together with evaluations [29, 15]

Gm+1,m
2m+1,2m+1

( 3
2 − j, . . . , 3

2 − j; ℓ1 + k, . . . , ℓm + k, 1

0, k, . . . , k; 3
2 − j, . . . , 3

2 − j

∣

∣

∣
1
)

= 0, (3.24)

Gm+1,m
2m+1,2m+1

( 3
2 − j, . . . , 3

2 − j; k, . . . , k, 1

0, k, . . . , k; 3
2 − j − ℓ1, . . . , 3

2 − j − ℓm

∣

∣

∣
1
)

=
m

∏
i=1

Γ(j − 1
2)

Γ(j − 1
2 + ℓi)

(3.25)

for non-negative integers ℓ1, . . . , ℓm, when not all of them are 0. These three formulae allow

us to construct a systematic reduction scheme for the Meijer G-functions which appear
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in (3.15); we refer to [15, §3] for the details of this reduction scheme. As an example, for

m = 2 with L1, L2 being positive even integers, the Meijer G-function in (3.15) reads

G3,2
5,5

( 3
2 − j, 3

2 − j; L1
2 + k, L2

2 + k, 1

0, k; 3−L1
2 − j, 3−L2

2 − j

∣

∣

∣

∣

1

)

=
L1/2

∑
p=1

L2/2

∑
q=1

Γ(L1 − p)Γ(j + k + p − 3
2)

Γ( L1
2 )Γ(

L1
2 − p + 1)Γ(L1 + j + k − 3

2)

× Γ(L2 − q)Γ(j + k + q − 3
2)

Γ( L2
2 )Γ(

L2
2 − q + 1)Γ(L2 + j + k − 3

2)

(

Kp,q
j,k +Kq,p

j,k +
Γ(j − 1

2)
2

Γ(p + j − 1
2 )Γ(q + j − 1

2)

)

(3.26)

with

Kp,q
j,k =

Γ(j − 1
2)

Γ(p)Γ(p + q + j + k − 3
2)

q

∑
ℓ=1

Γ(j + k + ℓ− 3
2)Γ(p + q − ℓ)

Γ(j + ℓ− 1
2)Γ(q − ℓ+ 1)

. (3.27)

We note that KL1/2,L1/2
j,k is equal to the right-hand side in (3.22); this is part of the general

structure of the reduction scheme in which evaluation of the Meijer G-function for a given

value of m will include expressions for lower values of m. Table 1 shows explicitly some

probabilities pPm

N,k for finding k real eigenvalues.

Table 1. Probabilities pPm

N,k for N = 2, 3, 4, m = 1, 2, 3 and L1 = L2 = L3 = 4.

m = 1 m = 2 m = 3

pPm
2,0

11
35 ≈ 0.3143 30 641

128 625 ≈ 0.2382 29 654 713
157 565 625 ≈ 0.1882

pPm
2,2

24
35 ≈ 0.6857 97 984

128 625 ≈ 0.7618 127 910 912
157 565 625 ≈ 0.8118

pPm
3,1

73
105 ≈ 0.6952 1 0968 107

3 472 875 ≈ 0.5667 18 344 527 259
38 288 466 875 ≈ 0.4791

pPm
3,3

32
105 ≈ 0.3048 1 504 768

3 472 875 ≈ 0.4333 19 943 919 616
38 288 466 875 ≈ 0.5209

pPm
4,0

421
2205 ≈ 0.1909 24 149 151 605 489

214 040 075 720 625 ≈ 0.1128 1 431 169 011 017 974 588 501
19 078 916 984 518 815 703 125 ≈ 0.0750

pPm
4,2

17 576
24 255 ≈ 0.7246 152 493 653 488 832

214 040 075 720 625 ≈ 0.7125 140 868 762 431 563 179 004 928
209 868 086 829 706 972 734 375 ≈ 0.6712

pPm
4,4

2048
24 255 ≈ 0.0844 37 379 270 626 304

214 040 075 720 625 ≈ 0.1747 53 256 465 276 946 073 255 936
209 868 086 829 706 972 734 375 ≈ 0.2538

Above we have seen that the probability of finding k real eigenvalues is a rational num-

ber, pPm

N,k ∈ Q, if all L1, . . . , Lm are even integers. Thus, it is natural to ask if a similar

phenomenon is present if one (or more) of the truncations L1, . . . , Lm is an odd integer.

The answer to this question appears to be negative. It follows from [15, eq. (3.15)] that for
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m = 1 and L1 odd we have

G2,1
3,3

( 3
2 − j; L1

2 + k, 1

0, k; 3−L1
2 − j

∣

∣

∣

∣

1

)

=

L1−1
2

∑
p=1

k

∑
q=1

Γ(k)Γ(p + q)Γ(L1 − p − 1)Γ(j + k − q − 1
2 )

Γ( L1−1
2 )Γ( L1+1

2 − p)Γ(k − q + 1)Γ(j + k + L1 − 3
2)

×
(

1

Γ( 1
2)Γ(p + q + 1

2)
+

1

Γ(p + 1
2)Γ(q +

1
2)

)

. (3.28)

Consequently, the probability of k real eigenvalues will always be a polynomial in π−1 with

rational coefficients, e.g. for L1 = 5 we have

pP1
4,0 = 1 − 385 024

135 135

1

π
+

16 777 216

18 729 711

1

π2
. (3.29)

We have been unable to find a systematic reduction scheme for larger m when one (or

more) of the truncations L1, . . . , Lm is an odd integer. However, the result for probability

of all eigenvalues real, as derived in [15, §3] for m = 2, L1 = 1, L2 = 2, indicates that the

structure becomes more involved for larger m. For example, pP2
2,0 = 1 − (2G + 5)/(3π) and

pP2
2,2 = (2G + 5)/(3π), where G ≈ 0.915966 is the Catalan’s constant.

4. Eigenvalue density

4.1. Pfaffian structure. The Pfaffian formulae of Proposition 3.1 are indicative of the fact,

first identified in [22], that the eigenvalues of a product of truncated real orthogonal matri-

ces form a Pfaffian point process. This means that the k-point correlations between real-real,

real-complex and complex-complex eigenvalues are determined by correlation kernels de-

pending only on two variables, and the number of eigenvalues, but not k. For example,

focusing attention on the real eigenvalues, one has

ρreal
(k) (x1, . . . , xk) = Pf

[

Krr(xj, xl)
]

j,l=1,...,k
(4.1)

with correlation kernel

Krr(x, y) =

[

D(x, y) S(x, y)

−S(y, x) Ĩ(x, y)

]

. (4.2)

Here D(x, y) and Ĩ(x, y) are antisymmetric functions of x and y.

Significantly, the quantities in (4.2) are known explicitly in terms of skew orthogonal

polynomials. We will focus on S(x, y), which according to (4.1) and the anti-symmetry of

D(x, y) and Ĩ(x, y), determines the density of real eigenvalues according to

ρr
(k)(x) = S(x, x). (4.3)
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Proposition 4.1. We have

S(x, y) =
∫ 1

−1
(x − v)sgn(y − v)w

(m)
r (x)w

(m)
r (v)

N−2

∑
j=0

( m

∏
i=1

(Li + j)!

Li!j!

)

(xv)jdv, (4.4)

(cf. the corresponding result for Gaussian matrices [14, Eq. (4.9)]).

Proof. Let w
(m)
r (x) be given by (2.4). With {pj(x)} given by (3.10), define

qj(x) = w
(m)
r (x)pj(x) and τj(x) = − 1

2

∫ 1

−1
sgn(x − u)qj(u)du. (4.5)

In this notation, and introducing too hl as given by (3.11), we have that for N even (see e.g.

[30, §4.5])

S(x, y) = 2
N/2−1

∑
j=0

1

hj

(

q2j(x)τ2j+1(y)− q2j+1(y)τ2j(x)
)

. (4.6)

In the case of N odd, let µ2j−1 be given by (3.16) and set µ2j = 0. Then with

q̂j(x) = qj(x)− µj+1

µN
qN−1(x) and τ̂j(x) = − 1

2

∫ 1

−1
sgn(x − u)q̂j(u)du (4.7)

we have (see e.g. [30, §4.6])

S(x, y) = 2
(N−1)/2−1

∑
j=0

1

hj

(

q̂2j(x)τ̂2j+1(y)− q̂2j+1(x)τ̂2j(y)
)

+
qN−1(x)

µN
. (4.8)

Inserting the explicit form of the skew orthogonal polynomials and their normalisation

gives (4.4). �

We know (e.g. from [30, §4.6]) that the k-point correlation for the real-complex and the

complex-complex eigenvalues has the same formal structure as (4.1) and (4.2), with the ma-

trix elements in (4.2) again permitting a single sum expression in terms of skew orthogonal

polynomials. The simplest of these is S(w, z) for the complex-complex correlation, where

after simplification of the general formula we find

S(w, z) = 2i
(

w
(m)
c ((u, v)) w

(m)
c ((x, y))

)1/2 N−2

∑
j=0

( m

∏
i=1

(Li + j)!

Li!j!

)

(z̄ − w)(wz̄)j, (4.9)

which again should be compared to the related result for Gaussian matrices [14, Eq. (4.4)].

As for the real eigenvalues, the spectral density for the complex eigenvalues is given in

terms of the kernel S,

ρc
(1)(z) = S(z, z). (4.10)

In the next subsection, we will see how the spectral density of the real eigenvalues (4.3) can

be used to get an explicit expression for the average number of real eigenvalues.
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4.2. Average number of real eigenvalues. Integrating (4.3) over x gives the expected num-

ber of real eigenvalues, E(#reals) say.

Corollary 4.2. We have

E(#reals) = 2
N−2

∑
j=0

(−1)j
m

∏
i=1

(

Li + j

Li

)

a
2⌈ j

2+1⌉−1,2⌊ j
2+1⌋, (4.11)

where according to (3.15) we have

a
2⌈ j

2+1⌉−1,2⌊ j
2+1⌋ =

( m

∏
ℓ=1

LℓΓ(
Lℓ

2 )Γ(
Lℓ+1

2 )

2
√

π

)

× Gm+1,m
2m+1,2m+1

(

1
2 , . . . , 1

2 ; L1
2 + j + 1, . . . , Lm

2 + j + 1, ⌈ j
2⌉+ 1

⌈ j
2⌉, j + 1, . . . , j + 1; 1−L1

2 , . . . , 1−Lm
2

∣

∣

∣

∣

∣

1

)

. (4.12)

Proof. Setting x = y in (4.4) gives an explicit formula for S(x, x), and we compute

E(#reals) =
∫ 1

−1
ρr
(1)(x)dx = 2

N−2

∑
j=0

m

∏
i=1

(

Li + j

Li

)

aj+1,j+2 (4.13)

where

aj,k =
∫ 1

−1
dx
∫ 1

−1
dy w

(m)
r (x)w

(m)
r (y)xj−1yk−1sgn(y − x). (4.14)

We know from (3.14) an evaluation of aj,k in the cases that j is odd and k is even; this in fact

covers all cases required by (4.13) due to the anti-symmetry aj,k = −ak,j. Using the latter

we rewrite (4.13) as (4.11).

Formula (4.12) is identical to (3.15) with j 7→ ⌈ j
2 + 1⌉ and k 7→ ⌊ j

2 + 1⌋, where have used

the identity

zρGm,n
p,q

(

a1, . . . , ap

b1, . . . , bq

∣

∣

∣

∣

z

)

= Gm,n
p,q

(

a1 + ρ, . . . , ap + ρ

b1 + ρ, . . . , bq + ρ

∣

∣

∣

∣

z

)

(4.15)

in order to simplify the indices. �

We remark that if L1, . . . , Lm are even positive integers, then we can evaluate the Meijer

G-function in (4.12) using a similar method as in Section 3.3 which allows us to find explicit

evaluations of the average number of real eigenvalues (4.11) as finite sums over ratios of

gamma functions. For instance, for m = 1 with L1 even, it follows from (3.22) that

E(#reals) =
Γ( L1+1

2 )√
πΓ(L1)

N−2

∑
j=0

L1/2

∑
ℓ=1

(−1)jΓ(j + L1 + 1)Γ(⌈ j
2⌉+ 1

2 )Γ(j + ℓ+ 1
2)Γ(L1 − ℓ)

Γ(j + 1)Γ(j + L1 +
1
2)Γ(ℓ+ ⌈ j

2⌉+ 1
2)Γ(

L1
2 − ℓ+ 1)

. (4.16)
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The result for m = 1 with L1 odd can similarly be written down using (3.28). For m = 2

with L1, L2 even, it follows from (3.26) that

E(#reals) =
Γ( L1+1

2 )Γ( L2+1
2 )

πΓ(L1)Γ(L2)

N−2

∑
j=0

L1/2

∑
p=1

L2/2

∑
q=1

(−1)j Γ(L1 − p)Γ(j + L1 + 1)Γ(j + p + 1
2)

Γ(j + 1)Γ(j + L1 +
1
2)Γ(

L1
2 − p + 1)

× Γ(L2 − q)Γ(j + L2 + 1)Γ(j + q + 1
2 )

Γ(j + 1)Γ(j + L2 +
1
2)Γ(

L2
2 − q + 1)

(

Kp,q
j +Kq,p

j +
Γ(⌈ j

2⌉+ 1
2)

2

Γ(p + ⌈ j
2⌉+ 1

2)Γ(q + ⌈ j
2⌉+ 1

2)

)

(4.17)

with

Kp,q
j := Kp,q

⌈ j
2+1⌉,⌊ j

2+1⌋ =
Γ(⌈ j

2⌉+ 1
2)

Γ(p)Γ(p + q + j + 1
2)

q

∑
ℓ=1

Γ(j + ℓ+ 1
2)Γ(p + q − ℓ)

Γ(⌈ j
2⌉+ ℓ+ 1

2)Γ(q − ℓ+ 1)
. (4.18)

We observe that both (4.16) and (4.17) are rational numbers for all N, L1
2 , L2

2 ∈ Z+. This is

no surprise since we already know that all probabilities pPm
N,0, . . . , pPm

N,N are rational numbers

whenever L1, . . . , Lm are positive even integers and

E(#reals) =
N

∑
k=1

k pPm

N,k. (4.19)

Thus, by the same arguments as in Section 3.3, we know that the average number of real

eigenvalues (for any m, N ≥ 1) will be given by a rational number when L1, . . . , Lm are even

integers. Table 2 shows explicit evaluations for the average number of real eigenvalues in

a few cases; it is easily verified that the averages presented in Table 2 are consistent with

the probabilities from Table 1.

Table 2. Average number of real eigenvalues for m = 1, 2, 3, N = 2, 3, 4 and

either L1 = L2 = L3 = 4.

m = 1 m = 2 m = 3

N = 2 48
35 ≈ 1.3714 195 968

128 625 ≈ 1.5236 255 821 824
157 565 625 ≈ 1.6236

N = 3 169
105 ≈ 1.6095 6 482 411

3 472 875 ≈ 1.8666 78 176 286 107
38 288 446 875 ≈ 2.0418

N = 4 688
385 ≈ 1.7870 9 817 004 416

4 622 396 625 ≈ 2.1238 14 537 252 216 952 832
6 166 392 657 665 625 ≈ 2.3575

4.3. A single truncated real orthogonal matrix. We will now look at asymptotic properties

and we will start with the m = 1 case which is the simplest by far. This simplicity, first



HOW MANY EIGENVALUES OF A PRODUCT OF TRUNCATED ORTHOGONAL MATRICES ARE REAL? 19

identified in [24], is due to the simple form of the weights w
(1)
r and w

(1)
c . Thus, it follows

from (1.10) and (1.14) that

w
(1)
r (λ) =

(1 − λ2)L/2−1

√
2π

(

L
Γ(1/2)Γ ((L + 1)/2)

Γ(L/2)

)1/2

, |λ| < 1 (4.20)

and

w
(1)
c ((x, y)) =

{

L(L−1)
2π |1 − z2|L−2

∫ 1
2|Im z|/|1−z2|(1 − t2)(L−3)/2dt, L > 1

1
2π

1
|1−z2| , L = 1,

where z = x + iy ∈ D+.

Simplified, summed up expressions are also known for S(x, x) (real case) and S(z, z)

(complex case), or equivalently for the real and complex eigenvalue densities. For this

introduce the incomplete beta integral

Is(a, b) =
1

B(a, b)

∫ s

0
ta−1(1 − t)b−1dt and B(a, b) =

∫ 1

0
ta−1(1 − t)b−1dt.

We know from [24, 30, 9] that

S(x, x) =
1

B(L/2, 1/2)

I1−x2(L + 1, N − 1)

1 − x2
+

(1 − x2)(L−2)/2|x|N−1

B(N/2, L/2)
Ix2

(

N − 1

2
,

L + 2

2

)

,

(4.21)

and from [30, Eq. (372)] that

S(z, z) =
2Im(z)L(L − 1)

π

|1 − z2|L−2

(1 − |z|2)L+1

∫ 1

2|Im(z)|
|1−z2|

(1 − t2)(L−3)/2dt
(

1 − I|z|2(N − 1, L + 1)
)

,

(4.22)

for L > 1 and

S(z, z) =
2Im(z)

π|1 − z2|(1 − |z|2)2

(

1 − N|z|2N−2 + (N − 1)|z|2N
)

(4.23)

for L = 1.

The sought asymptotic properties can now be deduced from the above exact formulae.

Proposition 4.3 (Khoruzhenko et al. [24]). Let α = N/(N + L), and let χJ denote the indicator

function for the interval J. For α ∈ (0, 1) fixed, the asymptotic density of the real eigenvalues reads

lim
N→∞

1√
N

ρr
(1)(x) =

√

(1 − α)

πα

1

1 − x2
χ−√

α<x<
√

α, (4.24)

Likewise, the density of the complex eigenvalues with α ∈ (0, 1) fixed is

lim
N→∞

1

N
ρc
(1)(z) =

(1 − α)

πα

1

(1 − |z|2)2
χ|z|<√

α. (4.25)
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Proof. The starting point is the exact formulae (4.21) and (4.22). First, use that L = N(1 −
α)/α. In the asymptotic limit of the integrals in (4.21) and (4.22) can now be evaluated

using the method of steepest descent, see [30, §7.6.1]. �

Corollary 4.4. Under the same assumptions as in Proposition 4.3, the average number of real

eigenvalues grow asymptotically as

E(#reals) ∼ 2

√

N(1 − α)

πα
artanh

√
α. (4.26)

Proof. Follows by integration over x in (4.24), since E(#reals) =
∫

dxρr
(1)(x). �

The large-N limit is different when L (rather than α) is kept fixed. In this limit, the real

and complex densities, (4.21) and (4.22), develop singular behaviour on the boundaries, i.e.

at x = ±1 and |z| = 1 for the real and complex density, respectively. Thus, we need to look

at the neighbourhood of the boundaries in order to see any non-trivial behaviour. In the

real case the following result holds.

Proposition 4.5 (Khoruzhenko et al. [24]). For L > 1 fixed and x ∈ (0, ∞), we have

lim
N→∞

1

N
ρr
(1)

(

1 − x

N

)

= ρ̃r
(1)(x) (4.27)

with

ρ̃r
(1)(x) =

xL/2−1e−x

2Γ(L/2)

(

1 − xL/2+1γ(L/2 + 1, x) +
(2x)L

B(L/2, 1/2)
γ(L + 1, 2x)

)

, (4.28)

where γ(n, x) = (xnΓ(n))−1
∫ x

0 tn−1e−tdt.

It is seen that to leading order the tail behaviour of the density (4.28) is

lim
N→∞

ρ̃r
(1)(x) ∼

x→∞

1

B(L/2, 1/2)x
. (4.29)

It follows that
∫

ρ̃r
(1)(x)dx diverges, which tells us that average number of real eigenvalues

grows with N. However, unlike the case with α fixed, the average number number of real

eigenvalues cannot be obtained by a trivial integration. Nonetheless, it is claimed in [24]

that

E(#reals) ∼
N→∞

log N

B(L/2, 1/2)
. (4.30)

We know from [15] that the probability pP1
N,N of all eigenvalues of a single truncated real

orthogonal matrix being real, which is the coefficient of ζN in (3.13) and (3.14) with m = 1,

can be written in the product form (we write L1 = L)

pP1
N,N =

N−1

∏
j=0

Γ(L + j)Γ((L + j)/2)

Γ(L + (N + j − 1)/2)Γ(L/2)
. (4.31)
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Introducing the Barnes G-function G(z) by its relation to the gamma function, G(z + 1) =

Γ(z)G(z), we see that (4.31) can be written

pP1
N,N =

1

(Γ(L/2))N

G((2L + N)/2)

G(L)

G((N + L)/2)

G(L/2)

G((N + L + 1)/2)

G((L + 1)/2)

G((2L + N − 1)/2)

G(N + L − 1/2)
.

Using the asymptotic expansion [4]

log G(x) ∼
x→∞

x2

2
log x − 3

4
x2 + O(x log x) (4.32)

in this formula allows the leading large N, L asymptotic form of pP1
N,N to be deduced.

Proposition 4.6. Let L = cN with c > 0 fixed. We have

pP1
N,N ∼

N→∞
exp

{

N2
(

− c

4
− 1

4
log 2 − c

2
log c − 3c2

4
log c

− 1

4
(c + 1)2 log(c + 1) + (c + 1

2)
2 log(c + 1

2 )
)

+ O(N log N)
}

. (4.33)

We remark that in the limit c → ∞, in which case the entries of P1 approach independent

standard Gaussians, (4.33) reduces to pP1
N,N ∼ e−(N2/4) log 2. This latter result is consistent

with the exact result pP1
N,N = 2−N(N−1)/4 for P1 a real standard Gaussian matrix [8].

For P1 a real standard Gaussian matrix, the probability pP1
N,0 (with N even) that all eigen-

values are complex has the large N expansion [23, 13]

1√
N

log pP1
N,0 = − 1√

2π
ζ
(3

2

)

+
C√
N

+ · · · , (4.34)

where ζ(x) denotes the Riemann zeta function, and C is an explicit constant with the

numerical value 0.0627 · · · . Notice in particular the proportionality of log pP1
N,0 on

√
N

rather than N2 as for log pP1
N,N . One might speculate that this is a feature too of the large N

form of log pP1
N,0 for P1 a truncated real orthogonal matrix, although an analysis based on

(3.18) and (3.19) appears out of reach at the present time.

4.4. Asymptotic behaviour of general m. In order to study the large-N asymptotic behav-

ior for general m > 1, we take L1 = · · · = Lm = L in the following.

It is generally believed that under weak assumptions the global spectral density of a

product of m independent and identically distributed random matrices is the same as for

m-th power of a random matrix drawn from the same ensemble; see e.g. [5]. In the m = 1

case, we know the global spectral density for a truncated orthogonal random matrix for

N, L → ∞ with α ∈ (0, 1) fixed, see (4.25). From this we compute that for the m > 1 cases,

lim
N→∞

1

N
ρc
(1)(z) =

1 − α

mπα

|z|2/m−2

(1 − |z|2/m)2
χ|z|<αm/2. (4.35)
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We note that the density (4.35) is the same as for products of truncated unitary matrices [5,

1]. In fact, as suggested in [5], the validity of (4.35) can be proven using techniques from

free probability; figure 1 shows a comparison with numerical data.

0 0.2 0.4 0.6
0

0.5

1

1.5

2

|z|

2
π
|z|

ρ
c (1
)
(z
)

−0.5 0 0.5

−0.5

0

0.5

z ∈ C

Figure 1. The figure shows numerical data for a product of two (i.e. m = 2)

random truncated orthogonal matrices with N = L = 1000. The left panel

shows a histogram for absolute value of the eigenvalues (real eigenvalues

are included but are sub-dominant) generated from 100 realisation; the solid

curve show the predicted large-N density given by (4.35). The right panel

shows a scatter plot of eigenvalues for a single realisation together with a

circle of radius αm/2 which is the predicted radius of support as N tends to

infinity.

When looking at the global spectrum for the real eigenvalues, we cannot employ tech-

niques from free probability as the number of real eigenvalues are sub-dominant in N. This

makes the real case more challenging. However, it is still believed that the global density

(up to an overall normalisation) is same the m-th power of a single truncated orthogonal

matrix, which gives us a conjecture for the density.

Conjecture 4.7. The normalised global spectral density for the real eigenvalues for N, L →
∞ with α ∈ (0, 1) and m ≥ 1 fixed is given by

ρr
(1)(x)

E(#reals)
=

1

2 m artanh
√

α

|x|1/m−1

(1 − |x|2/m)
χ|x|<αm/2. (4.36)

We note that in the small-α limit (i.e. L ≫ N), we have

lim
α→0

αm/2ρr
(1)

(αm/2x)

E(#reals)
=

|x|1/m−1

2 m
χ−1<x<1, (4.37)
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which we recognise as the global spectral density for the real eigenvalues of a product

Gaussian matrices (conjectured in [14] and proven by Simm in [33]). This is consistent

with a known transition from truncated orthogonal matrices to real Gaussian matrices

for L ≫ N. Figure 2 verifies that there is good agreement between numerical data and

Conjecture 4.7.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

x

ρ
r (1
)(

x
)

Figure 2. The figure shows a histogram of the real eigenvalues for 100 re-

alisations of a product of two (i.e. m = 2) random truncated orthogonal

matrices with N = L = 1000. The solid curve show the conjectural large-N

density given by Conjecture 4.7.

Based on known behaviour for m = 1 (Corollary 4.4) as well as known results in the

Gaussian case [33], we furthermore state the following conjecture.

Conjecture 4.8. For N, L → ∞ with α = N/(N + L) ∈ (0, 1) and m > 0 fixed, the average

number of real eigenvalues grows asymptotically as

E(#reals) ∼ 2

√

mN(1 − α)

πα
artanh

√
α. (4.38)

Figure 3 shows that there is agreement between Conjecture 4.8 and numerical data; we

recall that asymptotic behaviour for the m = 1 case (also shown on figure 3) is known to

be true (i.e. this case is not conjectural).

It would interesting to see if the method presented in [33] for Gaussian matrices could

be extended to prove Conjecture 4.7 and 4.8 for truncated orthogonal matrices. However,

such an analysis is beyond the scope of the present paper and will be postponed to future

work.
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Figure 3. The figure compare numerical data for the average number of real

eigenvalues (data points) with the conjectural asymptotic behaviour from

Conjecture 4.8 (solid curves). Numerical data is provided for m = 1, 2, 3 (de-

noted by N,�, •, respectively) and N = L = 2, 5, 10, 20, 50, 100, 200, 500, 1000

(using 50 000, 20 000, 10 000, 5000, 2000, 1000, 500, 200, 100 realisations, re-

spectively). The data depicted on the two panels are the same but the left

panel has axes with linear scale while the right panel is double-logarithmic.

An even more challenging task is to go beyond the average number of real eigenvalues

(Conjecture 4.8) and ask for the probability distribution of the number of real eigenvalues as

the matrix dimension tends to infinity. Under general (but not fully understood) conditions,

it is believed that the number of real eigenvalues satisfy a ‘central limit theorem’ for large

matrix dimensions [6]. Based on numerical evidence, we conjecture that a similar result

holds for the product ensembles considered in this paper.

Conjecture 4.9. Let E be a random variable given by the number of real eigenvalues of a

product of truncated orthogonal matrices with parameters N, L, α, m defined as above. For

N, L → ∞ with α ∈ (0, 1) and m ≥ 1 fixed, we have

E − E[E ]
√

(2 −
√

2)E[E ]
d−→ N (0, 1), (4.39)

i.e. E converges (in distribution) to a normal random variable.

Figure 4 compares the Gaussian prediction from Conjecture 4.9 with numerical data

generated from 1000-by-1000 matrices. We see that there is excellent agreement between the

numerical data and the conjecture. Note that Theorem 3.3 together with the expansion (3.2)

gives us an explicit way to determine the probability distribution for the number of real
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eigenvalues for finite N and L. However, it is a highly non-trivial task to use these explicit

formulae to proof the asymptotic result given by Conjecture 4.9.

We see from (4.39) that for large N, Var (E) = (2 −
√

2)E[E ] independent of m. In fact,

this same proportionality has been observed in several other asymmetric random matrix

ensembles both analytically [17, 16, 34, 25] and numerically [6]. Thus, in this setting 2−
√

2

is believed to be a universal constant.

0 10 20 30 40 50
0

0.1

Figure 4. The figure compares numerical data for the number of real eigen-

values (data points) with the conjectural asymptotic behaviour from Conjec-

ture 4.9 (solid curves). Numerical data is provided for m = 1, 2 (denoted by

•,�, respectively) and they are generated from 1 000 realizations of matrices

with N = L = 1000.
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