
ar
X

iv
:1

50
7.

05
57

1v
2 

 [
m

at
h-

ph
] 

 1
7 

O
ct

 2
01

5

Exact evaluations of some Meijer G-functions and

probability of all eigenvalues real for product of two

Gaussian matrices

Santosh Kumar

Department of Physics, Shiv Nadar University, Gautam Buddha Nagar,

Uttar Pradesh - 201314, India

E-mail: skumar.physics@gmail.com

Abstract. We provide a proof to a recent conjecture by Forrester (2014, J. Phys.

A: Math. Theor. 47, 065202) regarding the algebraic and arithmetic structure of

Meijer G-functions which appear in the expression for probability of all eigenvalues

real for product of two real Gaussian matrices. In the process we come across several

interesting identities involving Meijer G-functions.
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1. Introduction

Product of random matrices and the associated eigenvalue spectra exhibit a number of

interesting properties and find concrete applications in varied fields of knowledge. Their

study goes back to as early as 1950’s where the focus was on exploring the behavior

of dynamical systems, and the accompanying questions related to stochastic differential

equations and Lyapunov exponents [1–5]. In the last few years there has been a revival in

interest in their investigation because of their fascinating integrability properties [6–19]

and identification of new problems where they can be applied, such as random graph

states [20], combinatorics [21], quantum entanglement [14] and multilayered multiple

channel telecommunication [9, 22].

In a recent study by Lakshminarayan [14] it was shown that the question concerning

optimal quantum entanglement is intimately related to the probability that the product

of two real 2-dimensional Gaussian random matrices (real Ginibre matrices) has real

eigenvalues. This problem was exactly solved in [14] and extensive numerical exploration

was conducted for the product of arbitrary number of matrices of higher dimensionalities.

A complete analytical solution was provided by Forrester in [15] where he found explicit

determinantal expressions for the probability of all eigenvalues real for product of any
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number of Gaussian matrices of arbitrary dimension. Several related asymptotic results

were also derived. In the finite dimensionality case the determinants were found to

involve certain Meijer G-functions. Meijer G-functions have also appeared as correlation-

kernels in product of Ginibre matrices or of truncated unitary matrices [8–10, 18, 19],

Bures and Cauchy two-matrix models [16], and very recently in the results for product

of a Wigner matrix and a Wishart matrix [23]. We give a brief introduction to Meijer

G-functions in the next section.

One of the intriguing observations made in [15] involved the Meijer G-function

G3,2
3,3

(
1

∣∣∣∣
5/2− j, 5/2− j, 2

1, 1 + k, 1 + k

)
which appeared as the kernel in the case of product

of two Gaussian matrices. Based on high-precision numerical computation it was

conjectured that these are rational multiples of π2 for positive integers j, k. We provide

here a proof to this conjecture by deriving an exact and simple expression which clearly

demonstrates why this is the case. In the process we also come across some interesting

identities involving Meijer G-functions.

2. Exact evaluation of a class of Meijer G-functions

Meijer G-function is defined in terms of Mellin-Bernes type contour integral [24, 25]:

Gm,n
p,q

(
z

∣∣∣∣
a1, ..., an, an+1, ..., ap
b1, ..., bm, bm+1, ..., bq

)
=

1

2πi

∫

C

ds zs
∏m

j=1 Γ(bj − s)
∏n

j=1 Γ(1− aj + s)
∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
, (1)

where an empty product is interpreted as 1. The integer indices satisfy 0 ≤ m ≤
q, 0 ≤ n ≤ p, and the parameters a’s, b’s may be real or complex such that no pole of∏m

j=1 Γ(bj − s) coincides with any of the poles of
∏n

j=1 Γ(1− aj + s). Also, the contour

C is such that it separates the poles of
∏m

j=1 Γ(bj − s) from those of
∏n

j=1 Γ(1− aj + s);

see [24, 25] for details. One of the fascinating properties of the family of Meijer G-

functions is its closure property under differentiation as well as indefinite integration.

Moreover, majority of the established elementary functions and special functions can be

represented in terms of Meijer G-functions. A few examples are

ez = G1,0
0,1

(
−z

∣∣∣∣
−
0

)
, (2)

ln(1 + z) = G1,2
2,2

(
z

∣∣∣∣
1, 1

1, 0

)
, (3)

cos z =
√
πG1,0

0,2

(
z2

4

∣∣∣∣
−

0, 1/2

)
, (4)

Γ(α, z) = G2,0
1,2

(
z

∣∣∣∣
1

α, 0

)
, (5)
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Jν(z) = G1,0
0,2

(
z2

4

∣∣∣∣
−

ν/2,−ν/2

)
, − π

2
< arg(z) ≤ π

2
, (6)

K(z) =
1

2
G1,2

2,2

(
−z

∣∣∣∣
1/2, 1/2

0, 0

)
. (7)

The special functions on left hand side of Eqs. (5)-(7) are upper incomplete Gamma

function, Bessel function of the first kind, and complete elliptic integral of the first

kind, respectively.

For our purpose we begin with the identity [24, 25]

G3,2
3,3

(
z

∣∣∣∣
a1, a2, c

b1, b2, c

)
= G2,2

2,2

(
z

∣∣∣∣
a1, a2
b1, b2

)
. (8)

The above result follows because of the presence of common parameter c in the upper

and lower sets of parameters in the Meijer G-function on the left-hand side [24–26]. The

Meijer G-function in the above equation has a representation in terms of regularized

Gauss hypergeometric function [26]:

G2,2
2,2

(
z

∣∣∣∣
a1, a2
b1, b2

)
= Γ(1− a1 + b1)Γ(1− a2 + b1)Γ(1− a1 + b2)Γ(1− a2 + b2)

×zb1 2F̃1(1− a1 + b1, 1− a2 + b1; 2− a1 − a2 + b1 + b2; 1− z). (9)

We note that the regularized Gauss hypergeometric function is related to the

usual Gauss hypergeometric function by the simple relation 2F̃1(α1, α2; β; z) =

2F1(α1, α2; β; z)/Γ(β). We now use one of the derivative identities for Meijer G-

function [26],

d

dz

[
z−cG3,2

3,3

(
z

∣∣∣∣
a1, a2, c

b1, b2, c

)]
= −z−1−c G3,2

3,3

(
z

∣∣∣∣
a1, a2, c

b1, b2, c+ 1

)
, (10)

which leads, when applied recursively, to the following expression:

G3,2
3,3

(
z

∣∣∣∣
a1, a2, c

b1, b2, c+ n

)
= (−1)nzc+n dn

dzn

[
z−cG3,2

3,3

(
z

∣∣∣∣
a1, a2, c

b1, b2, c

)]

= (−1)nzc+n dn

dzn

[
z−cG2,2

2,2

(
z

∣∣∣∣
a1, a2
b1, b2

)]
. (11)

This is an interesting result which can be directly used along with (9) to demonstrate the

truth of the conjecture in [15]. However, we make further progress and insert relation (9)

in the above equation and use the following results to carry out the n-fold differentiation:

dn

dzn
(f(z)g(z)) =

n∑

µ=0

( n

µ

)dn−µf(z)

dzn−µ

dµg(z)

dzµ
, (12)

dm

dzm
z−α = (−1)m(α)mz

−α−m, (13)
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dm

dzm
2F̃1(α, β; γ; 1−z) = (−1)m(α)m(β)m 2F̃1(α+m, β+m; γ+m; 1−z).(14)

Here
( n

µ

)
represents the binomial coefficient and (a)n = Γ(a + n)/Γ(a) is

the Pochhammer symbol. Incorporating all these results and carrying out some

simplification, we arrive at the following identity:

G3,2
3,3

(
z

∣∣∣∣
a1, a2, c

b1, b2, c+ n

)
= Γ(1− a1 + b2)Γ(1− a2 + b2)

×
n∑

µ=0

( n

µ

)
(c− b1)n−µ Γ(µ+ 1− a1 + b1)Γ(µ+ 1− a2 + b1)

×zµ+b1
2F̃1(µ+ 1− a1 + b1, µ+ 1− a2 + b1;µ+ 2− a1 − a2 + b1 + b2; 1− z). (15)

Substituting z = 1 and using

2F̃1(α, β; γ; 0) =
1

Γ(γ)
, (16)

we obtain

G3,2
3,3

(
1

∣∣∣∣
a1, a2, c

b1, b2, c+ n

)
= Γ(1− a1 + b2)Γ(1− a2 + b2)

×
n∑

µ=0

( n

µ

)
(c− b1)n−µ

Γ(µ+ 1− a1 + b1)Γ(µ+ 1− a2 + b1)

Γ(µ+ 2− a1 − a2 + b1 + b2)
. (17)

Equations (15) and (17) are two key contributions of this work. We use (17) in the next

section to prove the result predicted in [15].

3. Probability of all eigenvalues real for product of two real Gaussian

matrices

Let us consider two N × N -dimensional real Gaussian matrices X and Y which have

the associated joint probability measure

P(X, Y )d[X ]d[Y ] =

(
1

2π

)N2

e−
1
2
tr(XXT+Y Y T )d[X ]d[Y ]. (18)

Here tr represents trace, and T stands for transpose. Also d[X ] refers to the product of

differentials of all matrix elements of X . Similar definition is to be understood for d[Y ].

Forrester has derived an exact determinantal expression for the probability of all N

eigenvalues real for product of m number of N ×N -dimensional standard real Gaussian

matrices [15]. We quote here the result for m = 2, i.e., the probability of all eigenvalues

being real for the product XY , where X and Y are from (18). For even N we have

pXY
N,N =

(
N∏

j=1

1

Γ2(j/2)

)
det

[
G3,2

3,3

(
1

∣∣∣∣
5/2− j, 5/2− j, 2

1, 1 + k, 1 + k

)]

j,k=1,...,N/2

, (19)
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while for odd N we have

pXY
N,N =

(
N∏

j=1

1

Γ2(j/2)

)

× det



[
G3,2

3,3

(
1

∣∣∣∣
5/2− j, 5/2− j, 2

1, 1 + k, 1 + k

)]

j=1,...,(N+1)/2
k=1,...,(N−1)/2

[
Γ2(j − 1/2)

]
j=1,...,(N+1)/2


 . (20)

Using high-precision numerical computation it was conjectured in [15] that the Meijer

G-functions in the above expressions lead to values which are rational multiples of π2.

We show below that this is indeed the case.

We set a1 = a2 = 5/2 − j, b1 = 1, b2 = k + 1, c = 2, n = k − 1 in (17), which gives

on little simplification the following remarkable identity

G3,2
3,3

(
1

∣∣∣∣
5/2− j, 5/2− j, 2

1, 1 + k, 1 + k

)

= Γ(k)Γ2(j + k − 1/2)

k−1∑

µ=0

Γ2(µ+ j − 1/2)

Γ(µ+ 1)Γ(µ+ 2j + k − 1)

= π2Γ(k)Γ
2(2j + 2k − 1)

Γ2(j + k)

k−1∑

µ=0

162−µ−2j−kΓ2(2µ+ 2j − 1)

Γ(µ+ 1)Γ2(µ+ j)Γ(µ+ 2j + k − 1)
. (21)

This is the central result of this paper which confirms the algebraic and arithmetic

structure predicted in [15]. Using Eq. (21), it takes less than a second to evaluate the

above Meijer G-function with j, k values as large as 1000 in Mathematica [27]. We have,

for j, k = 1, ..., 5,


G3,2
3,3



1

∣∣∣∣
5/2− j, 5/2− j, 2

1, 1 + k, 1 + k









j,k=1,...,5

= π2




1
22

39
27

10335
213

2997855
218

6149253915
225

3
27

435
213

72555
218

91686735
225

48462643845
230

135
213

16695
218

15107715
225

5645015145
230

6504362819955
236

7875
218

6024375
225

1840070925
230

1683904397175
236

1105018317277875
241

3472875
225

955040625
230

768670177275
236

432899597505375
241

2645687420488987875
249




. (22)

Interestingly, Mathematica also returns the sum in (21) in terms of a generalized

hypergeometric function, which gives

G3,2
3,3


1

∣∣∣∣
5/2− j, 5/2− j, 2

1, 1 + k, 1 + k


 = Γ2(j − 1/2)Γ2(k)− Γ(k)Γ4(j + k − 1/2)

× 3F̃2(1, j + k − 1/2, j + k − 1/2; k + 1, 2j + 2k − 1; 1). (23)
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Table 1. Exact values and numerical values (6 significant digits for N > 1) for

probability pXY
N,N of all eigenvalues real for product of two N × N -dimensional real

Gaussian matrices are listed in the second and third columns, respectively. The fourth

column displays numerical values of the the ratio (4/π)(pXY
N−1,N−1

pXY
N+1,N+1

)/(pXY
N,N)2

and supports the leading large N form (π/4)N
2/2.

N
pXY
N,N 4

π

pXY
N−1,N−1p

XY
N+1,N+1

(pXY
N,N)2

Exact Numerical value

1 1 1 −

2
π

22
7.85398× 10−1 1.01321

3
5π

25
4.90874× 10−1 1.00500

4
201π2

213
2.42162× 10−1 1.00446

5
10013π2

220
9.42462× 10−2 1.00257

6
64011585π3

236
2.88821× 10−2 1.00229

7
31625532537π3

247
6.96751× 10−3 1.00156

8
8012440011007425π4

269
1.32219× 10−3 1.00142

9
39186641315011126281π4

284
1.97341× 10−4 1.00106

10
6286653393344610981261954345π5

2116
2.31574× 10−5 1.00098

11
304070790487188921741594082108725π5

2135
2.13636× 10−6 1.00077

This result, when combined with (21), leads to yet another interesting identity

3F̃2(1, j + k − 1/2, j + k − 1/2; k + 1, 2j + 2k − 1; 1) =
Γ2(j − 1/2)Γ(k)

Γ4(j + k − 1/2)

− 1

Γ2(j + k − 1/2)

k−1∑

µ=0

Γ2(µ+ j − 1/2)

Γ(µ+ 1)Γ(µ+ 2j + k − 1)
. (24)

We note here that 3F̃2(α1, α2, α3; β1, β2; z) = 3F2(α1, α2, α3; β1, β2; z)/(Γ(β1)Γ(β2)).

With the result (21) at our disposal, we can also calculate exact results for pXY
N,N

using (19) and (20) as rational multiples of powers of π. Exact expressions for this
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Figure 1. Plots of PXY
N,N and the leading large-N asymptotic (π/4)N

2/2 for N up to

100. The y-axis scale is logarithmic.

probability for N as large as 100 is obtained in about 5 seconds using Mathematica.

We list exact results up to N = 11 in Table 1, along with the numerical values with six

significant digits. Also displayed in the third column are the numerical values of the

ratio (4/π)(pXY
N−1,N−1p

XY
N+1,N+1)/(p

XY
N,N)

2, which corroborates the large N leading result

(π/4)N
2/2 [15]. In Fig. 1 we show the plots of exact PXY

N,N and the large N leading

contribution (π/4)N
2/2. The curves are in good agreement.

4. Summary and Outlook

In this work we explored some identities involving Meijer G and hypergeometric

functions. Using these we proved a recent conjecture of Forrester regarding the algebraic

and arithmetic structure of Meijer G-function appearing in the study of probability of

all eigenvalues real for product of two real Gaussian random matrices. Whether similar

structures exist in the case of product of more than two matrices, remains an open

question.
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